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The equations of hydrodynamics for a perfect Quid in general relativity are cast in Eulerian form, with
the four-velocity being expressed in terms of six velocity potentials: U„=p (@,„+Ofp,„+85,„).Each of the
velocity potentials has its own "equation of motion. " These equations furnish a description of hydrody-
namics that is equivalent to the usual equations based on the divergence of the stress-energy tensor. The
velocity-potential description leads to a variational principle whose Lagrangian density is especially simple:
Z= (—g)'"(R+16wp), where R is the scalar curvature of spacetime and p is the pressure of the Quid.
Variation of the action with respect to the metric tensor yields Einstein's field equations for a perfect fluid.
Variation with respect to the velocity potentials reproduces the Eulerian equations of motion.

I. INTRODUCTION

v= VP+nVP (1.2)

The Clebsch representation had the disadvantage that
g, n, and p were not physically useful individually; in
particular, there were no individual equations of
evolution for p, n, and p that could give changes in v
directly, without reference to the usual equations of
hydrodynamics.

* Supported in part by the National Science Foundation
I GP-15911, GP-9114] and the Oflice of Naval Research PNonr-
220(47)j.

t NDEA Title IV Predoctoral Fellow.
History has mercilessly given us half a dozen different uses for

the names of Lagrange and Euler. The adjectives Lagrangian and
Eulerian refer, respectively, to observers comoving with the Quid
or fixed with respect to some arbitrary reference frame through
which the Quid flows (see also Ref. 9). The functional whose
integral is extrernized in a variational principle is the Lagrangian
density. Finally the equations that express the extremal conditions
are the ENler-Lagrange equations. Because we wish to emphasize
the Eulerian nature of the velocity potentials, we shall hence-
forth speak of their equations of evolution rather than of their
equations of motion.

2 A. Clebsch, J. Riene Agnew. Math. 56, 1 (1859).

" N this paper we introduce:. ; a velocity-potential
~- representation for the four-velocity of a perfect
Quid in general relativity. This representation permits a
new formulation of relativistic hydrodynamics, in
which the velocity potentials themselves have first-
order "equations of motion, " and in which the changes
of the four-velocity with time are expressed in terms of
Kulerian' changes in the potentials. Einstein's field
equations plus the equations of evolution in this new
formulation can in turn be obtained from a variational
principle whose Lagrangian density is

z = (—g)'t'(A+16m p),
where E is t.he scahr curvature and p is the fluid's

pressure.
Velocity potentials are not new to Newtonian hydro-

dynamics, but they have been of limited usefulness.
It is well known that irrotational motions can be
derived from a single potential, v = Vp. In 1859,
Clebsch' proved that arty (Newtonian) motion can be
represented by three potentials:

By contrast, - the Newtonian velocity-potential
representation introduced by Seliger and Whitham' in
1968 avoids this difhculty. By using five potentials
(two more than the minimum necessary), Seliger and
Whitham were able to give to each potential an equation
of evolution and to some an independent physical
interpretation. For example, one potential is the
entropy; another is the "thermasy" of van Dantzig. 4

The representation presented in this paper is a
relativistic generalization of the one given by Seliger
and Whitham. The six velocity potentials (one more
than in the Newtonian case because we have a four-
velocity rather than a three-velocity) all have equations
of evolution that determine how they change with time.
These equations constitute an alternative to the usual
equations of hydrodynamics (i.e., to those based upon
the divergence of a stress-energy tensor), rather than
simply an adjunct.

Seliger and Whitham derived their equations from a
variational principle. We here generalize their principle
to include the eRects of a general-relativistic gravita-
tional field. In addition we place the velocity-potential
equations of evolution on a firm foundation apart from
the variational principle by giving a rigorous proof that
they are equivalent to the standard equations of
hydrodynamics. If the reader desires a more intuitive
feeling for why the Quid's Lagrangian density should
be simply the pressure, or for how one originally came
to the velocity-potential representation, he is invited
to read Seliger and Whitham and the references they
cite.

The present paper is divided into two main parts
plus four Appendixes. The 6rst part discusses . the
equations of hydrodynamics, first in their standard
form and then in terms of velocity potentials. The
proof of equivalence between these two versions of
hydrodynamics is left to Appendix B.The second main
part presents the variational principle. Appendix A

' R. L. Seliger and G. B. Whitham, Proc. Roy. Soc. (London)
A305, 1 (1968). Their representation was based in part on work
by C. C. Lin, in Liquid Helium (Internationa} School of Physics
"Zerieo Fermi", course 21), edited by G. Careri (Academic, New
York, 1c9,63), p. 93.

4 D. van Dantzig, Physica 6, 693 (1939).
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contains Pfaff's theorem, an old theorem in differential
forms that is essential to understanding the velocity-
potential representation; we include it here (without
proof) because it is not well known to physicists in its
most general form. Appendixes C and D discuss in
detail questions that Inay interest only the specialist:
respectively, the uniqueness of the velocity-potential
representation and an initial-value formulation of the
equations of evolution.

A word about conventions: We use "geometrized
units, " with 1, =6=1. Greek indices run from 0 to 3;
Latin from 1 to 3. The Inetric has positive signature,
so that timelike intervals are negative. We define proper
time v- by

(1.3)

so that dr is real and positive for a particle moving
forward in time. We adopt the notation that D/Dr
means covariant differentiation along a world line,
while d/dr means partial differentiation; a semicolon
denotes a general covariant derivative and a comma
denotes a general partial derivative. Thus, the four-
velocity is defined as

8q =dlI+ pd (1/po). (2 1)

Because of the two-parameter equation of state, PfaG's
theorem (Appendix A) implies that there exist functions
S(po, II) and T(po, II), the specific entropy and the
temperature, respectively, such that'

dII+Pd(1/po) = TdS = bq.

If one now defines the specific inertial mass by'

p = (t+P)/t 0=1+II+I/t 0

(2 2)

(2.3)

one can use dp to eliminate dII in Eq. (2.2) and obtain

at rest in the Quid. Then the density of. total mass-
energy is p=po(1+II).

We assume an equation of state of the form

P =p(po, II). Such a two-parameter expression is
sufFicient for any one-component Quid. ' The applicabil-
ity of the results of this paper to a real baryonic Quid
depends in part on how well a two-parameter equation
of state characterizes the Quid.

The amount of energy per unit rest Inass, bq, added
to the fiuid in any quasistatic process is (first law of
thermodynamics)

so that we have

U"=dx"/dr, (1.4)
did po 'dp=T—dS. (2.4)

U"U = —1 (1.5) We will often use this in the form

Then for any function X,

D&/Dr = P'(x),„— dp=pp@ ppTdS.

(1.6) Clearly one can express po and II as functions of p and
5, so that one can put the equation of state in the form

d&/dr —= U" (&),. (1.7)

Finally, four-vectors are written in boldface sans
serif: A. Three-vectors appear in boldface: A.

p=p(. ,S)

Stress Energy Tenso-r and E&quations of Motion

(2.6)

II. RELATIVISTIC THEORY OF ONE-
COMPONENT PERFECT FLUID

The relativistic one-component perfect Quid is defined

by its equation of state, Eq. (2.6), and by the stress-
energy tensor

A. Standard Version

Thermodynamics of One Component Perfe-ct Fluid

T""=(o+P)U"U"+Pg""
=p,uU~U"+pg»".

(2.7)

We consider a perfect Quid composed of baryons.
Because baryons can undergo transmutation, the true
rest mass of a group of baryons may not be conserved;
but their baryon number E is conserved. Hence, we
degne the (conserved) rest mass of a sample of matter
containing E baryons to be ms', where mII is the mass
of a hydrogen atom in its ground state. The diGerence
between the total mass-energy and m&Ã is called the
internal energy U. Thus U includes the difference
between mHX and. the true rest mass of the actual
atoms and baryons; and it also includes the energy of
electron-positron pairs, of mesons, of photons, of
thermal motions, and of "zero-point" Fermi-gas
"motions. "We denote by po the density of rest mass so
defined, and by II=—U/rnHN the specific internal energy,
both as measured in a local inertial frame momentarily

In a locally comoving inertial frame, TI'" is diag(p, P,P,P).
Because the Quid is perfect, the stress-energy tensor

E. Fermi, Thermodynamics (Dover, New York, 1936), p. 91.' For a many-component system (i.e., one whose equation of
state has more than two independent parameters), Pfa6's theorem
does not sufFice to require by= TdS, i.e., to ensure an integrating
factor for 8g. One must then invoke a weak form of the second
law of thermodynamics. See S. Chandrasekhar, An Introduction
to the Study of Stellar Structure (Dover, New York, 1939), Chap. 1.
For an isolated one-component fluid, Pfaff's theorem makes the
second law a mathematical identity.

'The quantity p+p plays the role of inertial mass per unit
volume in a perfect fluid. See Eq. (2,19) of this paper, or the article
by K. S.Thorne in High-Energy Astrophysics, edited by C. DeWit t,
E. Schatzmann, and P. Veron (Gordon and Breach, New York,
1967),Vol. 3. I thank Professor Thorne for pointing out to me that
m~ is also the injection energy at constant entropy: the energy
required to create one baryon and place it in the Quid with the
same energy (mHII) as neighboring baryons, doing work esHp/po
to create the same volume (mH/po) for it as the other baryons have.
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contains no viscosity or energy-transport terms. The
conservation of baryon number, rewritten in terms of
rest mass pp, is embodied in the equation

This is the familiar force law; it justifies calling (p+p)
the inertial mass per unit volume.

(t pU"):.=0.
Normalization of the four-velocity reads

(2.8)
B. Velocity-Potential Version

Velocity Pote-rttiat Represerttatiort and
Equatiorls of Motion

(2.9)

covariant di6erentiation of which yields the useful
equation

(2.10)

The equations of motion obeyed by the Quid are
expressed in conservation form by requiring the stress-
energy tensor to be divergence-free:

(2.11)

These four equations supplemented by Eqs. (2.8) and
(2.9) determine the motion of a fluid whose equation
of state is known.

The physical meaning of the four equations (2.11)
becomes clearer upon separating out their components
parallel and perpendicular to the four-velocity. The
equation parallel to U,

U T~' =Q

reduces Lby Eqs. (2.8)—(2.10)] to

U"p,„—ppU"p „=0.
By Eq. (2.5) this becomes

p pTU"S,„=Q.

(2.12)

(2.13)

(2.14)

Thus, the motions of a perfect Quid conserve the
entropy per baryon. Because bq=TdS, this confirms
that no heat Qows in or out of any element of the
perfect Quid during its motions.

One can construct the three independent equations
of motion perpendicular to U by using the projection
tensor

One usually interprets the equations of motion in the
"standard version" in a Lagrangian sense. One regards
the four-velocity as vector representing the change of
a particle's position in proper time. It is a vector "field"
only in the continuum approximation, in which one
overlooks the fact that the Quid is "really" composed
of discrete particles packed very closely together.
Because one tends to regard the four-velocity as a
little arrow carried along by the particles, one also
tends to interpret the equations of motion in terms of
what happens to little fluid elements. Thus, Eq. (2.19)
describes the response of a Quid element to a pressure
gradient, and Eqs. (2.8) and (2.14) require the conserva-
tion of the number of baryons and the amount of
entropy contained in a, Quid element.

The "velocity-potential version" of hydrodynamics,
by contrast, lends itself most naturaljy to an Kulerian
interpreta, tion. One regards the four-velocity as a
vector field over spacetime. As such it can be represented
in terms of sca]ar fields and their gradients. While the
particles move through space, the scalars at a given
point of space simply change their amplitudes with
time. 9

According to Pfaff's theorem (Appendix A), four
potentials a,re sufficient to describe the four-velocity:

U„=AP, „+CD,„. (2.20)

%Phile four such potentials are guaranteed to exist,
they may not be physically useful. In this paper we
introduce instead a six-potential representation that
has a ready and important physical interpretation.
This representation is'P

P'„=8'„+U'U„. (2.15) U„=p '(@,.+nj9,„+85,,). (2.21)

The equations are

P Tl"" =0 (2.16)

By using Eqs. (2.8)—(2.10), one can reduce this to

The potentials p and S are just the specific inertial
mass and the specific entropy as defined above. The
physical significance of the remaining potentials p, n,

P, and e" will be explored below.
P."p„=pp p U...U—" (2.17)

=tjp pD U ~/D T . (2.18)

In a locally comoving intertial frame, P "picks out the
spatial gradient of p. jf v is the (instantaneously zero)
spatial part of U, Eq. (2.18) becomes

—Vp= (p+p)dv/dt. (2.19)

Newtonian perfect fluids permit heat conduction. In relativity,
however, conduction leads to a nonzero momentum density and to
anisotropic stresses in the rest frame of the baryons; it must
therefore be excluded from perfect fluids in relativity.

9 The distinction between Eulerian and Lagrangian coordinates,
while useful, is not rigid in general relativity, because all equations
are independent of coordinate system. Lagrangian interpretations
are valid only in comoving frames. The "Eulerian" equations for
the velocity potentials are good in any reference frame; in fact,
however, they are most easily interpreted in a comoving frame.
(See the section on Physical Interpretation below. )

Seliger and Whitham replace the term 05,„with —S8
„

in their
Newtonian representation, and thus achieve the nonrelativistic
version of Schmid's representation (Ref. 26). Note also that Eq.
(2.21) is a local equation; the existence of a global set of potentials
is not guaranteed.

"To my knowledge, D. van Dantzig (Ref. 4) was the first to
define 9. He called it the "thermasy. "
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The equations of evolution in this representation are

U"S„=,dS/dr =0,
U" a,.= dn/ dr =0,
U"P,„=dP/dr =0,
U"g „=dP/dr = —/r,

U"8„=d, 8/dr = T.
From Kqs. (2.21), (2.22b), (2.22d), and
the result

(2.22a)

(2.22b)

(2.22c)

(2.22ci)

(2.22e)

(2.22f)

(2.22e) follows

(2.23)

There is no equation for p. Its evolution can be com-
puted from Eqs. (2.22a), (2.22b), and the equation of
state.

Appendix 8 contains the proof that these velocity-
potential equations are equivalent to the standard
version of the equations of motion.

C= V t, dX (2.26)

around the closed curve. From Kq. (2.24) we see that

(2.27)

'2 A. H. Taub, Arch. Ratl. Mech. Anal. 3, 3'12 (1959).
"By Ref. 7, mHV is the four-momentum a baryon must have

to be injected into the Quid. In the nonrelativistic limit (p, ~ 1),
we have V -+ U. Thus, both U and V are relativistic generaliza-
tions of the three-velocity v. In circulation it is more useful to
deal with ~l/f (see Ref. 12). For example, Bernoulli's equation for
nonsteady irrotational isentropic Qow generalizes using V be-
cause in that case it can be derived from a single potential @. As
another example, the tangential component of V is conserved
across shock fronts. The simple form the circulation equations
assume in terms of velocity potentials is another indication of the
utility of V.

Physical Significance of Velocity Potent-ial Version

Circulation The rep. resentation Eq. (2.21) is well
suited to Taub's" Kulerian analysis of circulation. Taub
defines a current vector V=/iU, " which in our rep-
resentation is

V =/iU, =P,,+nP, +8S,, (2.24)

He then defines the circulation tensor 0 q=2V~, .q~,

where square brackets denote the antisyrronetric part.
In our representation this becomes

Q.x=2Vi., /i =2ni, xP,.i+28i,)S„/. (2.25)

Taub then defines circulation C in the following manner.
Consider a spacelike hypersurface 2 through the world
lines of the Quid's particles. A closed curve A in Z may
in general enclose some circulating Quid. If X is the
ordinary length parameter along A, and f =dr /dk is
the tangent vector to A in Z, then the circulation C is
defined as the integral

where the subscript A on dP and dS means that the
differentials are directed along the curve. Clearly, if
o/ is a, function only of P, and if either 8 or S is a con-
stant, ' then C will be zero for any choice of 2 and A.
In this case, 0

„
is also zero. One can easily see, then,

that C will vanish for every curve A in every hypersurface
Z if and only if 0„=0,which is a result Taub also
mentions. This establishes the significance of 0,

„
in

circulation.
In order to see the roles of n, P, 8, and S more clearly,

let us look at the circulation in a momentarily comoving
local Lorentz frame, with g s ——diag( —1, 1, 1, 1). Then
V'= —Vo=p, V'= V;=0. Define the vorticity vector

vv 1( g)
1/2evrrxc—U

1~—s( g) 1/sev~ÃxV—g
(2.28)

where (—g) "'e" "" is the completely antisyinmetric
contravariant tensor. In the comoving frame, because
V;=0, v" has vanishing time component. In fact, we
have

p'0 =gt ~ Qjp)

tuv =Va x Vp+ V8 x VS.
(2.29)

(2.30)

That is, if VS=0, surfaces of constant n and P intersect
along vortex lines, which are carried along with the
fiuid because do//dr=dP/dr=0. " If initially n=const,
P = const, but SW const, then surfaces of constant 8 and
S determine vortex lines whose orientation with respect
to the fluid's particles changes in time because d8/dr =T.

Uniqueness of the velocity Potential -rePresenfation
Formulation of Eqs. (2.22) in terms of initial values
will give us more insight into the velocity-potential
representation. The first-order nature of Eqs. (2.22)
makes an initial-value approach especially simple for
the restricted case of no self-gravitation, i.e., the case
where the Quid does not disturb the background
geometry of spacetime. The case with self-gravitation,
although important, is more difficult and would not
add substantially to our understanding of the potential
representation itself, so we ignore it here.

The first question —which has nothing to do with
self-gravitation —concerns the uniqueness of the rep-
resentation. Given a physical situation, how much
"gauge freedom" does one have to choose the initial
values of the potentials without changing the physical
situation they describe) If any such freedom exists,
Eqs. (2.22) clearly imply that it lies only in the choice
of initial values: The evolution of the potentials away
from their initial values is fully determined by the
physical situation (U, /i, and T). Before we can deal

'4 If 8 and S are not both constant, neither can be a function
only of the other, because d8/d~= T while dS/dr =0. If either of
them is constant, the second integral in Kq. (2.27) is zero. Only
if T=O can 8 be constant.

"Circulation due to n and P will not change in a comoving
frame. Such circulation may, however, emit gravitational radia-
tion and be damped out as seen by a distant, noncomoving
observer.
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with this evolution we must resolve the question of
gauge freedom among the potentials.

There is no gauge freedom in p and S because
changing them changes the physical situation. The
question is whether there are two sets of potentials,
(P,o.',P,8) and (P',n', P',8'), differing in initial values,
which give the same U when substituted into Eq.
(2.21) using the same ti and S. Two such sets are said
to be equivalent. The equivalence transformations by
which one set is obtained from another are discussed
in detail in Appendix C. These transformations are
essentially contact transformations. The result of
interest here is: The initial value of any one potential
may be chosen arbitrari7y; the remaining initial values
are then constrained by the physical coridition of the ftu. id
(by U, ti, S, and the equation of state)."

Let us discuss the physical meaning of the equivalence
transformations. Circulation in the fluid is an observ-
able and hence must be preserved by the transforma-
tion. In the isentropic case (S.„=0), circulation proceeds
around intersections of surfaces of constant n and P.
The eGect of the equivalence transformation Eqs.
(C21) is to preserve these intersections while changing
o and P.

Intersecting surfaces of constant 8 and S determine
a kind of thermal circulation. Because physical condi-
tions fix S, equivalence transformation on 0 but not on
rr and P must leave V8 unchanged except for parts
parallel to VS. This is why requiring any equivalence
transformation to leave n and P unchanged leads to
the equation 8'=8+f(S).

A general equivalence transformation changes n and
p as well as 8, but it keeps the sum Vn x Vp+V8 x VS
constant by transferring some circulation from one
term to the other. The two types of circulation cannot
therefore be separated from each other uniquely on any
given spacelike hypersurface; they can be distinguished,
however, by the way they change as the Quid moves off
that hypersurf ace.

Restricted initial value formula-tiori Suppo.se one
chooses initial values of the velocity potentials on some
initial hypersurface; what kind of initial-value informa-
tion is necessary to determine a unique Quid motion in
the background metric? Are the initial values of the
six velocity potentials p, S, p, n, P, and 8 sufficient;
or are their derivatives off the hyper surface also
necessary? Once the set of initial values is chosen, the
equivalence transformation of Appendix C can lead to
other sets that give the same Quid motion. Nevertheless,
each set can be so chosen that it determines one and
only one Quid motion. Appendix D presents two

"The remaining initial values are constrained but not fully
determined by the physics. See Ref. 35. Moveover, the arbitrary
choice of the initial value of one potential may lead to divergences
in others. These divergences will not a6'ect any observables like
U or the circulation. For example, if the term ap. , is nonzero in
one representation, choosing u'=0 will not generally eliminate
this term; it will only force p' to diverge in order to keep e'P',

„

nonhero and 6nite.

diBerent initial-value schemes whereby the four-velocity
and thermodynamic state of the Quid are determined
throughout spacetime by the specification of certain
data on an initial hypersurface. The first scheme shows
that specifying values of all six potentials and the
equation of state is sufhcient. The second scheme shows
that specifying the thermodynamic condition (ti and S)
is not essential: The equation of state, the initial values
of @,n, P, and 8, and the derivatives of any two of those
four potentials normal to the hypersurface will fully
determine p, S, and U. Appendix D also leads to an
obvious consistency condition on the initial values:
The iriitial vatues of tj, , S, g, n, P, and 8 must be so chosen
that the three space v-elocity of the ftuid parallel to the

iriitia1 hypersurface riotvhere exceeds the velocity of light

Once sufficient Cauchy data have been specified, the
subsequent evolution of the velocity potentials is most
easily discussed from a Lagrangian point of view. From
Kqs. (2.22) one can see that the initial values of n, P,
S, and baryon number E are carried along by the Quid:
Each fiuid element sees no change in these four func-
tions. They are therefore "initial-value parameters. "
By contrast, the functions 8 and @ are "dynamical
variables": Their evolution is determined by the
thermodynamic condition of the Quid. Changes in them
cause the changes in the motion of the Quid seen in a
comoving (Lagrangian) frame. They are dynamical
in the sense that the complete history of a Quid element
can be given by a plot of 8 against P, along which the
given values of S, o., P, and E are constant. That there
are only two dynamical variables in this sense does
not imply that there are only two "degrees of freedom"
in the Quid's motion. The question of degrees of freedom
is taken up at the end of Appendix C.

III. EULERIAN VARIATIONAL PRINCIPLE

In 1954, Taub' gave a variational principle whose
Euler-Lagrange equations were the general-relativistic
field equations plus the equations of motion for a perfect
Quid in what we have called the standard version. An
essential feature of any such variational principle is
that the world lines of the Quid's particles be among the
quantities varied. Consistent with the Lagrangian
interpretation of the standard version that we discussed
in Sec. II A, in Taub s principle one varies the world.
lines in a Lagrangian manner: One attaches a label to
every particle and directly changes the particle's
path by changing the position of its label in spacetime.

The variational principle given in this section uses
the velocity-potential version of hydrodynamics and
hence is Eulerian. The independent coordinates with
respect to which the Lagrangian density is varied are
the velocity potentials themselves. Varying the poten-
tials varies the four-velocity and thence implicitly the
world lines.

"A. H. Tauh, Phys. Rev. 94, t468 (1954),
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The action princi p/e. In step-by-step form,
(1) Select an equation of state for the one-component

perfect Quid. Express it in the form

p=p( S) (3.1)

Then Eq. (2.5) follows from basic thermodynamics:

dp =pod@ —poTdS. (3.2)

(2) Define the four-velocity vector field in terms of
six scalar velocity-potential 6elds:

U. =p '(4,.+aP;+8~,).
Normalization of U implies

(3.3)

g"(4-..+-~,+8S.)(4.,+-~,+8S.,), (3.4)

which de6nes the functional dependence of p upon the
independent variables of our variational principle, 4,
n, P, 8, S, and g"".

(3) Define the action I as

I= (R+167rP) ( g)""d'x,— (3.5)

where E. is the scalar curvature, tak.en as a function of
g&" and its derivatives, and where p is the ordinary
pressure, which depends on all the independent variables
through Eqs. (3.1), (3.2), and (3.4).

(4) Extremize I to obtain the following Euler-
Lagrange equations':

ization of U. Since we impose that normalization
explicitly in our principle, we can drop the X term and
work with

Ir'= fR 16'—(p —poTS)j(—g)'I'd'x. (3.8)

Taub imposes two explicit constraints upon varia-
tions of I&'. The first is conservation of baryons, and
the second is that there exist a field. 0 such that U"0,„=T
(Taub uses n rather than 8). The second is not a physical
constraint, of course, since 8 exists for all U and T.
Nevertheless, it is a mathematical constraint. We
can eliminate both constraints by using Lagrange
multipliers:

U"4,.= —p. (3.10)

To complete the identihcation of Taub's principle with
ours, we add to the Lagrangian density the divergence

I'",„=16m L(—g)'~'(U"po4+ U"po8S) ),„.(3.11)

Ii"= fR 16m/q —poTS —y(U"po—) „8(poU"S—),„])
X (—g)"'d4x (3 9)

Variations of @ and 8 give the equations of conserva-
tion of baryons and entropy. Variation of S gives
T= U"8„.Variation with respect to po gives [noting
that (Bp/Bpo) s =p]

ggpv ~ G„„—8~Up+ p) U„U„+pg„„j=0, (3.6a)

b4i:

5S.

(pe U").,„=0,
U"S,„=O,
Ue =T
U"P,.=0,
U"n,„=o.

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.6f) IT"'= (R+16irP) (—g)'"d4x. (3.13)

Iz' = [ R —167r(p poTS+poU"4—&, +poSU"8,„)j
X (—g)"'d'x, (3.12)

which reduces to

Equations (3.3), (3.4), (3.6c), and (3.6e) imply

(3.6g)

Ir= [R 16ir(p poTS+hg„—„U"—U")]

X (—g) "'d'x, (3.7)

where X is a Lagrange multiplier that ensures normal-

~8 See, e.g., L. Landau and E. Lifshitz, The Clgssica/ Theory of
Fields (Addison-Wesley, Reading, Mass. , 1962), Sec. 93.

We have thus reproduced Eqs. (2.22) of the velocity-
potential representation. This establishes the validity
of the variational principle.

Consparison with other action principles. Our varia-
tional principle is equivalent to Taub's 1954 principle. "
To prove this we use a procedure taken from Seliger
and Whitham. ' Taub extremizes the action

The modified version of Taub s principle is thus equiv-
alent to ours, except for the technical point that Taub's
variations are Lagrangian and do not use velocity
potentials, while ours are Eulerian and rely on the
velocity potentials. "

More recently, Taub published a variational principle
expressed in comoving coordinates, in which the action

"These calculations give the potentials 8 and @ richer meaning;
one might ask if a and P have similar meanings. They do, in a
formal way (see Seliger and Whitham, Ref. 3):Qne can make the
transition from Taub's variables to the Eulerian variables com-
plete by requiring "conservation of Lagrangian coordinates"
(i.e., once a fiuid element is labeled with a comoving coordinate,
that coordinate never changes). Let P be such a coordinate and n
be its Lagrange multiplier. Then one adds the term ponU"P„
into Kq. (3.9); variation of o. and P then gives the appropriate
equations, without changing either Eq. (3.10) or Eq. (3.13).This
device, due orginally to Lin (Ref. 3), is somewhat mysterious,
especially since only one Lagrangian coordinate is required, and
not all three.
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is the same as the present one."" In fact, by special-
izing the calculations of this section to a comoving
coordinate system, one can show that variation of g&"

is equivalent to Taub's first variation of the action.
The price paid for working in a comoving system is
that the potential representation is rendered useless
while the equations for conservation of rest mass and
for normalization of the four-velocity have to be
assumed ad hoc, because the "comoving" constraint is
nonholonomic in the variables P, n, P, (t, and S.

Bardeen2' has recently obtained an Eulerian action
principle for axially symmetric, differentially rotating
configurations; we will show that one version of his
action principle is equivalent to ours, specialized to such
configurations. Baideen extremizes the action

I2 = 2' R/16tr T—'s @psU—o A—(p+P) U—Uq

&( (—g)'"dx'dx', (3.14)

where x' and x' are any two coordinates such that
8/Bx' and 8/c)x' are both orthogonal to the Killing
vectors 8/r)t and 8/c)q. The independent variables are
the nonzero components of g p and four "internal"
variables governing changes in the Quid and its motions:
pp U&/U', $, and t). The variables &(x',x') and t)(x',x')
are Lagrangian coordinates giving the position of a
Quid element in the x'-x' subspace, and are actually
redundant: Only one of them is needed to extract the
full physical content of the principle. " Consequently
there are really only three internal variables. The only
constraint on the variations is that U be normalized.
The two Lagrange multipliers C (g, t)) and A($,t)) ensure
that the baryon number and angular momentum,
respectively, of a Quid element be unaffected by
variations of g ~. When the actual values of 4 and A
are put in (C =p/Us, h. = U"/U'), Is reduces to

Bardeen's three, but their Euler-Lagrange equations
will be equivalent to his because they are a complete
set of variables: a one-component fluid constrained to
mover in only the cp direction has three degrees of
freedom —two thermodynamic and one kinetic. Since
the only constraint on our variational principle is
also the normalization of U, the two principles are
equivalent.

IV. CONCLUDING REMARKS

The work reported in this paper was originally
undertaken in the hope of finding stability criteria for
self-gravitating masses of fluid. Although that goal is
still far off, the existence of an Eulerian variational
principle may be a beginning.

What is needed, I believe, is a Hamiltonian principle
in a minimum number of variables. The present action
principle seems to have "too many" free variables:
Witness the existence of equivalence transformations
among P, n, P, and 0; witness also the fact that varia-
tions of the Lagrangian violate the conservation of po.
Perhaps the methods of Arnowitt, Deser, and Misner'4
or of Dirac" can be applied to isolate the "true vari-
ables" of the principle. Then one might be able to
obtain a self-adjoint variational principle that could
lead to stability criteria.

It may also be possible to extend this work to viscous
Quids and charged fluids. The key step would be the
extension of Theorem 1 of Appendix B to the appro-
priate case.

Note added t'ts proof. An equivalent set of velocity
potentials and a similar variational principle have been
obtained independently by Schmid from a very different
approach. "His potentials nicely illustrate a symmetry
of the velocity-potential formulation. He d.e6nes g
differently: dp/dr= p+TS. Then—all the results of
this paper carry through if one replaces OS,„by—SH, ,

(R+167rp) ( g)"'dx'dx' (—3.15)

This is the same action as in our principle. Moreover,
our principle also has three internal variables: The five
variables @, n, P, 8, and S are reduced to three by the
relations U2 = U3 =0. These three may differ from

'0 A. H. Taub, in Iiluides et Champ Gravitationnel en Relatjvite
Generale (Centre National de la Recherche Scientifique, Paris,
1969), pp. 57—72.

"A. H. Taub, Commun. Math. Phys. 15, 235 (1969).
"James M. Bardeen, Astrophys. J. 162, 71 (1970).
"Variations of P and q give the P and q components of the

(vector) equation of hydrostatic equilibrium. Since the Jacobian
8(g,rl)/8(x, &) is assumed well behaved, hydrostatic equilibrium
in (-q space implies equilibrium in x'-x' space. However, since $
and p are arbitrary functions of x' and x', the Euler-Lagrange
equation for either ( or g is sufhcient to guarantee hydrostatic
equilibrium everywhere in x -x' space. This g-g redundancy seems
closely related to the problem mentioned at the end of Ref. 19,
namely, that requiring conser'vation of only one Lagrangian
coordinate is sufIicient to complete the transformation from Taub's
first principle to ours.
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APPENDIX A: PFAFF'S THEOREM

We have occasion to use Pfaff's theorem several
times in this paper; we state it here without proof.
An application of the theorem familiar to physicists
concerns criteria for the integrability of a so-called
"Pfaffian form, "

P f, (x")dx'.
i=1

These criteria are closely related to the second law of
thermodynamics and lead to definitions of entropy and
temperature for many-component systems. ' Pfaff's
theorem is much more general than the second law,
however. It says'r that if f;(x") are X functions of 1V

independent variables x~, then there exist functions
A (x"), B (xs), and C(x") such that

N N/2

f,dx'=g A dB if N is even

(N—1) /2

=dC+ P A dB if 1V is odd.

For tV=2, Eq. (A1) becomes the familiar statement
that every differential form in two variables has an
integrating factor.

APPENDIX B: EQUIVALENCE OP STANDARD
VERSION AND VELOCITY-POTENTIAL

VERSION

The proof of equivalence between the equations of
the standard version and those of the velocity-potential
version rests upon Theorem 1 below. Once the theorem
is established it will allow us to show that the equations
of each version imply those of the others. Theorem 1
should be regarded as an algebraic identity: No
equations are assumed other than those explicitly
stated in the theorem.

Theorem 1. Let U be the four-velocity of a one-
component Auid. Define a tensor T„with components

T„=ppttU„U—+po„.
Define the scalar functions P and 8 by the differential
equations

Consequently we have

dy/dr = —tt,

d8/dr = T.

(82)

(83)

N/2 ()g
f,=Q A

a=1 ()x

Define the entropy by the equation

TdS=dtt pp dP.
or

BC (N'—1& /2 BB
f,= + Q A

Bx ~-1 Bx
(85)

(86)

dS/dr =0,

(ppU"),.„=0.respectively. The number of functions remains the
same, but the number of differentials is cut essentially
in half. Pfaff's theorem sets a least upper bound on the
number of differentials required: One might need fewer
but one never needs more. This least upper bound
depends only on the number of independent variables.
For example, if u, (x") and P, (xs) are 2E functions
(t'=1, . . ., Ã) of n(X independent variables, then

Do not impose any other equations of motion. Then the
following is an identity:

Zo(ttU„@,. 85„)=pp—'T„—... (87)

where 2 tr denotes the Lie derivative" with respect to U.
We note that Theorem 1 is true even if T„,,&0, i.e.,

when T„asdefined by Eq. (81) is not the complete
stress-energy tensor of the Quid. For example, in
magnetohydrodynamics Eqs. (85) and (86) still hold,
so Theorem 1 is still valid.

Proof. The proof of Theorem 1 is an elementary
exercise in I.ie derivations, whose properties can be
found in many references. '0 We simply note that the
definitions of 8 and @ and Eqs. (84) and (85) yield

N tv n 8Pt
p tr;dp, =p p ot; dx'—
i=l i=1 k=1 QX~

The expressions

8P;
&i

Bx"

(A2)
Require conservation of entropy" and baryons during
motions of the Quid:

are e functions of m variables; from Pfaff's theorem we
therefore obtain (if, for example, n is even)

n/2

Q tr,dp;=Q A,dB, . (A3)

"See Seliger and Whitham I'Ref. 3) or A. R. Forsythe, Theory
of Differential Equations (Cambridge U. P., London, 1900), Vol. I.

&v(pU. 4,. 8~;) = U'( U—.);.+—po 'P,' (88)

Similarly, application of Eq. (86) to the divergence of

"According to Ref. g, perfect fluids must have Bg=TdS=O
during their motions."I am indebted to Professor K. S. Thorne for suggesting the use
of Lie derivatives in proving equivalence between the two versions.

'o See, e.g. , K. Yano, The Theory of Lie Der&~utives arid its
Applications (North-Holland, Amsterdam, 1955), Chap. 1.
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Eq. (81) gives

Po Tv;n= U (tie);~+Po P,v. (89)
Q.E.D.

Let us now turn to the first half of the proof of
equivalenc e: the proof that the equations of the
velocity-potential version imply those of the standard
version. The velocity-potential representation of U, Eq.
(2.21), gives

Eqs. (815) and (316) are valid in any coordinate
system. Q.E.D.

~e now note that p was defined only by the differen-
tial equation dp/dr= —ti, so that any function in-
dependent of r can be added to @ without changing any
of the previous results. Such a function is y. Con-
sequently we can "absorb" y into P and obtain from
Theorem 2 the velocity-potential representation

p U„$,„—05,„—=nP,„. U. =ti '(Iti,„+np„+85,,). (819)

T.„,-=0, (811)

which is the standard version of the equation of motion.
The second half of the equivalence proof is the proof

that the equations of the standard version imply those
of the velocity-potential version. We already have the
three equations dP/dr = —p, dg/dr =T, and dS/dr =0
from the requirements of Theorem 1. We need only
show that the velocity-potential representation of U,

U„=p I(y,„+np„+85,„), (812a)

Therefore, we have

zU(tIU„p,„—85„)—=XII(np, .) =0, (810)

where the last equality follows from dn/dr =dP/dr =0
Then Theorem 1 gives

This completes the proof that the equations of the
standard version imply the equations of the velocity-
potential version. The two versions are equivalent.

By way of relating Theorem 1 to results more familiar
in Newtonian hydrodynamics, we establish a corollary
that is a generalization of Weber's transformation. "
De6ne the spacelike vector separating t%o neighboring
particles in the Quid, bx", in the following manner.
Let (8x")p be their separation on some arbitrary initial
spacelike hypersurface. Then let 8x" be the vector that
results when (8x")p is Lie-dragged off the initial hyper-
surface by the Quid's four-velocity; i.e., let bx" be the
separation between the particles af ter they have
advanced equal proper times off the initial hypersurface.
Then by construction we have

and the two remaining equations of evolution,

dn/dr =0,
dP/dr =0,

(812b)

(312c)

zII(5x")=0. (820)

Consequently, Theorem 1 implies (with T.',. =0)

Z U/(y, U„—y „OS,.) t'Ix"] =—0 (821)

follow from Theorem 1 and the standard version's
equations of Inotion,

T„,=0. (813)

But the quantity inside the square brackets in Eq.
(821) is a, scalar, and Lie differentiation of a scalar is
simply differentiation in proper time:

Equation (813) and Theorem 1 imply

ZII(tIU„—y,„—85,.) =0. (814)

d
t (p U. P,„—05,.)tix"'j—=0.—

dv
(822)

dn/dr =dP/dr =de/dr =0.

Proof. "De6ne

W„=ti U.—p,„—85,„.
(316)

(817)

Then W„is orthogonal to and Lie-dragged by U" (i.e.,

its Lie d.erivative along U" is zero); expressed in
comoving coordinates (r, y' such that U"=5p") this
means Wp=0 W, p=0. TheII Pfaff s theoI'em (Appendix
A) fol %=3 IIIlplles

W~dy*'= ndp+dy, (818)

with n, p, and y functions only of y'. Consequently,

"This proof was kindly suggested by J. Khlers (private com-
munication).

This leads to the following theorem.
Theorem Z. There exist functions n, P, and y such that

p U„—p„8$„=,
n—p„+,y,

I

Define 5X, the change in any scalar field X along the
vector bx", by

6x=x „8x".

Then Eq. (822) implies the following corollary of
Theorem 1.

Corollary (gerieralized Weber's transformatioN). Let the
subscript 0 denote the value of a quantity on some
initial spacelike hypersurface, and let the subscript ~
denote its value on some hypersurface advanced a
proper time 7 from the initial hypersurface. Then the
equations of hydrodynamics are equivalent to

(aU„Sx").—(t U.Sx")o=(tI@),—(h@)o

+ (885)„—(8bS)p. (823)

"See H. Lamb, Hydrodynamics (Cambridge U. P., London,
1932), Sec. 15, for the Newtonian version of Weber's transforma-
tion in the restricted case p=p(p). For the general p=p(p, S),
see J. Serrin, in Handblch der I'bye (Springer-Verlag, Berlin,
1959), Vol. 8, Sec. 29A.
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„+u,P„+8,S„=P, '„ju,'P'.+8,'S . (C1)

The potentials must individually satisfy these equa-
tions:

d@/dr =d$ /dr = p,

d8/dr =d8'/dr = T,

(C2a)

(C2b)

dS/dr =du/dr =du'/dr =dP/dr =dP'/dr =0. (C2c)

APPENDIX C: PHYSICALLY EQUIVALENT
REPRESENTATIONS

Two sets of velocity potentials are said to be equiv-
alent if they give the same four-velocity for the same
thermodynamic state of the Quid. The purpose of this
appendix is to derive the equations of transformation
whereby one set of velocity potentials may be obtained
from an equivalent one and thereby to determine how
much "gauge freedom" one has to choose the potentials
arbitrarily. "

Equivalent sets by definition have the same p, and S.
Ke therefore seek transformations between twa sets
of potentials (P,u,P,8) and (@', u'P', 8) such that I from
Eq. (2.21)j

u' =BF/BP', (C9c)

u = BF/—BP, (C9d)

8' —8 =BF/BS. (C9e)

Thus the function F generates a transformation from

(P,u,P,8) to (P', u', AB', 8). We include Kqs. (C9a) and
(C9b) as a formal device tha, t will enable us to obtain
other equivalence transformations in the following
paragraphs. Equations (C2b) a,nd. (C2c) are clearly
fulfilled.

The restriction of F to functions of 48, P', and S can
be relaxed by a device called the l,egendre transforma-
tion. For example, define

F=F2(u,P',S)—uP. (C10)

The subscript 2 distinguishes this form of F from Eq.
(C7). Then Eqs. (C9) become, in terms of F,,

BF/Bu'=0.

Having chosen some F and found its derivatives, we
see that F will generate an equivalence transformation
if and only if it satis6es Eq. (C6). Comparison with
Eq. (C8) reveals the equations"

We write Kq. (C1) in a more useful form:

-P..+-(8 -8)S (C3)

4 —O'=F.

By Kq. (C2a) we have

(C4)

In general, p and P' will differ by some scalar field F:

u'=BF2/Bp',

0=BFg/BP,

8' 8=BF2/BS-,

P =BFg/Bu,

0=BFg/Bu'

(C11a)

(C11b)

(C11c)

(C11d)

(C11e)

dF/dr =F,„U"=0.

Equation (C3) becomes

(C5) From Eq. (C4) we find

F2+uBF2/—Bu. (C11f)

F „=u'P'„uP„+(8' 8)S„.— (C6—)

As we shall see, each different choice of F generates a
diGerent equivalence transformation. The only restric-
tion on the choice of F is Eq. (C5). Accordingly, we
can take Ii to be some arbitrary function of any three
functions that are independent of r. Equation (C6)
suggests the choice

Then Eqs. (C11) give

F2=up'.

0! =Cl )
/

(C12)

(C13a)

Notice that these equations would also follow directly
from Kqs. (C6) and (C10). One special case of this
type is the identity transformation, generated by

F=F(P,P',S).
Differentiation of F gives

gF BF BF
P,.+ P',.+

BP BP' BS

(C7)

(C8)

(C13b)

(C13c)

(C13d)

Infinitesimal transformations can be generated by a
function 6 added to the identity generator:

Treating o. and n' as independent variables for the
moment, we have

F2 =nP'+ eG (u,P',S), (C14)

BF/Bu =0, (C9a) where e is the infinitesimal parameter. The resulting
transformation is"For a brief but similar analysis of the Clebsch representation,

see C. Eckart, Phys. Fluids 3, 421 (1960), Appendix. For a review
of contact transformations and their use in classical mechanics,
see H. Goldstein, Classica/ Mechanics (Addison-Wesley, Reading,
Ma~. 195O), map. 8.

u =u+ EBG/BP (C15a)

34 The physical interpretation of these and other equations of
transformation is discussed more fully in Sec. D B.
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P'=P —e8G/8n,

8' =8+ e8G/85,

(C15b)

(C15c)

@'=g+e(n8G/8n G—) . (C15d)

By analogy with F2 we can define two other types of
generating functions:

ail d

F=F3(n,a',5) aP+—r('P' (C16)

F= F4(P, n', 5)+n'P'. (C17)

The nontriviat equations of transformation generated
by Fs are

p'= —8F,/8n', (C18a)

p =8F,/8n,

8' 8=8F—3/85,

(C18b)

(C18c)

F3+n—8F3/8n+u'8F3/8n' (C18.d)

The corresponding set for Ii 4 is

p' = 8F4/8n-',
n = —8F4/BP,

8' 8=8F4/85—,

(C19a)

(C19b)

(C19c)

F4+n'8F 4/B—n.'. (C19d)

The generator F4 n'P a—lso——generates the identity
transformation and can serve as a starting point for
infinitesimal transformations. A special case of Ii 4 is

which generates

F4= ~'g(p),

p'=g(p),

n'=a(dg/dP) ',
8' =8,

(C20)

(C21a)

(C21b)

(C21c)

(C21d)

This is the simplest equivalence transformation; it
just reshuffles n and P without touching (t and 8.

Notice that if P' is not a monotonic function of P in

Eqs. (C21), a' will be infinite wherever dP'/dP =0. This
divergence is not of course physically observable. In
fa.ct, it ensures that the term a'P'

„
in t.he velocity-

potential representation will equal np „.This examp]e is
an omen: Ill-chosen transformations will introduce
divergences into some of the velocity potentials in order
to keep the observables of the Quid's motion unchanged
under the transformation.

Inconvenient as such divergences are, they do not
fundamentally affect the gauge freedom in p, n, p, and
0. Suppose one has a set of velocity potentials that
determines the thermodynamic condition and motion of
a Quid. An equivalent set can be obtained by choosing
the value of any one potential arbitrarily at each point
on the initial hypersurface. The equations of trans-

formation then show how the initial values of the other
three potentials must be changed in compensation.
(Only initial values are affected because dF/dr =0.) It
is not possible to choose a second potential arbitrarily
at every point of the initial hypersurface without
aRecting the value of the first one. None of the trans-
formations that leave one potential invariant have
enough freedom to permit choice of a second one
arbitrarily at every point. A simple example is Eq.
(C21), which transforms ~ and P but leaves P and 8

alone. It permits only transformations that leave
surfaces of constant p invariant: Choosing p at one
point fixes its value on a whole two-dimensional sub-

space of the hypersurface. We therefore conclude that
the initial value of one and only one potential is

completely arbitrary. The remaining initial values are
constrained (but not fully determined) by the physical
condition of the Quid. "

I thank Professor Kip S. Thorne for pointing out
that the arbitrariness of one potential is consistent with
intuitive ideas of the number of degrees of freedom in a,

Quid. That is, it should be possible to describe a Quid

completely with five functions at each point: two
thermodynamic variables (p and 5) and three indepen-
dent components of velocity. Because we use six poten-
tials to describe the Quid, one and only one of them
must be completely arbitrary.

APPENDIX D: RESTRICTED INITIAL-VALUE
FORMULATION

Whereas in Appendix C we began with a physical
situation and asked what sets of potentials could
describe that situation equally well, in this appendix
we begin with the potentials and ask what physical
situation they determine. Accordingly we present here
two diff erent prescriptions for constructing Quid motions
from knowledge of the potentials on some initial
hypersurf ace, under the restriction that the background
metric remain unchanged by the Quid's motions.

The first prescription requires knowledge only of the
potentials on an initial hypersurface, and not of their
derivatives off tha, t hypersurface:

(1) Choose an initial spacelike hypersurface Z with
future timelike norma, l N. On 2 specify the thermo-
dynamic state of the Quid by giving p and S. Also

specify the initial values of P, n, P, and 8 on Z. Say
nothing about their derivatives normal to 5'.

(2) From these initial values, find the three compo-
nents of U parallel to Z from Eq. (2.21). Then the
equation U U= —1 yields a, quadratic equation for

"The same situation exists in electromagnetism. Choice of the
Lorentz gauge (which corresponds to our choosing one potential
arbitrarily) does not completely 6x the gauge. Other Lorentz
gauges may be generated by any function A that satis6es the
homogeneous wave equation, A. =0. Such transformations do not
establish an arbitrary gauge at every point because of the
restriction on A, but they do modify the gauge without changing
the physics,
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U N. If this equation "has imaginary solutions any-
where on Z, then n, P, P, and 8 have been chosen wrong:
They have yielded a three-space velocity parallel to
Z greater than the speed of light. This is the only
consistency requirement on P, n, P, and 8. If the
quadratic equation has real solutions for U N every-
where, choose the sign of U N negative. One now has
determined U on Z.

(3) Using this value for U, proceed to calculate the
condition of the Quid on a hypersurface Z' s]ightly
advanced in time from Z. Construct this second hyper-
surface by advancing off the first a proper time dr in
the direction of U. Points of Z and Z' joined by V we
shall call "corresponding points. " The values of 5,
n, and P at corresponding points are equal. The value of
8 has increased from any point in Z to the corresponding
point of Z' by the amount Tdr, while that of @ has
decreased by pdv-.

(4) Finally, use the equation (p, U"),„=0to relate
the (as yet unknown) values of po and U N' on Z'

(where N' is the future tirnelike normal to Z'). Use the
equation of state to express po in terms of 5 and p,
because 5 is known on Z', onenowPas a relationbetween
p and U N' there. Equation (2.21) yields a relation
between p, and the spatial part of U on Z', since only
derivatives of @,P, and 5 parallel to Z' are known. Use
the equation U. U= —1 to get a third relation, this
one among p, the spatial part of U, and U. N'. Solve
these relations simultaneously for p, and the four
components of U on 2'. One now has enough informa-
tion to advance to a third hypersurface, and so on.

In step (2) we iniposed the consistency requirement
that the spatial velocity of the Quid on the initial
hypersurface be less than that of light. Are we guar-
anteed that the solutions in step four for p and U on
the new hypersurface will satisfy this requirement:
%'ill p and all the components of U be real? It is not
hard to show that if the initial conditions are so chosen
that the spatial part of U is zero, and if there are no
infinite gradients of p, then the relations of step (4)
imply that, on the new hypersurface, U N'= —1

+O(dr'), the spatial part of U is O(dr), and p has
changed to order dr. i.e., that the new condition of the
Quid is physically acceptable. Moreover, any physical
situation that satisfies the consistency requirement of
step (2) admits of a choice of initial spacelike hyper-
surface on which the spatial part of U is zero. Since the

.. physics cannot be affected by such a choice, and since
the equations of motion in the potential representation
are not affected by such a choice, we conclude that if
the potentials are constructed to be self-consistent on
some initial hypersurface, then they will remain self-
consistent throughout spacetime if in6nite gradients of

p do not develop.
The second prescription for constructing the Quid

motions from the potentials is more complex. It does
not require knowledge of the initial thermodynamic
state of the Quid but does require knowledge of the
derivatives of P and 8 off the initial hypersurface:

(1) On Z specify n, P, P, P,„,8, 8,„andthe equation of
state. Note that p, S, and the derivatives of n, P, and 5
normal to Z are unnecessary.

(2) From the known data, determine U and the
thermodynamic state of the Quid on Z in the following
manner. The equation U. U= —1 gives a relation
between U (the part of U parallel to Z) and U N; let
us write this as A (U N, U) =0. The equation U"8,„=T
similarly gives a relation of the form 8 (p,S,U N, U) =0
after the equation of state has been used to express T
in ternis of p and S. The equation U"g,„=—p gives a,

third relation: C(p, U N, U) =0. We therefore have
three relations in six unknowns. They can be solved" to
express three of the unknowns in terms of the other
three. Thus we can write p=f(U), S=g(U), and
U N=h(U). Finally, we use the potential representa-
tion, Eq. (2.21), to determine pU —8VS, a three-vector
parallel to Z. Because we know p and S in. terms of U,
we can solve for the three components of U. From
these we determine p, 5, and U. N.

(3) We now have as much information as at the end
of step (2) of the first prescription. To find the condition
of the fluid on Z', follow steps (3) and (4) of the first
prescription.

The second prescription distinguishes between what
we refer to in the text as initial-value parameters and
dynamical variables. The initial data for the dynamical
variables @ and 8 were their values on Z plus their
derivatives o6 it. By contrast, only the initial values of
n and P are required. This breakup of initial data is
not unique, however. One could have speci6ed the
derivatives of, say, p and n normal to Z; the calculations
would in fact have been easier.

3' As in the first prescription, if these equations have complex
solutions, the initial data have been chosen inconsistently.


