
P H VSI CAI REVI EW D VOLUME 2, NUMBER 11 1 DECEMBER 19/0

Calculation of the Mass Shifts of the Xs Meson*
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The mass shifts of the Ez meson are calculated in a multichannel ED ' formalism by considering coupling
of the E'8 meson to both the I=0 and I=2 (7=0) 27-27 states. A pole approximation is used for the weak.
coupling of the g8 meson to the 21-21- channel. The results for the coupling of Xg to the I=J=0 21-~ partial
wave gives a value of Am, &'&/(-, y, &'&) of the order of —1, in agreement with previous calculations. The ratio
Am, &2&/($y, &'&) is sensitive to the high-energy behavior of the I=2, J=0 phase shift and may be larger than
previously expected.

I. INTRODUCTION

&~ISPERSION techniques were used by Barger and
Kazes' to discuss EI, and Eq mass differences

qualitatively. Nishijima' later did a more quantitative
study of the mass differences by making the following
assumptions: (a) The mass shift of the Es meson
relative to the El, meson is due to weak interactions
because I'(Es —+ all)» I'(E r.—& all). (b) The inequality
I's» I'r, persists over a wide energy range. (c) Since the
Ez meson decays primarily into the 2m channel, we
can replace Fq by the partial width I'2 at all energies.
Then we can write (W is the total c.m. energy)

1 " W21'2 (W)
hm8= —P

0 ms(ms2 —W')

where hm8 is the mass shift of Eg, ma is the mass of
Eg, and P means principal-value integral. A similar
expression can be written for hmL, . Because of assumnp-

tion (b), we can write ~Ama~&&~hmr. ~, which leads
one to expect that the El;Eq mass difference is given
in large part by hns= Amq. The width I'2 is determined
from (s=W')

(s —4m, 2) "'
I 2x(W) =collst—

derive the formula

km= —-,'F2. cotbp, (3)

II. FORMALISM

We assume that the Born matrix is given by

after neglecting terms which were assumed small. This
result was examined and criticized by several authors. ' '

More recently, a dispersion-theoretic approach was
used by Kamal and Kenny' to compute the mass shift
of Eq due to the decay of Eq into the I=2, J=O 2x
channel. If this mass shift and e' are known, then the
contribution of the 2x I=2, J=O channel to Res can
be computed. ~ The most optimistic value of e' and the
mass shift resulted in a value of Re& too small by a
factor of 2. In the calculation it was assumed that
62~ —k+ as s —+ ~, so that a cutoff must be used to
compute the mass shift by using Eqs. (1) and (2).

In this paper we present a slightly different model to
compute the m.ass shifts based on a multichannel ED '
formalism. We assume that the E8 meson is produced
as a bound state of some high-mass channel which is
then coupled to the 2m channel via the weak inter-
actions. The expression we obtain for the mass shift
reduces to Eq. (3) in a certain limit. The formalism is
presented in Sec. II. In Sec. III we show the results of
the calculations, and we discuss the results in Sec. IV.

2
&&exp —(s—m. ')J'

30(s')
ds' — — —,(2)

(s' —m, ') (s' —s) 8— 811 gl2/(S+$0) l

g12/($+$0) 822

where bp is the I=J=O phase shift in xm scattering.
If we assume that, 8p is known, we can compute F2
and hence Am. Nishijima assumed a form for bp such
that bp~ x as s —+ ~. With this asymptotic behavior,
no cutoff or subtraction is required to obtain a 6nite
result by using Eqs. (1) and (2). A cutoff is required
lf Sp ~ O as s ~ (20 .

Another well-known attempt to compute hm was
made by Truong. ' He used the same assumptions listed
above along with a single-channel 1V/D approach

The Eg meson is assumed to be produced as a bound
state in the second channel by 8» while 8» can be
computed for physical s from a knowledge of the m~
phase shifts. For example, if channel 1 is the I=O,
J=0 m~ channel

sin50(s) cos30(s) 1 "sin230(s') ds'
&. ()=-

p1(s) sr 4 p1(s') s' —s
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where p1 is a kinematical factor which we take to be
pl(s) =[(s—4)/s]'"(s —4).' We assume the weak cou-
pling between the 2m channel and the E8 channel can
be approximated by a single pole term g12/(s+sp),
where so is related to the range of the weak interactions.

If we make a subtraction in D at s= —sp, we obtain m/2

:V,;(s) =B,,(s)

1 "B"(s')—[(s+so)/(s +so)]B"(s)

s —s/

I
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I
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2000

Xp, (s') fV;;(s')ds', (6)

where s; is the threshold for the ith channel. For i&j,
cV;, (s) =g12F, ,

FIG 1. Bp as a function of 8'. Below 1 GeV curves A, 8, and C
are possible 6ts to the I=7=0 ~m. phase shifts. Above 1 GeV we
let 6 —+ 0 smoothly.

Thus in this model the mass shift is given by
where

1 1 "B,,(s') —[(s+sp)/(s'+sp)]B, ,(s)

C cot6 —1
AmS = —21~ —= —X~~~

C+cot5
(20)

s+sp I
ai s —s

)&p, (s')F,(s') ds' (8).
D 'j can be computed from

s +sp s —s —ze

YVe write

s+sp "p, (s')X,,(s') ds'
D,;(s) =h;, —=

i

where y is the width written in energy units (&=i'/
2mrc). Truong's result, Eq. (3), is obtained if C))cot5.

In order to compute dms/y we must know C and 6.
C can be computed provided 8 is known for all energies
and provided that we have some way to determine so.
We will see below that the dependence on so is not very
strong.

D12 gl2(Ct+splF1) (10)
III. CALCULATIONS

A. Coupling of Kq to I= J=O ~~ Partial Wave

L .21 gl2+2 p

where 42 is real in the region of the E' meson. We
assume that near the Kq meson we may write

D22(s) =d(mrc2 —s), (12)

where m~' is the mass which the Eq meson would have
if it were not coupled to the 2x channel.

After making the a,pproximation in Eq. (12), we
find that the 5-matrix element for the first channel
may be written as

In Fig. 1 we show some of the possible results of the
partial-wave analysis of xw scattering for the I=J=o
partial wave. ' The phase shifts are known up to about
1 GeV. The phase shifts at higher energies are a smooth
continuation assumed to approach zero for large s. The
mass shifts corresponding to the phase shifts shown in
Fig. 1 are presented in Table I as a function of so. We
see that the variation as a function of so is slow. For
the "down-up" phase shifts A," we find, " Dms&Pl/

(2ysfP&) in the range —0.95 to —1.5 as sp varies from
50 to 400.' For the "up-down" solution B, &ms&pl/

where'

Stl= e"'(sB—s+2'2I')/(sB —s ——2'll'), (13) TABLE I. Values of dms"'/(2'yes ) for different values of so
and the phase shifts shown in Fig. 1.

Ell/Dl, ——e" sinb, (14) ase shifts A

I' =I'1(C sin8+cosb)2,

C=Cl/plF1,

I 1 2plg12 c 2F1 (++2 p)/d y

Sg =5$It-.

ct = (C cot8 —1)/(C+cot5) .

(15) 1.17
0.96
0.83
0.75

50
100
200
400

—0.95—1.23—1.42—1.50

—0.27—0.46—0.57—0.64
(16)

8 We use units h=c=m =1.
'These results were quo&d &p previous work by P. Coulter

and G. Shaw (unpublished). ,

(18) lo J. H. Scharenguivel ef al , Phys. Rev. 1.g6, 13g7 (1969)
(19) References to other phase-shift analyses of the oror system can be

found in this paper."E. Malamud and P. Schlein, Phys. Rev. Letters 19, 1056
(1967).

'2 We use superscripts 0 and 2 to refer to the I=0, 2 ~~ channels,
respectively. y~&0) is the partial width for ICg ~ vrx (I=J=0}.
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FIG. 2. bp as a function of 8'. This is a variation of curve 3 in
Fig. (1) with different asymptotic behavior.

(-', palo&) is positive. For solution C we find that Dms&'&/

(styss) is negative, but smaller in magnitude than for
solution A. Solution C is apparently too small to
account for Am unless d,ml, is positive. Solution A can
account for Am if Aml„ is not too large negatively. Thus
this analysis tends to favor solution A, which is also
favored by experimental fits to the data. "

We also considered different high-energy phase shifts
from those shown in Fig. 1. For most variations from
Fig. 1 the results quoted in Table I do not change
greatly. However, for the phase shift shown in Fig. 2
we find Dms "&/(-,'ys "&)= —4.4 for s, =400, so the
high-energy behavior can be important.

B. Coupling of X8 to l=2, 1=0 ~~ Partial Wave

If we want to talk about E~ coupling to both I=O
and I=2 partial waves, we must clearly use a three-
channel model. However, if the decay Es —+ a.s (I=2)
is due to a direct coupling between EB and the

sir�(I

=2)
state and if there is no direct coupling between the
I=O and I=2 xm states, then we can still use the
formalism in Sec. II." In this case the total mass shift
will be the sum of two terms of the form of Kq. (20)
coming from coupling Eg to the I=O and I=2 xm.

channels Dms=hm8"&+Amsi'&. We will assume that
this is the case.

Figure 3 shows two diferent forms we assumed for
5&. Again the phase shifts are only known up to about
1 Gev."If we use solution I, we find values of Dms"'/

"See Ref. 9 for a more complete discussion of the formalism
for more than two channels."J.P. Baton, G. Laurens, and J. Reignier, Nucl. Phys. 33,
849 (1967).

Fxo. 3.b. as a function of 8'. Curve I is an approximation to the
phase-shift analysis of Rev. 13 below 1 GeV. Above 1 GeV we
let s~ 0 smoothly. We obtain nmzi'&/(-', is&'&) = —0.64, —1.03,—1.46, and —1.95 for sp=50, 100, 200, and 400, respectively.
Curve II shows a dif'ferent high-energy behavior above 100 MeV,
giving ~~s '/(g'&s ') = —1$.5 for sp=200.

(isy8i'&) ranging from —0.65 to —1.95 as ss varies from
50 to 400.

At low energies C tends to be a positive number
regardless of the sign of 8. Thus for coupling to the
I=J=O partial wave, both C and cotb have the same
sign and the value of n tends to be fairly stable as the
high-energy behavior of 5 changes. For the I=2, J=O
partial wave, C and cotb generally have opposite signs
and the value of o. is more sensitive to the high-energy
behavior of the phase shift. For curve II in Fig. 3 we
find —n= 17.5 for ss ——200 because C+cotl& is small.

IV. DISCUSSION

By using the model presented here, we can compute
&m,/ys for EB Lyz=ya s +ysi' g provided the ns.

phase shifts and the pole approximation for the weak
nondiagonal forces are known. The variation as a
function of the pole parameter so is slow. We find that
the results are dependent on the (unknown) high-

energy behavior of 8. This dependence is not strong for
coupling to the I=J=O mm state. The values obtained
for hm, i'&/y, "& for this case favor solution 2 for the
phase shifts shown in Fig. l.

The values of Amsis&/ys "& for coupling to the I=2,
J=O 7(-m partial waves are more sensitive to the high-

energy phase-shift behavior. The maximum value of

~

Ambi"/ps&'&
~

found by Kamal and Kenny was 5.76;
we can easily obtain larger values for this ratio for.

some high-energy phase-shift behavior.
The calculations presented here confirm previous

calculations that the coupling of ICg to the I=J=O
7rs partial wave is sufficient give values of Dms&'&/

(-', ps&'&) of the order of —1. It is possible, depending on
the high-energy behavior of 82, that the magnitude of
Ama"'/( ,'ps''&) c—an be larger than previously
calculated.


