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The general-relativistic corrections and the eGects due to a quadrupole moment of the Sun in measure-
ments of the travel time of electromagnetic signals sent from Earth to artificial planets on circular and
coplanar orbits are considered. It is found that a relativistic correction due to a term in the metric of second
order in the mass of the Sun could not be separated from the effect due to a quadrupole moment unless
additional information were available. The use of previous optical determinations of the motion of the
node and perihelion of Mercury is considered and seen as adequate for a separation of the two effects to an
accuracy of a few percent of the relativistic "nonlinear" e6ect.

INTRODUCTION

FEW years ago, it was pointed out' that measure-
ments of the travel time of radar signals bounced

off the surface of other planets could be accurate enough
to reveal a general-relativistic lengthening of the optical
path in a gravitational field. More recently, Schi6'
pointed out the interest of looking for an effect resulting
from a term in the metric not linear in the mass of the
Sun. It appears that, at this moment at least, this effect
is not within the accuracy of the bounced-radar-signal
technique, and also that errors in the determination of
the planet radii would prevent its detection. ' These
difhculties would be alleviated in the tracking of an
arti6cial satellite in orbit around another planet and
carrying a transponder, but inaccuracies in the evalua-
tion of classical gravitational e8ects could still prevent a
detection of the eGect.4 The separation of this "non-
linear" relativistic correction from the classical pertur-
bations resulting from a solar quadrupole moment is
discussed here. The procedure used is the following: The
planetary perturbations and the eccentricity of the
orbit of the Earth are neglected. The transponder is
assumed to be on an inferior circular orbit in the ecliptic

* Supported by NASA Contract No. XGR-21-002-214.
' I. I. Shapiro, Phys. Rev. Letters 13, 789 (1964).' L. I. SchiB (unpublished); D. K. Ross and L. I. Schiff, Phys.

Rev. 141, 1215 (1966).' I. I. Shapiro, Phys. Rev. 145, 1005 (1966).
4 As is well known, in addition to providing a far better accuracy

in the distance measurements (a few meters), such a procedure
would virtually eliminate radiation pressure and solar-wind effects
which would cause important perturbations on the orbit of an
artificial planet.
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plane. The relativistic predictions for the case of
spherical symmetry are then compared with the classical
predictions for the case of a nonzero quadrupole moment
of the Sun. '"

RELATIVISTIC CORRECTIONS IN SPHERICALLY
SYMMETRIC FIELD

Following Eddington, ' Robertson, ' and SchiG, ' the
field of a spherically symmetric Sun is described by the
generalized metric which is, within the frame of a curved
space time, the most general expression of a spherically
symmetric field. In isotropic coordinates

ro ro)
ds' = 1—2n —+2P —

i
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r ri

1+2'~ — t dr'+r'd8'+r' sin'8d4'j, (1)
kr

where r, 8, and tt are the polar coordinates and t is the
' The nonlinear term in P could also be looked for through its

eBect on the precession of the perihelion of ecliptical orbits. As
pointed out by I. Goldberg, Phys. Rev. 149, 1010 (1966), the
separation of the relativistic eGect from any possible contribution
from a quadrupole moment of the Sun would be automatically
achieved by use of an artificial planet at the critical inclination
(~63') where the later effect vanishes. In such a case, however,
radiation pressure and solar-wind effects could still prevent a
detection of the relativistic effect.

A. S. Eddington, The 3IIathematical Theory of Ee4titity
(Cambridge U. P., New York, 1957), p. 105.

'H. P. Robertson, Space Age Astrorlomy, edited by A. J.
Deutch and W. E. Klemperer (Academic, New York, 1962),p. 228.

L. I. Schiff, Proc. Natl. Acad. Sci. U. S. 46) 871 (1960).
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coordinate time. rp ——GM/c2. G is the gravitational con-
stant and M is the mass of the Sun. n, P, and y are
numerical coefficients equal to unity in general relativity
(terms of higher order than 2 in rp/r are not retained
here).

Following Shapiro, we will assume that the orbital
periods and the time at inferior conjunction are known
in terms of Earth proper time. (Here, time will refer to
Earth proper time as indicated by Earth-based stand-
ards and periods will be in units of Earth proper time. )

Within the metric (1), the two-way time of travel of a
tracking signal to a transponder on an inferior orbit can
be written in the following form':

gravity of the Sun is chosen as the origin of the coordi-
nate system, the coefficient of the first spherical har-
monic is zero. The next one is the quadrupole moment.
If the harmonics of higher order than the second one are
neglected, the potential is'

U= (GM/r)$1+ (J2,p/2r2) (3 cos'e —1)j, (3)

where J2, p is an unknown numerical coe%cient (if
previous optical observations are not taken into ac-
count). The effect of the quadrupole moment is to alter
the classical expression for the two-way travel time of
the electromagnetic signals as a function of the time on
Earth according to

(51 4/8+5T' 4/8 —2 252/85T 2/8 cosy')1/2
T Tp

(5/' 2/8 52' 2/8)
(52,2/8 cr', 2/8)

+28,T+282T, (2)
with

(T~"8+7'r4/8 2V'8;"Tr2"—cosh515)'/'
T Tp +2& T, (6)

where Vz and V'~ are the orbital periods of the trans-
ponder and of the Earth; Tp is the travel time at inferior
conjunction. The relativistic corrections are contained
in the last two terms

a~(R+a~ a-2 cosh')-—
8iT = —~(1+y) ln

ci ar (E+ar, cosdg —ar)
R aEln-

(ag —ar) a2

where ag and ay are the zeroth-order approximations
to the orbital radii, and

t'p as+ ar
~ T = ——(&+2') (1—cosDp) . (4)

3c R

653I5 is the heliocentric angular distance from the Earth
to the transponder, i.e.,

ay =2~(r r,)/S. , —

where K, is the synodic period, r is the Earth proper
time, and rp is the Earth proper time at inferior con-
junction. Also, R is defined by

E =ag +ay 2aza2 coskp.

The first correction (52T) is larger than the second one
(82T) (~& 60 km/c and ~&3 km/c) and, because of its

logarithmic dependence, is easier to separate from other
perturbations. It is, however, independent of the
nonlinear term in the metric (term in P). The second
correction depends on P but, as we shall see, would not
be directly separable from a classical contribution due to
a solar quadrupole moment.

CLASSICAL CORRECTIONS DUE TO SOLAR
QUADRUPOLE MOMENT

The gravitational field of any given body can be ex-
pressed in terms of spherical harmonics. If the center of

5

J2, p a8 +ar
p8T = — 1+— (1—cosd p),

CR 2agGT

where the periods have the same operational meaning as
they have in the relativistic expressions LEqs. (2)—(4)j.

The classical correction 53T due to the quadrupole
lnolnent has the same dependence on r as the relativistic
correction 52R resulting from the second-order deviation
from the Bat metric. If these two effects are to be
separated, information has to be added to the travel-
time measurements.

SEPARATION OF CLASSICAL AND
RELATIVISTIC EFFECTS

The classical correction term introduced in the po-
tential (5) by the quadrupole moment is of third order
in 1/r. The P term in the metric (1) is of second order in

1/r. This makes the former correction relatively more
important on low orbits. This suggests that the optical
observations on the orbit of Mercury be used to de-
termine the possible range of J2,p.

If the available information is limited to secular
effects (which can be measured with the highest accu-

racy), the coe%cient J2, p must be determined from the
observed rotation of the plane of the orbit of Mercury
around the axis of the quadrupole moment. This rota-
tion is related to Jg, p by"

0 =32rJ /a'(1 —e2) 2 r ad/revolution,

where a and e are the semimajor axis and the eccen-
tricity of Mercury. As pointed out by Dicke," the ob-
served motions of the orbital plane of Mercury set an
upper limit to the possible quadrupole moment of the

9 For purpose of simplification, we neglect the fact that the
axis of rotation of the Sun does not exactly coincide with the
normal to the ecliptic plane. This fact would not alter the dis-
cussion significantly.

0 D. Brouwer, Astron. 3. 64, 378 (1959)."R.H. Dicke, Nature 202, 432 (1964).
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Sun. In terms of J2,0, this is"

~
Js, p~ ~&6.8X10 "a~'.

The corresponding classical contribution to the two-way
travel time would be, from Eq. (9),

~

28sT~ ~&0.42(a~/R) (1—cosh/) itm/c. (10)

"This value corresponds to a precession of the perihelion of
Mercury equal to 8 sec of arc per century, which seems a reason-
able upper limit for the contribution of a quadrupole moment
LI. I. Shapiro, Icarus 4, 549 (1965lg. The contribution to the
general-relativity precession of the P term of the metric is —13.3
in the same units.

This classical eRect is appreciably lower than the
relativistic contribution due to the term in P in the
metric

(2)sT) = —3.4P(as/R) (1—cosh/) km/c. (11)

If detection of the first relativistic eRect 81K shows y
to be essentially unity, then the error on the residual on
the precession of Mercury (&8 sec of arc) must reflect
on the accuracy of the determination of the coefficient P
which becomes P=1&0.6. Detection of the second
relativity effect 82T with an accuracy limited by the
error on Js,, LEq. (10)]would allow a determination of
P to 12%.
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Relativistic Dielectric*
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A general solution is obtained for the electromagnetic waves propagating in the "vertical" direction in a
linear, homogeneous, isotropic, and nondispersive dielectric medium undergoing arbitrary linear accelera-
tion. The most significant characteristic of the solution is that the velocity of the zeros of the wave is pre-
cisely that given by the relevant velocity transformation formulas.

I. INTRODUCTION sured by transformations of the form

F„„=A„A„&Fp,

I
A"

I

g'"'=A-"'A s"'g',
(1.4)

(1 5)

(1 6)

(1.7)

' 'X a previous paper' we have developed a generally
~ - covariant formalism for handling problems in
noninertial electrodynamics. The formalism employed
the naturally covariant Maxwell field equations de-
veloped by Cartan, ' Weyl, ' and Post, the homogeneous
form of which are

~A„& ~xs'"'""=A.s'A&"'A, "A,"x ~",
A " =cia'"/Bx

lpv, pj

pv P, V

I

(1 1) The constitutive relation (1.3) for homogeneous,
isotropic, nondispersive media was shown to take the

(1 2) form

with F„„and b"" being the antisymrnetric tensor and
tensor density of weight +1 representing E, B and
D, H, respectively. The necessary connection between
F„„and g&" for the case of the general linea, r, nondis-
persive dielectric medium is provided by the con-
stitutive tensor density:

glvv = 1-xsvpvF
2 p tr ~ (1.3)

The covariance of Eqs. (1.1), (1.2), and (1.3) is en-

*Based on material contained in a dissertation by J. W. Ryon
submitted in partial fulfillment of the requirements for the Ph. D.
degree at Stevens Institute of Technology, Hoboken, N. J.' J. L. Anderson and J. W. Ryon, Phys. Rev. 181, 1765 (1969).

2 E. Cartan, Ann. Ecole Normale Super. Sci. 41, 1 (1924).' H. Weyl, Space-Time-Matter (Dover, New York, 1951), pp.
110 and 220.

4 E. J. Post, Ii ormal Strnctlre of L&'lectromagnetics (North-
Holland, Amsterdam, 1962).

8""=(—g)'"Lu 'F""+(e—v ')
X (F&'u.u" F"'u.ul') 7, (1—.8)

where ~ and p, are, respectively, the dielectric constant
and the magnetic permeability, u& is the local four-
velocity of the medium, g is the determinant of the
metric g„„, and F&" is obtained from F„„by the usual
process of raising the indices.

In the following sections the forrnalisrn will be
applied to a homogeneous, isotropic, nondispersive
dielectric medium undergoing arbitrary linear accelera-
tion with respect to some inertial reference frame. In
Sec. II we present and discuss the relevant kinematical
and dynamical aspects of the noninertial motion. The
specific form of the homogeneous field equations is
obtained in Sec. III, followed in Sec. IV by the develop-
ment of the general forrri of the solution of the field


