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using our earlier requirements on ~0) and introducing

z=(0[ac, ]0)=x+c(0[x- [0).
Now the differential coeffIcients in (3) are each invariant
under left group translations. Let

~D»q &7= ~Lp. q,&o7~Lp, q, &7

where po, qo, and tz remain unvaried. Then

ikU~dU=i7sUdU)

which leads to the three diGerential forms

pdq ppd t—=pdq —pq'dt, (4a)

2qdt+dp/p=2qdh+dp/p, (4b)

d&/p =d&/p. (4c)

Solutions to these differential relations (the Maurer-
Cartan equations") exhibit the invariance transforma-
tions of the classical action. It is convenient to split
up the result into three basic invariance transforma-
tlons one each fol $0, po and qo. The 61st ls the trivial

"P.M. Cohen, Lie Groups (Cambridge U. P., London, 1961).

transformation p=p, q=q, t=t+t, . The second is
given by q= pop, q=q/po, f=pot Th. e third transforma-
tion reads

P=p(1+qot)
q= (&+qo&)'q+qo(~+qo&),

t =&(1+q,t)-'.

It is clear that the first transformation applies to any
potential V(p). The second and third transformations
require that V(p) =E/p. Note that any value of E is
consistent since that term in the action is separately
invariant according to (4c). Under the second trans-
formation the two terms pq and pq' making up the free
action are separately invariant —invariance would be
maintained even if pq' were changed by a scale factor
to npq'. Under the third transformation, however,
there is "mixing" of pq and pq' and no separate scaling
would be possible. The latter transformation has much
of the appearance of a coordinate transformation:
The "metric" p(t) transforms homogeneously as a
"tensor, " while the "connection" q(t) possesses an
inhomogeneous term as well.
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The classical self-energy problem for charged tachyons is more serious than that for charged bradyons.
As a result, the theoretical basis for generally expected experimental properties of such objects is shaky.

ISTORICALLY, the problem of a classical electro-
.. magnetic charged particle coupled to an external

field has been complicated by the self-energy problem
associated with the point singularity at the location of

the particle. Methods used to deal with this' are suitable
only for particles whose speeds do not exceed that of

light, however, and it appears that for tachyons the
problem is rather more severe than usual. This fact may
have bearing on theoretical expectations concerning the
experimental properties of charged tachyons. ' The pur-

pose of the present paper is to point out the difhculties

involved since they do not appear to be generally

recognized and they are fundamental in character.
If a tachyon is not itself the source of an electro-

magnetic field, its equation of motion in a given external

' F. Rohrlich, Classical Charged I'articles (Addison-Wesley,
Reading, Mass. , 1965); Phys. Rev. Letters 12, 375 (1964).

~ O. M. P. Bilaniuk, V. K. Deshpande, and K. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962); G. I'einberg, Phys. Rev. 159, 1089
(1967).

field is most naturally taken to be that following from
the action principle based on the Lagrangian

I.=m&/x'(n)']'12+qx'(n) e(x),

where x'(a) I'—=dxl'(n)/dn, with n an arbitrary parameter,
the tachyon mass no& is defined to be real, and we have
used the space-favoring metric. %hen the tachyon is the
source of a field, the Lorentz force equation following

from (1) is expected to contain an additional term for
the radiation reaction, So, to determine the full equa-
tions of motion for the charge, it is necessary to solve
the Maxwell-Lorentz field equation in the presence of a
prescribed tachyon source and to compute the energy
and momentum of radiation.

For a source with world line prescribed by the
equations

the electromagnetic field equation in the Lorentz gauge



A~(x) = j~(x) =q

where m" (r) =dP—(r)/dr, with r the source proper time
and no~ 0, and q is the coupling strength to the 6eld A ~.

The complete solution to Kq. (3) is given by

A~(x) =A;.~(x)+ dx' D,.&(x—*')j"(*'), (4)

where A; &(x) satisfies the homogeneous equation with
initial conditions given for A&(x) in the remote past.
Taking A;„&(x)=0, the solution to Eq. (4) is

where the P(r„) are roots to the equation

(6)

and 0„ is a unit step function corresponding to the
retardation condition.

For bradyons, ' Eq. (6) always has exactly two solu-
tions, coinciding with the intersections of forward and
backward light cones from the field event x with the
timelike world line of the source. For the advanced root
$(r~), 8 vanishes because P(r~(x))) xo always holds,
while for $(rs(x) ), 8=—1. The solution is then the usual
I ienard-Wiechert potential. For tachyons there is no
such general characteri7ation because the world-line
tangent vector I"(r) is always spacelike; the number of
backward light cone intersections depends on the loca-
tion of the 6eld event. and the shape of the tachyon line,

The simplest example is that of a uniformly moving
charge, for which

Ap(x) =(qgi"/4s. )Lx'+(x ei,)']-'" Pb)

lfg =—1, and

A,&(x) =8 (qN, I'/2z) $ x'+(x I—i)'j "' (lt)

if I'=+1. In Eqs. P), we have used the identities

~
(x—bi).gg~ =$x'+(x Ni, )'jinn

ILx—Z(ri)j «I = ICx—k(r~)3 «I =t:—x'+(* «)9"
there being either two roots or no roots to Kq. (6) in the
straight-line tachyon case. In Eq. (7t), the value of the
0 function is 1 when —x'+(x I,)'&0, that is, for field
points in the "shadow of the tachyon, "4 i.e., behind the
Cerenkov front; it is zero outside.

' From the Greek Ppnbvs—=slow.
4A. Sommerfeld, Koninkl. Ned. Akad. Ketenshap. Proc. 8,

346 (1904}.

The singularity at the source in Eq. (7b) is of the
form

Ag~r i (gb)

5 K. Fermi, Phys. Rev. 5'7, 485 (1940}.
6 Like a spatially extended event Pcf. R. G. Cawley, Nava1,
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where r is the distance to the charge in its own rest
frame. In Eq. (7t),

A p &z (t2 ~2)
—1IR

where p is the distance to the tachyon line in the frame
~here its speed is infinite and t is the time elapsed since
its occurrence. In the bradyon case, the self-energy
singularity is confined to a point r=0, whereas in the
tachyon case there is a singular surface which propa-
gates to the 6eld observation points. The total radiated.
energy per unit length of the tachyon line involves a
time integral of the Poynting vector and it diverges
owing to the self-energy contribution on the edge of the
propagating front.

The energy loss of a charged bradyon moving rapidly
through matter contains a contribution arising from the
polarization of distant parts of the medium and which
can be identified with Cerenkov radiation. The singu-
larity arising in the classical calculation of the 6eld of
such a charge in a medium arises from the phenomeno-
logical representation of many-body eAects through an
index of refraction, and the diKculty is properly not
regarded as fundamental because this approximation
may be expected to break down for points along the
Cerenkov front.

For the case of a charged tachyon in empty space,
there is no such many-particle eGect to remove the
diQiculty, and the divergence of the integral for the
radiated energy must be regarded as fNNdumental (unless
we are satished by cd hoc hypotheses, i.e., theoretical
dodges, involving extended charge distributions). Be-
cause the radiated energy and momentum from a
moving tachyon is in6nite, a "radiation reaction" term
in the Lorentz™Dirac force law is pathological and it
appears that we cannot formulate the equations of the
coupled particle-6eld system in a meaningful way. The
procedures of Ref. j. do not seem to be helpM.

Physically what is happening is that the tachyon, no
matter how' long its world line may be, after being
created goes away entirely, ' not just to an "asymptotic
region, " and it does so all in an instant, the only trace
being its self-energy problem in the form of a propa-
gating singular wave front. It may be that. the field
approximation to the inhuence of a charged particle as
given by Eq. (3) wiH not be found useful in theories
involving "particles" which move faster than light.


