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The mass shifts of the K s meson are calculated in a multichannel N D1 formalism by considering coupling
of the Ks meson to both the /=0 and =2 (J=0) = states. A pole approximation is used for the weak
coupling of the K5 meson to the = channel. The results for the coupling of K5 to the =J=0 =« partial
wave gives a value of Am,©/(3v,®) of the order of —1, in agreement with previous calculations. The ratio
Ams® [(3v,®) is sensitive to the high-energy behavior of the =2, J=0 phase shift and may be larger than

previously expected.

I. INTRODUCTION

ISPERSION techniques were used by Barger and
Kazes! to discuss Kz and Kg mass differences
qualitatively. Nishijima? later did a more quantitative
study of the mass differences by making the following
assumptions: (a) The mass shift of the Kg meson
relative to the Kz meson is due to weak interactions
because I'(K s — all)>>T' (K. — all). (b) The inequality
I's>>T' ., persists over a wide energy range. (c) Since the
K s meson decays primarily into the 2z channel, we
can replace I's by the partial width T's, at all energies.
Then we can write (W is the total c.m. energy)

1 = Wn(W)
f g
0

A’m,s =-P
™ ms(ms2—W2)

M

where Amg is the mass shift of Kg, mg is the mass of
K, and P means principal-value integral. A similar
expression can be written for Am. Because of assump-
tion (b), we can write |Amg|>>|Amz|, which leads
one to expect that the K1-K ¢ mass difference is given
in large part by Am= Ams. The width Tz, is determined
from (s=WW?)

(s —4m, )12

Tor(W) =const
s

where 8 is the I=J=0 phase shift in 7= scattering.
If we assume that §, is known, we can compute I's,
and hence Am. Nishijima assumed a form for §o such
that §o— 7 as s — o. With this asymptotic behavior,
no cutoff or subtraction is required to obtain a finite
result by using Egs. (1) and (2). A cutoff is required
if 60— 0 as s— .

Another well-known attempt to compute Am was
made by Truong.? He used the same assumptions listed
above along with a single-channel N/D approach to
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derive the formula
Am= —1T's, cotdy, 3)

after neglecting terms which were assumed small. This
result was examined and criticized by several authors.%-%

More recently, a dispersion-theoretic approach was
used by Kamal and Kenny® to compute the mass shift
of Kg due to the decay of K into the I=2, J=0 2r
channel. If this mass shift and ¢ are known, then the
contribution of the 27 I=2, J=0 channel to Ree can
be computed.” The most optimistic value of ¢’ and the
mass shift resulted in a value of Ree too small by a
factor of 2. In the calculation it was assumed that
02— —kmr as s— o, so that a cutoff must be used to
compute the mass shift by using Eqgs. (1) and (2).

In this paper we present a slightly different model to
compute the mass shifts based on a multichannel ND!
formalism. We assume that the K g meson is produced
as a bound state of some high-mass channel which is
then coupled to the 27 channel via the weak inter-
actions. The expression we obtain for the mass shift
reduces to Eq. (3) in a certain limit. The formalism is
presented in Sec. II. In Sec. ITI we show the results of
the calculations, and we discuss the results in Sec. IV.

II. FORMALISM
We assume that the Born matrix is given by

B—( Bu g12/(S+So))
- 1o/ (s+50) By - ’

The K s meson is assumed to be produced as a bound
state in the second channel by Bj; while By can be
computed for physical s from a knowledge of the nr
phase shifts. For example, if channel 1 is the I=0,
J=0 m= channel

(4)

sindo(s) cosdo(s) 1 = sin28e(s’) ds’
Bn(S) = P[ _—
4
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where p; is a kinematical factor which we take to be
p1(s)=[(s—4)/s]"2(s—4).® We assume the weak cou-
pling between the 27 channel and the K channel can
be approximated by a single pole term gio/(s+s0),
where so is related to the range of the weak interactions.

If we make a subtraction in D at s= —s,, we obtain

\TM(S) =B¢i(5)
1 /’“’ Bii(s") —[(s+s50)/(s"+50) 1Biils)

T s'—s

i

Xpi(s"Nu(s")ds', (6)

where s; is the threshold for the ith channel. For 777,

Nij(s) =gk, (N
where
F ! 1/w Bii(s") —[(s+s50)/ (s'+s50) 1Bis(s)
o stso 7/ s'—s
Xpi(sFi(s))ds". (8)
D;; can be computed from
S+So © pi(SI)AV ij(Sl) ds'
Dij(s) = 84— —— - - -
T Jsi s'tso ' —s—1e
We write
Dio=—g12(C1+ip:Fy) (10)
and
Doy = —g19®s, (11)

where ®, is real in the region of the K° meson. We
assume that near the K s meson we may write

Dzz(s) =d(mK2—s) 3

where mg? is the mass which the K g meson would have
if it were not coupled to the 2 channel.

After making the approximation in Eq. (12), we
find that the S-matrix element for the first channel
may be written as

Su=e"*(sp—s+3il)/(sp—s—1T), (13)
where®
N1/Dyy=e® sing, (14)
I'=T"(C sind+cosd)?, (15)
C=C1/piFs, (16)
T1=2p118®:F1*(r+10)/d, 17)
sp=mg®—%al, (18)
a=(C cotd—1)/(C+-cotd). (19)

8 We use units a=c=m,=1.
° These results were quoted in previous work by P. Coulter
and G. Shaw (unpublished).,
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F1c 1. 8o as a function of W. Below 1 GeV curves 4, B, and C
are possible fits to the / =J =0 == phase shifts. Above 1 GeV we
let 6§ — 0 smoothly.

Thus in this model the mass shift is given by
C coté—1
Y — =—3va,
C-cots

Am,s = “% (20)

where v is the width written in energy units (y=T/
2mg). Truong’s result, Eq. (3), is obtained if C>>cots.

In order to compute Amg/y we must know C and 6.
C can be computed provided é is known for all energies
and provided that we have some way to determine s,.
We will see below that the dependence on s, is not very
strong.

III. CALCULATIONS
A. Coupling of Ks to /=J=0 == Partial Wave

In Fig. 1 we show some of the possible results of the
partial-wave analysis of 77 scattering for the I=J=0
partial wave.!® The phase shifts are known up to about
1 GeV. The phase shifts at higher energies are a smooth
continuation assumed to approach zero for large s. The
mass shifts corresponding to the phase shifts shown in
Fig. 1 are presented in Table I as a function of s,. We
see that the variation as a function of s, is slow. For
the “down-up” phase shifts 4, we find2 Amgs©®/
(3vs©®) in the range —0.95 to —1.5 as s, varies from
50 to 400.% For the “up-down” solution B, Amg©®/

TasLE 1. Values of Amg©®/(3vs©®) for different values of so
and the phase shifts shown in Fig. 1.

\{hase shifts A B C
So
50 —0.95 1.17 —0.27
100 —1.23 0.96 —0.46
200 —1.42 0.83 —0.57
400 —1.50 0.75 —0.64
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2 CALCULATION
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F1G. 2. 8¢ as a function of W. This is a variation of curve 4 in
Fig. (1) with different asymptotic behavior.

(3vs©@) is positive. For solution C we find that Amg©®/
(37vs% is negative, but smaller in magnitude than for
solution A. Solution C is apparently too small to
account for Am unless Amy, is positive, Solution 4 can
account for Am if Amy, is not too large negatively. Thus
this analysis tends to favor solution A4, which is also
favored by experimental fits to the data.l?

We also considered different high-energy phase shifts
from those shown in Fig. 1. For most variations from
Fig. 1 the results quoted in Table I do not change
greatly. However, for the phase shift shown in Fig. 2
we find Ams@/(3ys®)=—4.4 for so=400, so the
high-energy behavior can be important.

B. Coupling of Kg to /=2, J=0 == Partial Wave

If we want to talk about K g coupling to both 7=0
and =2 partial waves, we must clearly use a three-
channel model. However, if the decay Ks— 7w (I=2)
is due to a direct coupling between K g and the 77 (I =2)
state and if there is no direct coupling between the
I=0 and I=2 = states, then we can still use the
formalism in Sec. IL.® In this case the total mass shift
will be the sum of two terms of the form of Eq. (20)
coming from coupling Kg to the I=0 and I=2 77
channels Amg=Ams®+Ams®. We will assume that
this is the case.

Figure 3 shows two different forms we assumed for
2. Again the phase shifts are only known up to about
1 GeV.* If we use solution I, we find values of Amg®/

13 See Ref. 9 for a more complete discussion of the formalism
for more than two channels.
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F16. 3. 82 as a function of W. Curve I is an approximation to the
phase-shift analysis of Rev. 13 below 1 GeV. Above 1 GeV we
let §— 0 smoothly. We obtain Amg®/(3vs®)=—0.64, —1.03,
—1.46, and —1.95 for s,=350, 100, 200, and 400, respectively.
Curve II shows a different high-energy behavior above 700 MeV,
giving Ams®/(3vs®)=—17.5 for so=200.

(3vs®) ranging from —0.65 to —1.95 as s, varies from
50 to 400.

At low energies C tends to be a positive number
regardless of the sign of 6. Thus for coupling to the
I=7=0 partial wave, both C and coté have the same
sign and the value of « tends to be fairly stable as the
high-energy behavior of § changes. For the /=2, J=0
partial wave, C and cotd generally have opposite signs
and the value of « is more sensitive to the high-energy
behavior of the phase shift. For curve II in Fig. 3 we
find —a=17.5 for so=200 because C4coté is small.

IV. DISCUSSION

By using the model presented here, we can compute
Amgy/ys for Kg [vs=vs®@+vys®] provided the =w
phase shifts and the pole approximation for the weak
nondiagonal forces are known. The variation as a
function of the pole parameter s, is slow. We find that
the results are dependent on the (unknown) high-
energy behavior of 8. This dependence is not strong for
coupling to the I=J=0 = state. The values obtained
for Am;®@/y,©® for this case favor solution 4 for the
phase shifts shown in Fig. 1.

The values of Amg® /ys® for coupling to the I=2,
J=0 7 partial waves are more sensitive to the high-
energy phase-shift behavior. The maximum value of
[Ams® /v 5@ | found by Kamal and Kenny was 5.76;
we can easily obtain larger values for this ratio for
some high-energy phase-shift behavior.

The calculations presented here confirm previous
calculations that the coupling of Kg to the I=J=0
wr partial wave is sufficient give values of Amg®/
(3v5®) of the order of —1. It is possible, depending on
the high-energy behavior of &, that the magnitude of
Amg®/(2ys®) can be larger than previously
calculated.



