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Sun. In terms of J2,0, this is"

~
Js, p~ ~&6.8X10 "a~'.

The corresponding classical contribution to the two-way
travel time would be, from Eq. (9),

~

28sT~ ~&0.42(a~/R) (1—cosh/) itm/c. (10)

"This value corresponds to a precession of the perihelion of
Mercury equal to 8 sec of arc per century, which seems a reason-
able upper limit for the contribution of a quadrupole moment
LI. I. Shapiro, Icarus 4, 549 (1965lg. The contribution to the
general-relativity precession of the P term of the metric is —13.3
in the same units.

This classical eRect is appreciably lower than the
relativistic contribution due to the term in P in the
metric

(2)sT) = —3.4P(as/R) (1—cosh/) km/c. (11)

If detection of the first relativistic eRect 81K shows y
to be essentially unity, then the error on the residual on
the precession of Mercury (&8 sec of arc) must reflect
on the accuracy of the determination of the coefficient P
which becomes P=1&0.6. Detection of the second
relativity effect 82T with an accuracy limited by the
error on Js,, LEq. (10)]would allow a determination of
P to 12%.
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A general solution is obtained for the electromagnetic waves propagating in the "vertical" direction in a
linear, homogeneous, isotropic, and nondispersive dielectric medium undergoing arbitrary linear accelera-
tion. The most significant characteristic of the solution is that the velocity of the zeros of the wave is pre-
cisely that given by the relevant velocity transformation formulas.

I. INTRODUCTION sured by transformations of the form

F„„=A„A„&Fp,

I
A"

I

g'"'=A-"'A s"'g',
(1.4)

(1 5)

(1 6)

(1.7)

' 'X a previous paper' we have developed a generally
~ - covariant formalism for handling problems in
noninertial electrodynamics. The formalism employed
the naturally covariant Maxwell field equations de-
veloped by Cartan, ' Weyl, ' and Post, the homogeneous
form of which are

~A„& ~xs'"'""=A.s'A&"'A, "A,"x ~",
A " =cia'"/Bx

lpv, pj

pv P, V

I

(1 1) The constitutive relation (1.3) for homogeneous,
isotropic, nondispersive media was shown to take the

(1 2) form

with F„„and b"" being the antisymrnetric tensor and
tensor density of weight +1 representing E, B and
D, H, respectively. The necessary connection between
F„„and g&" for the case of the general linea, r, nondis-
persive dielectric medium is provided by the con-
stitutive tensor density:

glvv = 1-xsvpvF
2 p tr ~ (1.3)

The covariance of Eqs. (1.1), (1.2), and (1.3) is en-

*Based on material contained in a dissertation by J. W. Ryon
submitted in partial fulfillment of the requirements for the Ph. D.
degree at Stevens Institute of Technology, Hoboken, N. J.' J. L. Anderson and J. W. Ryon, Phys. Rev. 181, 1765 (1969).

2 E. Cartan, Ann. Ecole Normale Super. Sci. 41, 1 (1924).' H. Weyl, Space-Time-Matter (Dover, New York, 1951), pp.
110 and 220.

4 E. J. Post, Ii ormal Strnctlre of L&'lectromagnetics (North-
Holland, Amsterdam, 1962).

8""=(—g)'"Lu 'F""+(e—v ')
X (F&'u.u" F"'u.ul') 7, (1—.8)

where ~ and p, are, respectively, the dielectric constant
and the magnetic permeability, u& is the local four-
velocity of the medium, g is the determinant of the
metric g„„, and F&" is obtained from F„„by the usual
process of raising the indices.

In the following sections the forrnalisrn will be
applied to a homogeneous, isotropic, nondispersive
dielectric medium undergoing arbitrary linear accelera-
tion with respect to some inertial reference frame. In
Sec. II we present and discuss the relevant kinematical
and dynamical aspects of the noninertial motion. The
specific form of the homogeneous field equations is
obtained in Sec. III, followed in Sec. IV by the develop-
ment of the general forrri of the solution of the field
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equations for waves propagating in the "vertical"
direction. A thorough discussion of the wave velocities
and velocity transformation formulas is given in
Sec. V. Lastly, in Sec. VI we examine the specific
example of hyperbolic, Born rigid motion and show
that the Newtonian limit is obtained for sma, ll, con-
stant acceleration.

II. MOTION AND COORDINATES

The theory brieQy outlined in Sec. I is applicable in
any coordinate system to arbitrarily moving media.
In this section we discuss some of the problems involved
in determining those states of motion which can be
realized by physical systems. This will lead into a dis-
cussion of those properties of coordina, te systems and
transformations which are relevant to the application
of the formalism.

The motion of the points ( fixed in a medium is
usually described by the trajectories of those points
which, in an arbitrary coordina, te system x&, are rela-
tions of the form xl'=z&(r, g). The path parameter r
is chosen to normalize the four-velocity ul"=dzl'/dr so
that one has I"g„„u"=1. Not all functions z&(r, () may
exhibit a normalized, timelike four-velocity; those that
do are called kinematically possible trajectories
(KPT's). Furthermore, not all KPT's can be realized

by a given medium; those which can be realized are
called dynamically possible trajectories (DPT's). Thus
DPT's constitute, in general, a subset of KPT's, which,
in turn, constitute a subset of the possible functions
zl'(r, g). Clearly, one needs criteria for selecting DPT's
from among the functions s&. Since relations of the form
x"=z"(r,f) may be considered as a coordinate trans-
formation, there is an alternative formulation of the
problem. One seeks criteria for selecting from the set
of all coordinate transformations those admissible
transformations which can be taken to represent
DPT's.

In principle, the relevant criteria must be obtained
from a solution of the equations of motion of the
physical system of interest using the equation of state.
In general, this will be a very complicated calculation
to carry out in practice, particularly since one must
allow for deformations of the accelerated medium.
Thus, for example, in the case of a rotating solid there
must be compression and/or shear motion, ' particularly
if the system is large, to prevent the outer regions from
exceeding the speed of light.

Because of the complexity of the equation of motion
criteria, a number of substitute criteria have been
advanced, usually based on the concept of a rigid body
or rigid motion. The Born' rigid-body condition is that
the body have locally constant deformation in an
instantaneous, local Lorentz rest frame. Such a body
has only three degrees of freedom as shown by Herglotz'

' B. Kursunoglu, Proc. Cambridge Phil. Soc. 4'7, 177 (1961).
' M. Born, Physik Z. 11, 233 (1910).' G. Herglotz, Ann. Phys. Lpz. 31, 393 (1910).

a,nd Nother, ' but for one-dimensional translation no
more are required. Recently Bennett and Anderson'
have de6ned a rigid body as one for which in the
instantaneous, local rest frame there is no momentum
Aux (Landau-Lifshitz criteria) and also its Lagrangian
coordinates, referred to a suitably chosen center-of-

energy trajectory, are constant. They show that such
a, body has six degrees of freedom and thus is in closer
a,ccord with our Newtonian conception of a rigid body.

In order to surmount the various difhculties inherent
in motion of extended bodies, a simple expedient will

be adopted. In later sections the homogeneous electro-
magnetic field equa, tions will be solved for arbitrary
one-dimensional tra, nslation. The problem of picking
out those solutions which correspond to DPT's will

be left for another investigation.
The motion of the medium is most conveniently

discussed from the point of view of an observer in an
inertial reference frame. This procedure is rigorously
valid only if one is dealing with a Rat metric, but in

any region of space-time where the curvature is "small"
the use of a quasilocal inertial frame is a, very good
a,pproxima, tion. Let the inertial observer specify the
world line of each point x' of the medium a,s a function
of the proper time w along each trajectory. The inertial
observer thus obtains a family of trajectories

x~ =x~(r,x'), (2 1)

which, for a, medium of infinite extent, may be taken
a,s determining a coordinate transformation between
the inertial coordinates x& and the accelerated coordi-
nates x'I'= (r,x'). Note that we have put x"= r.

The general form of the transformation (2.1) for
one-dimensional translation along the x, x' direction
is given by

1=1( , r)x,

x 7 yx

7

(2.2a)

(2.2b)

(2.2c)

(2.2d)

Bx 0 0 1 0

0 0

The determinant of A„" is then readily obtained:

A =det~A„. "~ =Ap'Ai ' —Ai'Ap '.

The general form of the inverse transformation is seen

' E. Nother, Ann. Phys. Lpz. 31, 919 (1910}.' R. Bennett and J. L. Anderson (unpublished).

so that the transformation matrix A, & has the general
form

Ao' Ag ' 0 0&

A.,~A, , ~ 00
(2.3)
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by inspection of (2.3) to be

A op Axo' 0 0

Bx'v A p' A i' 0 0

0 0 1 0

Transformation of I& to the accelerated franie yields

o" ~ (2.15)

The local relative velocity between the two reference
frames, as determined by the accel'crated observer, is
then

- 0 0 0 1. p'=u"/u '=Ap'/ApP', (2.16)

Ao'

A 0

Apo 0 0

0 A 0

A~ 1 A~o 0 0 )

(2.5)

Equations (2.12) and (2.16) are special cases of the
velocity transformation formulas appropriate to the
transformation (2.2). Section V contains a discussion
of these velocity transformation laws and their relevance
to the present problem.

0 0 A.
IIL HOMOGENEOUS FIELD EQUATIONS

The metric tensor is calculated from the transforma-
tion matrix and the I orentz metric tensor q„„.

g„„=A„A„t'g„p

(A,P) 2 (A, 1)2

Ai~ AoI —Ar' A ~'

0
0

Ao Ay —Ao. 'Ay' 0 0
(Ag ')' —(Ag ')' 0 0

0 —1 0
0 0 —1.

(2 6)

The determinant of the metric g, and its inverse g&', are
easily obtained:

g= —A'

gll glo 0 s

(2.7)

go1
gpv-

g 0

0

goo

0 —g 0

0 0 —gl

(2.8)

A point 6xed in the accelerating system has a world
line given by

x'= const, (2 9)

so that the four-velocity in the noninertial frame is

u&'= (gpp) '"(1,0,0,0) . (2.10)

Transformation of I&' to the inertial frame yields

u~ = (g,p)
—'~'Ap'. (2.11)

p=u'/uP=A '/A ' (2.12)

A point fixed in the inertial frame has a world line
given by

I=const, (2.13)

so that the four-velocity in the inertial frame is just

u~= (1,0,0,0). (2.14)

The local relative velocity between the two reference
frames, as determined by the inertial observer, is then

The previous sections have provided the mathe-
matical background for the problem of electromagnetic
wave propagation in linearly accelerating systems. In
this section the specific form of the homogeneous field
equations is obtained on the basis of the material
already presented. Later sections will deal with the
solution of the 6eld equations.

Kith the dielectric fixed in the accelerating reference
frame discussed in Sec. II, there are two types of
experiments that can be carried out corresponding to
measurements made by the two observers or coordi-
nate systems. In addition, the dielectric can be at rest
in the inertial frame and the noninertial observer can
conduct experiments and obtain measurements. The
last remaining possibility, that of medium and observer
both inertial, is trivial and will not be considered.
Thus the three cases of interest can be enumerated as
follows:

case I, observer inertial, medium accelerated;
case II, observer accelerated, medium inertial;
case III, observer and medium coaccelerated.

Case I is the extended Fresnel-Fizeau experiment,
case II is the generalized Dufour-Prunier" experiment,
and case III is the generalized Sagnac"-Harras"-
Pogany" experiment. For an excellent account of the
original case-II and -III experiments involving rota-
ing dielectrics, see the review article of Post. '

Observe that the speci6cation of case number (I, II,
or III) serves to specify both the motion of the medium
and the motion of the observer. Consequently, it is
superQuous to further distinguish coordinate systems
by primes or other labels on tensor components.
Accordingly, we shall dispense with such labels and
treat all three cases together with a unified notation.

The procedure to be followed for all cases unfolds in
two stages: Qrst, the explicit evaluation of the con-

'o A. Dufour and F. Drunier, J. Phys. (Paris) 3, 12 (1942).
"G. Sagnac, Compt. Rend. 157, 708 (1913);157, 1410 (1913);

J. Phys. (Paris) 4, 177 (1914).
'2 F. Barras, dissertation, Jena, 1911 (unpublished).
I3 B. Pogany, Ann. Physik 80, 217 (1926); 85, 244 (1928).
'4 K. J. Post, Rev. Mod. Phys. 39, 475 (1967).
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stitutive relations (1.8) in terms of the Gelds Z, 3, D,
and H; second, substitution of the constitutive rela-
tions into the Geld equations (1.1) and (1.2) to obtain
a set of equations for the vectors E and B.

Case I

written

where

u&=y(i, a,0,0),

~ —(1 02)
—1/2

(3.2)

(3.3)

Since the case-I observer is inertial, the metric is
the Lorentz metric q„„.Thus Ill"" is given by

and a is given by (2.12).
The quantity IiI" n, is easily shown to be

Y(aEly El) E2 2B3y E3 ~B2) ' (3 4)E~
—B3

0
B1

E1
0

B3
—B2

0
E
E2.E3

B2
—Bl

0

(3.1) Case II

The metric appropriate to the case-II accelerated
The local four-velocity of the accelerated dielectric observer is given by (2.6) and (2.8). The quantity

is given by (2.11) which, by means of (2.6), can be Fl'" is thus

ppv—

g ( gllE2 golB3) (gooB3+golE2)

L(—gllE3+golB2) (—gooB2+golE3)

(gllE2+golB3) (gllE3 goiB2)1
I

( gooB3 golE2) (gooB2 golE3)

—gBj

(3 5)

Dl «(—g) '"E——l, (3.11a)

(3.11b)

(3.1ic)

(3.11d)

(3.11e)

(3.11f)

(3.6)NP —Q OP

D2= 6QE2 —6XB3 q

D3 «nE3+ A——B2,

&1=~ '(—g)'"Bl,

H2 = «PB2 «XE3, —
H3= «PB3+d E2,

The quantity Ill" I, is most conveniently calculated
according to

(3.7)Fl"'I =gI' N&I

The result is
t (giiA 0'+goiA 1')El'

(golA0' gooA1' )Ei
(3.8)

where the quantities n, p, and X are defined in Table I
and e is the index of refraction of the dielectric,

(—g)"' gA1'E2+gA0'B3

E gAj'E3 —gAO'B2

Case III
232 = 1/«p. (3.12)

The local four-velocity of the inertial medium as (3.5) and (3.8); or (3.5) and (3.10). The results all
measured by the accelerated observer is given by have the form
(2.15) and is reproduced here:

The metric tensor appropriate to the case-III
accelerated observer is the same as for case II. Conse-
quently the quantity Ill"" is the same for case III as
for case II and is given by (3.5).

The local four-velocity of the coaccelerated medium
is given by (2.10) and is reproduced here:

At first sight the quantities n, p, and X appearing in
Table I seem to have little in common among the three
cases. However, in fact, a/l the quantities in Table I
share one important algebraic property in common
which makes possible the general solution technique
to be developed. Thus, for all three cases the quantities
n, P, and X satisfy the coefFicient condition

I"=(goo) '"(1,0,0,0). (3.9)
np+X2 = 1/rP =COnSt. (3.13)

The quantity IiI' I, is again calculated according to
(3.'7) using (3.9) for 23&, with the result

23rr g goo (golEly gooEly gE2) gE3) ~ (3 10)

Constitutive Relations

The constitutive relations for all three cases are now
calculated from (1.8) by substitution of (3.1) and (3.4);

The proof of this is straightforward but lengthy and
is relegated to Appendix A.

Also the wave speed will turn out to be expressed
in terms of n, p, and X in just the right combination so
that the velocity addition formulas give sensible results.
Thus the particular form of n, p, and X is crucial for the
success or failure of the theory.
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Homogeneous Field Equations

The homogeneous 6eld equations for the three cases
are obtained by substituting the constitutive relations
(3.11) into (1.1) and (1.2). The result is

0=8,Bya,E,
0= 8, (nE —XB)+8,(PB+XE),

(4.2a)

(4.2b)

pair (4.1e)—(4.1f). Thus we concentrate on a set of

equations of the form

81B1+82B2+83Boy

0 =aoBi+82Eo a—oE2,

0= aoBo —aiEo+aoEi,

0.=aoBo+aiEo aoEi—,

(3.14R)

(3.14b)

(3.14c)

(3.14d)

where n, P, and X are functions of t and x given in
Table I.

The 6rst step in obtaining a solution for the 6elds
E(t,x) and B(t,x) is the elimination of E by means of
an auxiliary function it(t, x) defined as follows:

0 = ai[Ei/Q( —g) )+ ao (nEo —XBo)

+8,(nEo+XBo), (3.14e)

o = ao[Ei/V'( —g))—ao(PBo+~Eo)
+ao (PBo—XEo), (3.14f)

0= ao(nEo —XBo)+ai(PBo+Mo)
—a,[Bi(—g)'t'/e') (3.14g)

(4 3)

The 6eld equations in terms of 8 and q are

0= 8,B 8.(gB/—n), (4.4a)

0 = 8,[(rt+P)B)+8,[((hit/n) P)B). —(4.4b)

Define a new function 0:

0 = ao{nEo+XBo)—ai(pB2 —XEo)

+ao[Bi(—g)'"/I') . (3.14h) so that (4.4b) becomes

0= 8,{8B)+8,[{8 X& aP)B/a)—. —

(4.5)

(4.6)

0=BpBy= By8i, (4.1a)

o =ao[Ei/v'( —g)) =ai[Ei/v'( —g)), (4.1b)

0= ~0&2—~i&3, (4.1c)

0= ao(nEo+&Bo) —ai(PBo —XEo), (4.1d)

0 = aoBo+ aiEo, (4.1e)

O=ao(nEo —XBo)+ai(PBo+XEo). (4.if)

It is evident immediately from (4.1a) and (4.1b)
that Bi and Ei/Q( g) are constant and conse—quently
may be taken equal to zero. Furthermore, there is only
a difference in the relative sign of the field components
between the pair of equations (4.1c)—(4.1d) and the

IV. WAVE SOLUTIONS OF FIELD EQUATIONS

If the coeflicients of the fields, namely, n, P, X, and

(—g)+'", in (3.14) were independent of the coordinates
xI' then the solution would be of the usual exponential
form e '~~ " with k„being independent of x&. The fact
that the coefFicients of the fields do depend upon the
coordinates substantially complicates the situation.
However, the coefficients are independent of y and s
so that the dependence of the fields upon these two
coordinates is still just proportional to e'~'"+'~". This
means that everywhere in the field equations one can
replace 8& and 83 by ik2 and ik3, respectively. The t, x
dependence of the fields is much more interesting and
revealing and may be studied in isolation by the exped-
ient of setting k2 and k3 equal to zero. In other words,
we seek a solution which depends only upon t and x
and which represents a wave traveling in the x direction.
Such a wave is said to propagate in the vertical direc-
tion. Under these conditions the terms in 82 and B~
vanish and the field equations (3.14) reduce to

The term 8&(8B) may be rewritten using (4.4a) and
(4.5):

8 (»)=Ba 8 ="».8+8*[{—8' ~~)B/'-) (47)

Substitution of this result into (4.6) yields

O=B8,8—n 'itB8 8+8 [(O'—X' —nP)B/n). (4.8a)

This equation along with (4.4a) in the form

0 = 8,B—8,[{8—X)B/n) (4.8b)

0=B8(8 n'Bga, 8+8.[(8'—1/m')B/n) . (4.9—)

Now observe that one exact solution of (4.9) is the
following:

8 =&1/1z = coll st, (4.10a)

(4.10b)8 8=8,8=0.
The remaining equation for 8 becomes

0= 8,B+8,[P.&e ')B/n), (4.11)

for which wave solutions must be found. Let 8 have
the form

B(t x) =e'&&' *i+&&'*& (4.12)

where P(t,x) and p(t, x) are real. Introduction of (4.12)
into (4.11) followed by separation of real and imaginary
parts gives

0=8gP+n 'P, &e ')8.$, (4.13a)

0=8,y+n i(Par i)8 y+8 [a i(X+I i)). (4.13b)

are the equations to solve. At first glance (4.8a)—(4.8b)
appear to be much more complicated than (4.2a)—
(4.2b) and such would indeed be the ca,se were it not
for the coeKcient condition (3.13).

Substitution of (3.13) into (4.8a) results in
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TABLE I. Constitutive coeKcients for linear acceleration.

Case I
Case II
Case III

1+(1—n 2)7'82

(—g) "'E(At' )'—ot '(At')o3
(—g)'"p(1 —ot ') (goo) '+gtt/otogg

~ '—(1—~ 2)&W2

(—g) "'E~ '(Ao')' —(Ao')'J
goo/ot'v'( —g)

(1-e~)yW

(—g) roan 'A, ,oA, ,o A, ,'Ao, q
got/I'V'( —g)

Thus P satisfies a homogeneous equation while
satisfies an inhomogeneous equation. Once these Grst-
order partial differential equations have been solved
the problem has been solved: J3 is obtained from (4.12)
and E is obtained from (4.3).

The real and imaginary parts of (4.13) are solutions
of (4.11) and are

BII——e~ cosf,

Br——e& sing,

(4.14a)

and take the forni of an oscillation determined by P
with an amplitude determined by ot. The question of
the velocity of such a wave is complicated by the B.ct
that diferent parts of the wave travel at different rates.
The speed is usually determined from the condition
that the change in 8 vanish for increments in t and x.
This leads to

0 = dt (B,y cosg B,P sing)—
+dx (8,$ cosg 8.$ sing), —for Bio (4.15a)

O=dt(8, @ sing+Bo& cosg)

+dx(8 lt sing+8, $ cosf), for Bi (4.15b)

amplitude function @ were a constant so that both
Bootl and 8,& would vanish. According to (4.13b), this
would require the quantity P.+n I)/n to be independ-
ent of x.

The equation for P, (4.13a), may be used to express
No in terms of e, n, and X:

up ——()tan I)/n. (4.19)

The equations for P and @ then take the simple form

0 = BN+uoBA,

0 = Booto+uoBog+ Bouo ~

(4.20a)

(4.20b)

The relation between E and 8 may be expressed very
simply as

(4.21)

where we have combined (4.3), (4.5), (4.10a) and
(4.19).

The inhomogeneous equation for lt may be trans-
formed into an equivalent homogeneous one. To do so,
the term 8 No is 6rst written in terms of any solution

g of the homogeneous equation (4.20a):
from which the velocity is obtained:

dx —B,lto cosf+ 8,f sing
uII= — —— —,for Bro (4.16a)

dt B=oonot BQ cosf Bop sing

B.uo= —8.(Bog/B.P)
=- (8o8.4)/8*4+ (84/8.4) (BA/8*0)
= —(8,+upB, ) lnB.&. (4.22)

Substitution of this result into Eq. (4.20b) produces
the homogeneous equation

(4.23)o = (8,+uoB.) (y lnB.P)—.

—Bop slnlP —Bog cost/
ui — —————,for Br (4.16b).

dt i &—oo~ot BQ l sign+8 focoslP

However, this expression becomes infinite for the
maxima and minima of 8 which are determined by the
conditions

BBII/Bx =0= B,ltd cosf B,f sinf, —

BBI/Bx=0=8,$ sing+8, $ cosf,

(4.17a)

(4.17b)

which are just the denominators of the expressions for
u. This apparent absurdity means only that the pro-
cedure fails to provide the peak velocities and that
another method is required. Despite this de.culty with
the peak velocities, expression (4.16) does give good
results for the velocities of the zeros of B. The zeros
of BII occur when cosf vanishes and those of Bi when

sing vanishes. Under these conditions (4.16) becomes

up ———8gg/8, $. (4.18)

Note that this result would also be obtained if the

$=fI+lnBofo. (4.24)

Note that if QI is a solution of the homogeneous equa-
tion then so is lupi, so that lt may also be written as

$ = 1II (lPIB lPo) . (4.25)

It would thus appear as if the fields E(t,x) and B(t,x)
depend upon three arbitrary solutions of the homo-

geneous equation, p, QI, and p&. This is illusory, as will

be demonstrated. Let 8(t,x) be one particular solution
of the homogeneous equation (4.20a). Then any other
solution is given by f(0), where f is an arbitrary func-

Thus f and oIo lnB,Q satis—fy the same homogeneous
equation. Consequently the general solution of (4.23)
for ltd may be expressed in terms of two arbitrary solu-

tions of the homogeneous equation:
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tion of 8. The expression for P will then become example, one has

d|tp
y=ln~ P BJI). (4.26)

where

(8@8)glpifl+ (8')$2pif2 —(8g8)ypp~fg (4 35)

Observe that dip/d8 is a solution of the homogeneous
equation, which means that the product P&(dip/«)
is also a solution. As a consequence g may be written
in terms of just one arbitrary function P(8):

4(8) =O (4./«),

@= InLP (8)8,87.

(4.27)

(4.28)

The form of B(t,x) as given by (4.12) is finally seen
to be

B(t x) =(8 )8$( )8e'&"' (4.29)

The velocity of wave zeros given by (4.18) is readily
expressible in terms of 0:

u, = —8,8/8&. (4.30)

The form of E(t,x) may be found from the relation
(4.21) between E(t,x) and B(t,x) and the form of

B(t,x) given by (4.29):

B(t,x) =L8,$(8)7e'«'&,

~(~, )=—L84(8)7 ""',
(4.32a)

(4.32b)

(4.31)

The results of our endeavors in this section have

been to obtain a solution to the homogeneous Geld

equations for waves traveling in the &x direction. The
solution has the form

(i/3) (i(1) +($2) +2/1/2 COSQ'1 $2) p (4.36)

Pi sinPi+Pp simp)
Pp ——tan —'

~ ~

~

i(i costgi+iPp coslPpl
(4.37)

Clearly this relation can be extended so that the sum
of any number of solutions of the form (4.32) will again
be a solution of the same form.

One final point should be mentioned. The solution
obtained here is for waves propagating in a direction
parallel to the acceleration. The solution for waves
propagating perpendicular to the direction of the
acceleration has yet to be found. The problem of per-
pendicular or "horizontal" propagation is complicated
by the fact that the solution will depend upon x as
well as y and t or s and t. This is because of the x
dependence of the coefficients a, P, and X in the field
equations (3.14).

V. VELOCITY OF WAVE ZEROS

The velocity Np of the zeros of the wave which was
found in Sec. IV can be investigated without an explicit
solution of (4.33). We begin with a discussion of the
velocity transformation law between the ordinary local
three-velocities n" and I" of a physical system at the
point x& or x'& as measured in the inertial and accel-
erated frames, respectively. The velocities are defined
in terms of coordinate differentials

where P and f are arbitrary functions of 8 which is a
particular solution of the homogeneous, first-order

partial differential equation

u" =dx'/dt,

u" =dx"'/dx"

(5.1a)

(5.1b)

88+up&.8 =0. so that use of the transformation matrix A„" leads to
the following calculation:

The quantity Np is given by

up ——(X&e ')/n (4.34)

A„"Cx'~ A,."+A,, u"
Q' =

A„odx" Ao, o+A, ou"
(5.2)

and is the velocity of the zeros of the wave.

The equation for 8, (4.33), cannot be solved until one

has the speciGc form of Np as a function of t and x.
This requires a knowledge of a and P as functions of t

and x which can be obtained if the transformation

matrix 3„" is specihed. However, even without a
knowledge of the gpeciGc coordinate dependence of
A„" one can investigate the properties of the velocity

Np. This is done in Sec. V, where it is shown that Qp

gives precisely the same results as the appropriate
velocity transformation formulas.

The solution (4.32) possesses the important char-

acteristic of superposition: The sum of any two solu-

tions is again a solution of the same form. Thus, for

(5.3)

The velocity transformation formula thus takes the
form

n"+u"A, "/Ao"

1+u "A.'/A p
P

(5.4)

&II identical calculation yi|;lds t;he inverse transforma-

The ratio Ap "/Ap is the relative velocity of the two
coordinate systems at the point x&:
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tion law

with

v"+u'A, "/A o'

1+u'A o /A, o
(5.5)

The substitution of

gpy=Api A]i —Api Apl

S»= (Ai')' —(Ai ')',
(5.14)

(5.15)

(5.16)
Bx'"/Bt

r'

Bx"/Bt

o+u'Ag '/Ao '

1+u'A g o/Ao '

v'+NA g'/A o'

1+NA P'/A o'

(5.7a)

(5.7b)

where the relative velocities are given by

o=A, .'/A, ',
w'=A '/A '

(5.8a)

(5.8b)

and are identical to (2.12) and (2.16). In the inertial
system, light signals in vacuum are propagated along
the x axis with velocities given by

Note that v"' in (5.5) is the relative velocity of the two
frames as measured in the accelerated frame and is not
necessarily equal to —~' measured in the interial frame.

In our cases we are interested only in velocities having
a single nonvanishing component n' or I'. Thus, with
superRuous superscripts suppressed, the velocity trans-
formations are

into (5.13) yields

—A, 'aA, '
Ag P~Aj ' (5.17)

Finally we substitute the components of A„"' from (2.5)
for those of A„" in (5.17) to obtain

Ap'~Ay'
C

0'~A 0'
(5.18)

which is identical with (5.11). Thus the coordinate
velocity u' may have a value outside of the limits &1
yet still be within the light cone. There is a simple test
by which one may determine if any given function
u'(x",x") is in the light cone. Substitute the function
into (5.7a) and see if the resulting values of u are within
the light cone. Alternately, if the function I'(x",x")
can be expressed in the form (5.7b) with I being within
the light cone, then I is a physically realizable velocity,
at least in principle.

With the preceding background in velocity trans-
formation formulas in mind, we now turn to a con-
sideration of up. The function Np may be calculated
from the expressions for z and X given in Table I.
The result for case I is

R=C=&1. (5.9)

C=N=
o'a A i'/A o'

1&AP'/A o'
(5 1o)

The corresponding velocities in the accelerated system
are obtained from (5.7b) and (5.9):

(1—e-')y'vae —'

1+(1—e—')y'o'

m~e '

1&v/e
(5.19)

Substitution of (5.8b) into (5.10) yields

Ap' ~Ai'
I

C =
A pP'~A gP'

(5.11)

The equation is readily solved for c':

~'= I:—xi~&(—g) j/g». (5.13)

Clearly, c' will not in general equal &1. This is not a
violation of relativity if it can be shown that c' as
given by (5.11) is the quantity which causes the metric
quadratic form g„„NI"I"' to vanish. We shall see that
this is indeed the case.

The vanishing of the quadratic form g„„N"'I"' gives
the null light cone:

o=g" "' "'=( ')'Lgoo+2C '+g (')'j

The result is immediately recognizable as the velocity
addition law for inertial observers. Thus &1/e is
taken to be the speed of the wave zeros with respect to
the instantaneous, local inertial rest frame of the
medium. Such a result is hardly surprising and quite
gratifying. Indeed, in the hmit of zero acceleration
such a result must be obtained or the theory would be
a failure. One may wonder why there are no additional
terms in (5.19) reflecting the fact that the medium
is accelerated. The answer is that such terms would have
to vanish with the acceleration which would require
the terms to be proportional to powers of gradients of
the velocity. But such gradients were explicitly ex-
cluded from the constitutive relations as given by (1.8).
Thus the result can only have its inertial form (5.19).

The situation is much the same as that for accel-
erated clocks, the rate of which is presumed to depend
only upon velocity and not-at all.upon acceleration; oz;



E LE CTROM AGN ET I C KVA VE P ROPAGATI ON

higher deriva, tives of velocity. For sufficiently high
accelerations the presumption is clearly wrong: clocks
dropped to the Qoor from a great height will break and
cease to function. In a similar way one can expect the
hypothesis of acceleration-independent constitutive
relations to break down for sufficiently large accelera-
tions. The fact that Ip is exact and correct to all orders
of v ma, kes the empirical determination of the break-
down point simply a matter of comparing the experi-
mental results to (5.19). Such a program, while simple
in principle, may be difficult in practice.

The emergence of the velocity addition law is com-
pelling evidence tha, t the formalism is correct. The
result is quite sensitive to the precise form of the
constitutive relations and any change in the quantities
n, P, and X could alter the result appreciably. It must
be admitted, however, that no proof has been offered
to show the uniqueness of the result to the present
formalism. The possibility exists that other constitu-
tive relations may also yield the velocity addition law.

The velocity Np for ca,se II is ca,lculated a,s follows:

n Ap Al —Al Ap an (Ap Al —Al Ap )

(A 1,1)2 n—2(Al' )2

—A '&Ap'/n

Al 'WAi p/n

A p'~A l'/n

A p'& A io'/n
(5.20)

gpl/n'Q( —g) a1/n
Qp=-

&(—g)L(1 —n ')(go ) '+g»/n'gj

~gpp/n&( g)—
1~gol/n&( —g)

(5.21)

This result purports to be the speed of the wave zeros
in an accelerated medium as measured by the accel-
erated observer. In view of the fact that the coloring
inertial observer would measure the speed as &1/n,
the complicated expression (5.21) requires some ex-
planation. If (5.21) is in fact correct, it should be
possible to obtain the result from the velocity trans-
formation formula (5.7b) and the wave-zero velocity
measured in the inertial frame (5.19). Such is indeed

The result is identical to the velocity transformation
formula (5.7b) provided that &1/n is identified as the
wave velocity in the inertial medium. This result is
quite satisfying.

Finally for case III the velocity Np is calculated as
follows:

the case as the following calculation shows:

—Ao'l+NAo P

Qp=
Ag' —NAg '

A—p'(1ao/n)+A p'(pan ')

A i, '(1~o/n) —A l o(o~n—')
(5.22)

Substitution of (5.8a) for o lea, ds to

l.[(A,P)2 (A, l)2
Qp= —---

A &n '[A l'A p
' —A p 'A l ']

+goo/n&( —g)

1~goi/nV'( —g)
(5.23)

which is the same as (5.21).
The foregoing results are most importa, nt, in fact,

essentia. l for the success of the formalism. We have
found that the expressions for wave velocity Np, ob-
tained on the basis of the constitutive relations (1.8)
and -the solution developed in Sec. IV, are precisely
identical to the velocity transformation formulas,
obtained on the basis of the transformation matrix and
the principle that the speed of light in an instantaneous,
local inertial frame is 1/n. It should be emphasized that
these results hold for arbitrary linear translation of the
accelerated reference frame. One must also recall that
the results are expected to be modi6ed by suKciently
high accelerations (gravitat'ional fields).

VI. CASE III FOR HYPERBOLIC,
BORN RIGID MOTION

t =a '(x') sinh[a (x') rj,
x =xp+ a—'(x') cosh[a(x') r),

(6.1a)

(6.1b)

(6.ic)

(6.1d)

A solution of the first-order partial differential equa-
tion (4.33) for 8 requires the explicit dependence of
Np upon coordinates to be known. Such knowledge can
be obtained only if the coordinate dependence of the
transformation matrix and metric tensor are known.
But the transformation matrix can be determined only
from the motion of the noninertial reference frame.
Thus the solution of (4.33) for tt involves all the diK-
culties which were discussed, and bypassed, in Sec. II.

Here, as an illustration of the kind of calculation
required to 6nd 8, and hence 8 and E, we shall just
choose a hypothetical accelerated motion that intuition
judges to be a reasonable candidate for actual accel-
erated motion. Thus we take the following as the world
lines of the points x' of the noninertial system referred
to the inertial frame:
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The motion represented by (6.1) is a displacement of
the points x' in the x direction, each point x' under-
going the well-known hyperbolic motion with a proper
acceleration a(x') which is an arbitrary function of x'
and independent of the proper time r. The velocity of
each point x, in the inertial frame, is given by

8x/8r sinh[a(x') r$

at/Br cosh[a, (x') rJ x—xp

The locus of points x' having constant velocit;y v is
thus given by the linear relationship

The case we shall examine is case III, dielectric
and observer both accelerated, which corresponds to
the generalized Sagnac experiment. For this we must
calculate uo from (5.21). This can be done by inspection
with (6.8) and (6.9):

no ——+[(222) (1aar/22) 7
—'. (6.10)

Substitution of this expression for up into Eq. (4.33)
for 0 yields

(1+ar/22)8, 8+(1/ 2A2)8, 8=0 . (6.11)

The first step in obtaining a solution of (6.11) is to
change variables from x' to ( defined as

t=o(x—xp). (6.3)
j= 1/a(x') (6.12)

x =xp+1/a(x') . (6.4)

In terms of ratios of in6nitesimal displacem. ents this
gives

dx d 1

dx', o tlx' a(x')
(6 5)

Thus the deformation is determined by the proper
acceleration of each point x'.

The transformation matrix A„" obtained by dif-
ferentiation of (6.1) is

coshar
sinhar

0

(sinhar —ar coshar)A 0 0'
(coshar ar sinhar)A —0 0

0 1 0
0 0 1.

(6.6)

The determinant of A „"is

This implies that a succession of instantaneous Lorentz
frames can be found in which all points x' are momen-
tarily at rest. Thus, with respect to these inertial frames,
the accelerated frame can be said to move as a rigid
body. This is one of the simplest, nontrivial examples
of Born rigid motion. For a thorough discussion of this
and other cases consult, for example, the dissertation
of Ryon. "

Relation (6.1b) evaluated at r=0 gives the de-
formation of the x' mesh system compared to that of x:

so that

Then we note the useful fact

8pa=8 p(1/&) = —a'.

(6.13)

(6.14)

8,„8=a(x')A (1+ar/22),

8,8=Wa(x')/n.

(6.17a,)

(6.17b)

The fields I' and 8 are thus determined. From (4.32)
we have upon substitution of (6.17)

8 (r,x') =aA (1&ar/22) iP (8)e'& t»,

E(r,x') =& (a/22) P(8)e'&to&

(6.18a)

(6.18b)

with 8 given by (6.16).
Let us specialize the fields (6.18) to the simplest wave-

like solution possible. To do this set

(6.19)

Finally Eq. (6.11) may be transformed to a convenient
form, first by multiplying by a(x') and then by using
(6.13) and (6.14). The result is

[8t(lna+ar/22) j8,8 [8,(lna—+ar/I) $8~8=0. (6.15)

Clearly, a particular solution of (6.15) is given by

8 = —lna (x') Wa(x') r/22. (6.16)

The quantities 8, 8 and 8,0 are seen to be

=A = [dx/dx j p (6.7) (6.20)

—Aar
0
0

—Acr
A2 (a2r2 1)

0
0

0 0
0 0

(6.8)

0

and its determinant is

which explains the choice of symbol in (6.5).
The metric tensor is easily shown to be

1/a(x') =x'+xo',

where xo' is a constant.
Next require that e'& vary like e+'"' at x'=0:

P(8(r,0))=W(or.
Now solve

(6.21)

(6.22)

Reference to (6.5) discloses that (6.19) is equivalent to

g = —A'.
8(2,0) =8p ——ln(xo')~r/22xo'

(6.9)
for r and substitute in (6.22):

(6.23)

"J.W. Ryon, III, Ph. D. thesis, Stevens Institute of Tech-
nology, 1970 {unpublished). 0(8o) =~nxo'(8o —lnx, ') . (6.24)
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8(r,x') =a(1+ar/n)e""*'+"',

E(r,x') = & (a/n) e'&"*'+

with the dispersion law

(6.28a)

(6.28b)

(6.29)

Note that the condition (6.26) is equivalent, by virtue
of (6.21), to a small, constant acceleration. Thus, once
again the Newtonian limit is recovered:

Put 8 for 8o in (6.24) to obtain

P(8) =o)nxo' ln (1+x'/xo') Wo)r/(1+x'/xo') . (6.25)

This is the result we want. Observe that for xo' large
and positive, so that the following inequality holds:

(6.26)

the expression for P obtained in (6.25) can be written
as

lP(8) =o)nx Wppr. (6.27)

This will be recognized as giving the familiar plane-wave
solution for the fields:

However, a reasonable candidate for accelerated motion
was taken to be the case of hyperbolic, Born rigid
motion. For this particular situation the electro-
magnetic fields for the vertical waves were worked out
in detail for the case of the dielectric medium and the
observer both coaccelerated. In the limit of small,
constant acceleration the wave was shown to reduce to
Newtonian form.

The range of possible applications of the present
theory is potentially enormous. It would be most
desirable if solutions for dispersive media could be
found. It is not unreasonable to suppose that the
combination of accelera, tion (or gravitational fields)
and dispersion would produce some interesting new
e6ects. The most likely practical applications appear
to be interferometer, laser, or microwave devices,
all of which deal with electromagnetic beams. The
analysis of such devices would involve finding the wave
solutions which satisfy the boundary conditions appro-
priate to the particular device.

APPENDIX

g(r xi) a e4(ks'+&or)

L,'(r, x') =& (ap/n)e'&2*'+") .
(6.30a)

(6.30b)

We with to prove the coeScient condition

nP+7 2 = 1/n'. (A1)

VII. SUMMARY
Substitute fron1 Table I into (A1) successively for
ca,ses I, II and III.

The electromagnetic field equations for a linear,
homogeneous, isotropic, ngndispersive dielectric medium
undergoing arbitrary (noninertial) linear displacement
were obtained from the constitutive relations advanced
by Anderson and Ryon. A general solution of these
field equations was then developed for the waves
propagating in the vertical direction, parallel to the
direction of the acceleration. It was found that the
expressions for the velocities of the zeros of the (quasi-
sinusoidal) waves are exactly those given by the
velocity transformation formulas obtained directly
from the coordinate transformation and the principle
that the speed of light be 1/n in the local, instantaneous
rest frame.

The problem of picking out the physically realizable
motions from the set of all coordinate transformations
is a separate issue and has not been determined here.

Case I
nP+) 2= [1+(1—n 2)y22)2jLn

—'—(1 n2)y—ov2$

+ (1—n—2)2y42)2

—n—2 (] n—
2)2~2e2+ (1 n—

2)2 (1 e2)~4e2

= 1/n'.
Case II

12p+)12 g 1{L(A1'1)2 n
—2(A1,0)2jLn—2(A, O)2

—(Ap ')2$+fn 'Ao'A1' —A1'Ap ')2)
= —

g 'n 'L(Ao'A1')' —2Ao'A1'A1'Ao'

+ (A1'A p')'j
= —A'/n'g = 1/n'.

Case III
12P+)12=n '(1 n')+n—4g 'gppg11 n4g '(—go1)'

=n '(1—n 2)+n~=1/n'.

(A2)

(A3)

(A4)


