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The problem of obtaining the gravitational field of static, axially symmetric, thin shells is elucidated.
- In particular, a clear distinction between global and local frames is made. An algorithm is given for ob-
taining the fields of disks. There are two significant gravitational potentials A, and @. The poterftial P is
straightforwardly determined from the radial stresses by solving a two-dimensional potential problem.
This potential is analytic everywhere except on the disk and, together with its stream function z, can be
used to generate a conformal transformation which brings the equation for @ into the form of Laplace's
equation. This potential can then be found by solving a Neumann boundary-value problem. However, the
surface in the new coordinate system is not a disk since z is discontinuous across the disk. This is due to
the fact that the Cauchy-Riemann equations imply that if the normal derivative of p is discontinuous,
then the tangential derivative of s will be discontinuous.

I. INTRODUCTION

KCENTLV, a general method has been given' for
finding the gravitational field of static, axially

symmetric disks which have only transverse stresses
(i.e., T,&=0). These disks can be supported either by
hoop stresses or by the dynamic action of counter-
rotating dust. In this paper, a general treatment of
static, axially symmetric, thin shells is given. Due to the
high degree of symmetry of these shells, it is not neces-
sary to use the elegant methods of Israel' in the matching
procedure, and it is possible to gain greater insight into
the problem.

Weyl and Levi-Civita' found the general solution of
Einstein's gravitational field equations in a region of

empty space for a static, axially symmetric system.
This was accomplished by constructing in empty space
an intrinsic coordinate system whose only degree of
freedom p is a harmonic function. In the Newtonian
limit, @ becomes the gravitational potential. We shall
show that it is not, however, possible to obtain the
gravitational field of a thin shell by a simple matching
of two of these solutions across a shell with physically
realistic sources. The only exceptions to this statement
are the solutions given in Ref. 1.The problem is that the
intrinsic coordinates of Weyl and Levi-Civita are only
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defined in empty space and do not match simply at the
surface. 4 To illustrate these points we discuss the
Schwarzschild and Curzon solutions.

In the last section it is shown that for disks there is a
simple algorithm for constructing exact solutions with
physically reasonable sources.

The motivation for this work lies in the need for an
understanding of the eGects of strong gravitational
fields in nonspherically symmetric spaces.

II. GRAVITATIONAL FIELD OF STATIC
AXIALLY SYMMETRIC BODIES

Consider a static, axially symmetric space which is
endowed with an axis of symmetry. There is then a
coordinate system t, p, X, s, in which g « =g t, =g t, =g„,
=g~, =o, and in which the remaining components of the
metric are functions only of p and s.' We assume that
this coordinate system is quasicylindrical. By this we
mean that the coordinate p vanishes on the axis of
symmetry and, for Axed s, increases monotonically to
infinity, while the coordinate s, for fixed p, increases
monotonically from —~ to +~. In other words, the
p, s half-plane is parametrized in the same way as the
usual cylindrical coordinate system. These considera-
tions will play an important role in the following work.
The azimuthal angle X runs from 0 to 2', as usual.

It is well known that a two-dimensional space whose
metric obeys some smoothness condition, for example, a
Holder condition, is piecewise, conformally Rat. In other
words there exists a (isothermal) coordinate system in
which g,;=n8, , (i, j=1, 2).' It can be shown, by using

See H. Muller zum Hagen, Proc. Camb. Phil. Soc.
(1969), for a proof that in the case of spherical symmetry one
cannot in general extend the usual Weyl cover throughout the
interior of the body. This result holds in a much more general
context.

' P. G. Bergamann, in Handbuch der Physik IV, edited by S.
Flugge (Springer-Verlag, Berlin, 1962), p. 227.

6 S. Chem, Comment Math. Helv. 28, 301 (1954).
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the results of Resetnjak, ' that if the Gaussian curvature
of the p, s half-plane is bounded, then there exists an
isothermal coordinate system which covers the entire
half-plane. It is probably not physically restrictive to
assume that there is a quasicylindrical coordinate sys-
tem as defined above in which gpp g„and gp, =0
throughout the entire p, s half-plane, and in which the
metric is everywhere continuous. The metric now has
the convenient form

ds'= e'&d—t'+e" '~(dp'+de')+X'e 'PdX' (2.1)

where the potentials X, g, o are continuous functions of

p and s. It is first necessary to investigate the properties
of these potentials which are a consequence of only Eq.
(2.1) and our assumption that the coordinate system is
quasicylindrical. These are

(i) X =0 on the axis since the circumference of small
circles about the axis must tend to zero as p —+ 0.

(ii) o —+ ln (X/p) on the axis. This will be shown below.
Here we merely note' that if it were not so, then the
ratio of the circumference of a circle about the axis to
its ratio would not approach 2z as p —+ 0; this means
that space would not be locally Euclidean on the axis.

Since we are interested in the gravitational field due
to finite bodies, we shall, for definiteness, assume that
space is asymptotically Qat. We choose the scale of our
time coordinate so tha, t p ~ 0 at spatial infinity, and the
scale of our spatial coordinates so that X ~ p and 0- —+ 0
at spatial infinity.

We now consider coordinate transformations which
preserve the form of Eq. (2.1), the quasicylindrical
nature of the coordinate system, the continuity of the
metric, and the asymptotic behavior of the potentials.
The time coordinate t and the azimuthal angle I are
defined completely, except for their zeros, which play no
role in this work. Since we assume that the metric of
the p, s half-plane is isothermal, the coordinate
transformation

p ~ p(p, z), s —+ z(p, z) (2.2)

must be a conformal transformation, that is p and z obey
the Cauchy-Riemann equations

Laplace equation

- 8 83)
+

happ

as'I
(2.3c)

g=0 g lnJ) (2.4)

where J=p, ,z,.—p, ,z, , is the Jacobian of the trans-
formation. One can now see in a simple way why
o —+InP/p) on the axis. First, note that since the
analytic function p vanishes on the axis, p, , ~ p/p and
J~ (p/p)' as p ~ 0. In a neighborhood of any point on
the axis one can treat p as a constant, and one can intro-
duce a Cartesian-like coordinate system in which the
metric is Euclidean, i.e., g;;=e '&8;;) i, j=1, 2, 3.
Transforming to quasicylindrical coordinates in the
usual manner we then have that g»=g„=e '& and
g„~=p'e '&. The metric now has the form of Eq. (1)
with o-=0 and X=p. If we perform any conformal
coordinate transformation in this neighborhood which
satisfies the condition p=0 when p=0, we find that in
the new coordinate frame o = —ln(p/p) =lnP/p) on the
axis. Since P is a scalar, we obtain the result that X —+ 0
and o ~in)~/p on the axis in any coordinate system
whose metric has the form of Eq. (2.1).

The field equations of general relativity are

It is important to realize that the only solution to this
equation, which is everywhere regular in the p, s half-
plane and which obeys the boundary conditions p =0 for
p=0 and p=p at infinity, is the trivial solution p=p.
Consequently, the only coordinate transformation which
preserves the above conditions everywhere is p =p,
z =+s+sp, 1=3+tp, X =+X+Xp. Hence, we have the
important result that this coordinate system is an
intrinsic coordinate system. We shall caIl this the global
Weyl coordinate system.

It is, however, possible to perform conformal coordi-
nate transformations in regions of the p, s half-plane. In
these regions p and 8 will be analytic functions of p and
z, but the coordinate system will not be extendable to
the entire half-plane. The potentials p and X transform
as scalars; however, gpp transforms as a density of
weight 1 so that in the p, z coordinate system, 0. is given
by

p, p=8, z) (2.3a)
G "=—SzGT "

prZ= Z, p) (2.3b)

the Jacobian of the transformation must be nonzero if
the transformation is to be locally one to one, and the
partial derivatives of p and z must be continuous, if the
potentials, which are continuous in the original coordi-
nate frame, are to be continuous in the new frame.
Thus, p must be a solution to the two-dimensional

' Yu. G. Resetnyak, Dokl, Akad. Nauk SSSR (N. S.) 94, 631
(1954); see H. Buseman's reviews in Math. Rev. 16, 167 (1955)
and ibid. 23, 778 (1962). See also A, Huber, Comment Math.
Helv. . 34, 99 (1960), Math. Rev. 22, 1005. (1961),

s This argument is given by H. Bondi, Rev. Mod. Phys. 29,
423 (1957).

where G„"=E„"——,'6„"E.Our notation is essentially that
of Synge. ' The field equations naturally separate into
two groups. We first consider those equations which
transform as scalars under p, s transformations. One
finds from Eqs. (2.1) and (2.5) that

(& '+&P)&=gvrG( —g)"'(Tp&+T,*)
and

(2 6)

7~(Bp'+8, ')p+q) V'p = —47rG( —g)'"(Tpp —T ) . (2.7)

If the right. -hand side of Eq. (2.6) is given, we can solve
for ) directly. Note that the boundary conditions on X
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on the half-plane are X —+ p at spatial infinity and P =0
on the axis. Using the logarithmic t"'reen's function of
two-dimensional potential theory, and image sources on
the unphysical (p(0) half-plane to ensure that X =0 on
the axis, we 6nd that

1 +" +"
) =p+-

4m
»Dp —p')'+(s —s')'1

y O(p', s') dp'ds', (2.8)

P)2) +2) (Dy)2
2DX

+87rG(Tp' T.*+2iT ') $ —(2.9d)

The real. and imaginary parts of this equation give 0 p

and 0 „respectively, in terms of p, X, (—g)"'(T, —T;),
and ( g)"Tp'. If these two e—xpressions are consistent,
then 0. can be found by straightforward integration, .
Note that the constant of integration is determined by
the condition 0 —& in(X/p) on the axis. The consistency
of the two expressions in a simply connected' region of
space requires that (0,,),,= (0,.),, or equivalently that
the imaginary part of D*DO- vanishes. It is easy to show
that in empty space the Bianchi identities G„',.„—=0
ensure that this condition is satis6ed as long as P and @
are solutions of the 6eld equations. Inside matter one

9If the region of space is not simply connected, there is an
added integrability condition; see g. Morgan and H, Bond&, Prop.
goy. Sac. (to be published).

where O&(p s) =87rG( g)' 2(T—~&+T;) for p) 0 and
0(—p, s) = —O(p, s) for p(0.

If the right-hand side of Eq. (2.7) and X are both
known, then g is, in principle, determined (it obeys the
boundary condition P —+0 at infinity). In a region of
empty space, Eq. (2.7) can be written in a particularly
simple form in a special coordinate system. In empty
space X is an analytic function so we may set p=X and
find z (up to a constant) from the Cauchy-Riemann
equations. In this new coordinate system Eq. (2.7)
becomes the three-dimensional Laplace equation in
empty space. We shall refer to this coordinate system as
"the local Weyl coordinate system. " Note that it will

only cover the entire space if T,&+T; vanishes
everywhere.

There are only three remaining field equations which
have to be satis6ed. It is most convenient to use the two
combinations of 6eld equations

(—g) ~2(G z G p) = 87rG( g)» (T —Tpn) — (2.9a)

( g)'~'G, ~ = S~G( g)»'—T,', — (2.9b)

and to write them as a single complex equation by
introducing the operator D= 8,+i8, Equ—at. ions (2.9a)
and (2.9b) are then equivalent to

2 (Da.) (DX) —D'X —2X (Dg)'
=SAG(T„~ T;+2iT~') (—2.9c)

or to

(~' +~' )) —2) (~' +~' )y+2) (&' +&' )(r

+2) (~4)'—2~~. ~4 =S~G(—g)"'(To'+T, '), (2.10b)

is satis6ed as a consequence of the support equations
and the above Geld equations. This too can be demon-
strated most easily with the aid of the Bianchi identities.

III. GRAVITATIONAL FIELD OF THIN SHELLS

We have seen that in regions of empty space, there is a
coordinate system (local Weyl) in which the field
equations take on an extremely simple form. In this
local coordinate system X =p and Eqs. (2.6) and (2.9c)
are

V'p =0 (3.1a)

Do =p(D&)', (3.1b)

where V'=(8'/Bp')+(1/p)(8/Bp)+(8'/Bs') is the usual
Laplacian. It might be thought that an easy way to
generate solutions to Einstein's Geld equations is to
match two empty-space solutions (i.e., Weyl solutions)
across a thin shell, as in potential theory. The surface
stress densities T;; may have either monopole or dipole
character, that is, they may be proportional to either 8
functions or to normal derivatives of 8 functions. Tpp can
only have moriopole character since it must always be
positive. We shall consider here only monopole shells
since these are physically the most reasonable. Such
shells will be referred to as "simple" thin shells. It is
easy to show that, as in Newtonian theory, the support
equations of the shell, T,I'.„=0, imply, for simple thin
shells, that the components of the stress tensor normal
to the surface vanish; that is, T,'e, =0, for otherwise
derivatives of 8 functions would have occurred in the
stresses. This means that there are three components of
the stresses which must obey three support equations, so
that, as in Newtonian theory, if Tpp is speci6ed then all
the stresses are determined. However, for a disk, the
support equation in the normal direction is trivially
satis6ed and it is possible to specify, besides Tpp, one of
the stress densities. In the next section we shall take
advantage of this freedom to 6nd exact solutions for
static disks with axial symmetry.

In this section we consider the general problem of
finding the gravitational 6eld of a simple thin shell. In
addition we discuss a particularly simple example which
elucidates the general problem. ,

must use in addition the fact that energy and mo-
mentum are locally conserved, i.e., T„",.„=0.In a static
and axial symmetric space the only nontrivial restric-
tions on the stresses are for p=p and p=s. These
restrictions are naturally called support equations.

All the potentials have now been determined and the
remaining, independent, combination of field equations

(—g)'"(&,'+E:)=87rG( —g)»'(To'+T„&), (2.10a)

or, equivalently,
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We assume that ( g)—'~'(T, I'+T;) is known and that
it behaves as a 8 function on the surface. The potential X

is then found by solving Eq. (2.6) subject to the
boundary conditions tha, t X is continuous across the
surface, its normal derivative is discontinuous by a
given amount, at inGnity X=p, and on the a.xis X=O.
This is a familiar problem in two-dimensional potential
theory. The last boundary condition, A. =0 on the axis,
can be ensured by the use of an image surface in the
unphysical (p&0) half-plane. We set p =X and solve the
Cauchy-Riemann equations, Eqs. (2.3), for z. These
equations imply that the tangential derivative of z
equals the normal derivative of p, etc. Thus z is dis-
continuous across the surface while its normal derivative
is continuous. This can be viewed as a two-dimensional
potential problem for z with a dipole layer source. We
make the important observation that since z is discon-
tinuous, the boundaries of the inner and outer Weyl
frames do not match. This feature of local Weyl
coordinates greatly complicates the problem of matching
potentials continuously across the surface. It appears
from Eq. (3.1a) that p is a harmonic function in the
two local coordinate frames so that if we assume that
(—g)"'(To' —T, ') is known and behaves as a 8 function
on the surface, then @ is determined by the conditions
that it is continuous across the surface, that its normal
derivative in the global frame is discontinuous by the
given amount, and that g tends to zero at infinity. Since
conformal transformation preserve angles, the normal
derivatives of p in the global and local frames are simply
related. The normal derivative of any scalar transforms
as a density of weight ~~, that is, it transforms by the
square root of the Jacobian. This materially simplifies
the matching procedure. However, it should be pointed
out that p may not be a harmonic function of p and z in
the usual sense since the p, z coordinate system may not
be quasicylindrical. This is because conformal trans-
formations are not necessarily globally one-to-one, nor
do they ensure that p is non-negative.

Once the potential p has been determined in the local
Weyl frame, the remaining potential 0. is found from
Eq. (3.1b) by a quadrature. Then o. is known in the
global frame. The interesting point is that in order to
Gnd 0. we need only use the empty-space equation. The
explanation for this is straightforward. First, there is no
u priori reason, from the method we have used to
calculate 0-, why it should be continuous across the
surface. In the general case, then, the second normal
derivative of 0 will be the Grst derivative of a 5 function.
The stress density T„x is then determined by 0. and
behaves as a derivative of a 8 function on the surface, as
can be seen from Eq. (2.10b). This contradicts our as-
sumption of a simple thin shell, and we must therefore
require that the sources for p and X are chosen in such a
manner that a. is continuous across the surface. Then, in
general, the normal derivative of 0- will be discontinuous„
and T„x will behave like a 8 function on the surface. It
ls importgpt fo g.ofe that though Gist derivatives of 0

occur in Eq. (2.9) and though the stress sources behave
as 8 functions, this does not contradict the statement
that ~ is continuous because, for a simple thin shell, the
second derivatives of P are 8 functions which cancel the
stress densities on the right-hand side of the equation.
This can be seen easily by using the "simple" coridition
T;&'rz; =0 with Eq. (2.6). An important point to bear in
mind in this work is that if a metric satisGes the Geld
equations off the surface, and if the discontinuities in its
normal derivatives are ascribed to an energy momentum
source on the surface, then the Bianchi identities and
the gravitational Geld equations ensure that the support
equations are obeyed on the surface.

In order to illustrate these procedures, consider a
coordinate sphere p'+z'=a' in the global Weyl frame.
We define quasispherical coordinates R, 8 by

p=R sin9, s=E cos8.

As the source of X we take

(3 2)

gzrG( —g)'~'(T &+T;)=2Aa 'sin88(E —a). (3.3)

This form is suggested by the facts that in Qat space
(—g)'I'=a' sin8 on the sphere and that in Newtonian
theory T,'+T; is a constant on a spherical shell of
uniform mass density. Solving for X and transforming to
the local Weyl frames, we Gnd that

p(1 —A/a'),

p(1 —A/R')

z(1 —A/u')

z(1+A/R')

(1—A/u')'

R(u
(3.4a)

(3.4b)

R(a
(3.4c)

(1—A/R')'+4A sin-'8/E', R& a.

We see that p is continuous while z is discontinuous
across the surface, and that the normal derivative of p
is discontinuous while the normal derivative of z is
continuous. Let us first consider the case where

~

A
~

(a'.
The inside surface of the sphere is then mapped into a,

sphere of radius a(1—A/u') while the outside surface is
mapped into a prolate (A&0) or oblate A&0 spheroid
with semiaxes a(1+A/a') and a(1—A/a'). The coordi-
na, te values of the points on the two surfaces coincide
only on a circle in the z =0 plane. One can see from Eqs.
(3.4) that for

~

A
~

(a' the mappings are one-to-one and
that p remains positive. If A)a' then p is negative
throughout the entire inner region and part of the outer
region. In this case the local Weyl coordinate systems
are difficult to interpret. If A( —a' then the mapping
s —+ z is not one-to-one in the outer region. There are
points in the new frame which have identical p, z
coordinate values, but which correspond to distinct
points in the original frame. On physical grounds one
would require that A) 0 since the stresses must support
the sphere against its self-attraction. We shall actually
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r'= (8—d') (1—n'),

z=$g,

(3.5a)

(3.5b)

where d'=4A, so that the outer surface is given by
)=a(1+A/a'). It is important to note that $ and g are
related simply to E and 8 of the global frame by

show that, since the magnitude of the energy density.
must be greater than the stress density, we must take
0~&A ~& a' in the example below.

We shall now assume that 0~& A ~& a'. Since the outer
surface is a prolate spheroid, it is convenient to intro-
duce in the outer region prolate spheroidal coordinates
defined by

M2G2 ( f2 d2 ((2 d2~2
0 = in' +-', ini =- —,R& a. (3.12b)

R2

Note that inside the sphere, space is Qat. We see that in
order for 0- to be continuous we must take d'=3PG' or
A =M2G'/4. Indeed in Newtonian theory, the stress
density of a uniform sphere is given by Eq. (3.3) with
this value of A. Now, calculating the discontinuity in
the normal derivative of o. across the surface, we find
that

8~G( —g)'~'Tx" = (2A/a') sin05(R —a) . (3.13)

$= R(1+A/ R')

q =cosa.

(3.6a)

(3.6b)

We can now calculate the ratio of the energy density to
the trace of the stress densities. We find that

To'/(T, I'+T;+Tp) =1—(MGa/2A) . (3.14)
In terms of these coordinates the Jacobian of the outer
transformation has the simple form

1—((2 d2~2)/R'2 (3.7)

Since P is a harmonic function in the two local frames,
we can write

P =+ A(R'Ei(cosg),
L=o

(3.8a)

y=Q B(Pi(q)Qi(P/d), R&a
0

(3.8b)

MG (2u —din~, R& a
d &2a+8

(3.9a)

MG t'$ —dlni, R& a
2d k$+d

(3.9b)

where M is the mass, since at infinity p —+ MG/R. —
Calculating the normal derivative of p in the global
frame one finds for the source

—47rG( —g)'"(To' —T ') = (MG sine/u)8(R —a). (3.10)

We find 0- in the local frames to be

0- =0, R(u (3.11a)

M2G2 ( (2 d2

lni - —/, R&a
2d' E$' —'d')

(3.11b)

so that in the global frame

0 =ln(1 —3/a'), R(a (3.12a)

where I' i and Q i are Legendre functions of the first and
second kinds, respectively. Since g=cose, we see that p
is continuous only if A ia'=BiQi(a+A/a). The simplest
choice of the coeKcients A ~ and B~ is to take both the
sphere and the ellipsoid to be equipotentials in which
case

MG '
R=Ri 1+

2R
(3.15)

This means that the global, isothermal coordinates used
in this example are in fact isotropic coordinates, and
that the solution derived above is the Schwarzschild
solution in isotropic coordinates. The critical radius, at
which the stresses become infinite, is the usual
Schwarzschild radius, which in isotropic coordinates is
R=

~ MG and which in curvature coordinates is 8=2MG.
A well-known problem of curvature coordinates is

that several of the field equations contain only first
derivatives and that if one solves for the field of a thin
shell in this coordinate system one finds that @ is not
continuous across the shell. The reason for this can be
seen easily. Since the normal derivatives of the po-
tentials are discontinuous across the shell, the rate at
which spheres change their area is also .discontinuous
there. This means that though the mapping from iso-
tropic coordinates to curvature coordinates is continu-
ous, the derivatives of the mapping are discontinuous, -

and, hence, the transformed metric is digqog, tigu, ous
across the shell.

From general considerations, one must require that this
ratio be less than —1.We shall refer to this as the stress
condition. In our example it places the limit

~

A
~

(4a'.
If we allow A to approach a' then the stress densities
become infinitely larger than the energy density, and
the sphere in the global frame is mapped into a rod of
length 2MG in the exterior local frame. The inside of the
sphere is mapped onto the origin.

If we make the identification 8=$+MG, cose= q, we
find that

P=-', ln(1 —2MG/8) .

Indeed, the exterior solution for the sphere found above
is just the Schwarzschild solution, where 8 is the usual
curvature coordinate defined by the property of in-
trinsic spheres that their area is given by 4mB'. Note
that 8 is related to E by
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IV. GRAVITATIONAL FIELDS OF DISKS

For an axially symmetric, simple, thin disk there is an
important simpli6cation due to the plane symmetry of
the disk and the fact that there is no interior local Weyl
frame. Assume that p and z have been solved for and
that they are quasicylindrical. In general, the image of
the disk under this transformation is a surface with an
unphysical interior, since if the normal derivative of A. is
discontinuous, then z must be discontinuous. However,
P, o., and

~

z
~

are all automatically continuous because of
the plane symmetry of the problem. In addition this
symmetry implies that, in the global frame,

y, .=~-', 4~G
+e ( g) tls

(Tp' T,')dz —(4.1)

on the lower (+) and upper (—) surfaces of the disk. In
the local Weyl frame, the normal derivative of P is
(J)"'p . This means that if (—g)'I'(To —T ') is known,
then p obeys a Neumann boundary-value problem, that
is, @ is a harmonic function whose normal derivative is
given on the surface. That 0- is automatically continuous
across the disk is a consequence of the fact that there is
only one support equation to be satisfied, i.e., T,&.„=0.
On a simple disk To' and T,& can be chosen inde-
pendently, and the remaining stress T„x is then calcu-
lated from o. using Eq. (2.10). This method of deter-
mining T„& automatically ensures that the support
equation is obeyed.

In summary, if f' is an analytic function of p and z
everywhere except on the disk, and if it generates a
conformal transformation which maps the quasicylin-
drical coordinates p, 2' into quasicylindrical coordinates

The Curzon metric, which is only defined in the ex-
terior part of the global Weyl frame, is given by A. =p,
P= —MG/R, and = (—3PG'p'/2R ), where R'=p +z'.
If we match this metric to an interior Qat-space solution
across a sphere of radius a, we find that (i) since X is
continuous across the surface (—g)'"(T '+T *)=0;
(ii) since o is discontinuous, (—g)"'T,* and (—g)"'(T,'

T:)—behave as 5 functions on the surface; and (iii)
(—g)'I'Txx behaves as the derivative of a 8 function,
which in turn implies that (—g)'tsTs' behaves as the
derivative of a 8 function. Inasmuch as To' must always
be negative, such behavior must be ruled out on physical
grounds. Consequently, a physically reasonable source
of the Curzon metric cannot so easily be found.

i-=f -(&/d) Lt--0'-d')"'j

I=
~
~f/8 I

.

(4 3)

(4.4)

The new coordinates are quasicylindrical only if 0&~3
~&1, in which case the disk is mapped in an oblate
(0(A&-', ) or prolate (-,'&A(1) spheroid with semi-
axes of length (1—A)d and Ad. If

—4~G~-i( —g) i~s(T:—T, ') =S(p)~(z),

then the normal derivative of p on the upper surface, in
the local frame, is given by sr J'~'S(P). The Neumann
problem can be solved straightforwardly since the
Laplacian separates in spheroidal coordinates. However,
it does not appear possible to choose an energy density
for this model which satisfies the stress condition at the
edge of the disk.

In a subsequent paper, specific disk models will be
discussed in detail. It is of particular interest to obtain
solutions for collisionless dust disks since if one has a
distribution function which gives rise to a self-consistent
solution to the collisionless Boltzmann equation„" one is
assured of having. a physically reasonable equation of
state.
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p, z, and if g is a, harmonic function of p and z, then g
and g generate a solution of the field equations for a
disk and one merely has to check whether they corre-
spond to physically realistic sources.

As an example, consider a disk of radius d in the
global frame with

g G(—g)'"T '=(2~p/d)(~' —p') "'t'( ) (4 2)

One finds that. , writings =p+iz,


