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We note that the compatibility condition 4', 2j ——4', ~2

implies that

AX=0. (14)

Equations (10) and (11) when expressed in terms of X

become

v, g
——r(K, P—K,p')+t ln(r cosh%)g, g,

p, =2rX ~K 2+Dn(r cosh%)],2.

(10')

We can therefore write v= p+In(r cosh%), where p is

determined from

p, =rP, P—K 2') and 2 2 ——2rj gX 2. (15)

Equations (14) and (15) are just the equations that
must be solved to generate vacuum Acyl fields. ' Thus
for every vacuum Weyl field there corresponds an
electromagnetic vacuum field of the type discussed in
this paper.

In closing we note that the two special cases of {14)
and (15) corresponding to K=eu+e and K=m lnr+n
have been treated previously by Bonnor. 4
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An elementary model of the gravitational 6eld in the presence of external sources is studied. This model has

positivity requirements, invariance under transformations, and nonlinear equations of motion, all of which

are analogs of similar properties in the full theory. The classical solutions of the "free" version of this model

exhibit singularities, but these are removed in the quantum theory.

I. INTRODUCTION

INCR the quantum theory of the gravitational field

is so complicated, it is fruitful to analyze models

incorporating some of the features of the full theory.
In the spirit that a study of the harmonic oscillator

sheds light on the quantum theory of the free 6eld, we

discuss some properties of one of the most elementary
models of the quantum theory of gravitation. ' In the

way of motivation, consider a long-wavelength limit

and assume that space-time is conformally Oat. Then
the metric g„,(x) is characterized by a single function

of time,
(&) p(~)g 1 orenf3

where physical requirements on the signature of space-

tinle demaild that
p{&)&0.

Under these assumptions, there is only one independent
component of the connection I'„, (x), which we represent

' Studies of the present model appear in E. %.Aslaksen, thesis,
Lehigh University, 1968 (unpublished); J.R. Klauder, in Proceed-
ings of the Fifth International Conference on Gravitation and the

Theory of Relativity (TbiTisi University, Tbilisi, U.S.S.R., to be
published); Relativity, edited by M. Carmeli, S I. I'ickier, and
L. %. Witten (Plenum, ¹wYork, 19'l0), p. i. '

by the single function of time g(/). Guided
invariant form of the action functional for gravitational
theory' (based on the scalar curvature, and the Palatini
formulation of independent variations of the metric
and connection), we adopt for our model the classical
action functional

ip(~)&«) —P(~)e(~) —i'Lp(~)3}«. (1)

Here the 6rst two terms correspond to the free gravita-
tional theory, while the last term characterizes a
possible interaction with an external source.

Although this simple model has but a single degree
of freedom, the requirement that p (3)&0 makes
quantization not immediately evident. In addition, in
the important "free" model (V=0), the classical
solutions exhibit singularities which are overcome in the
quantum solutions. We show how the quantum theory
leads to a natural modification of the classical theory —a
quantitatively minor but qualitatively major modi6ca-
tion—that points the way toward the removal of the
classical singularity. It is suggestive that similar

~ R. Adler, M. Bazin, and M. Schifkr, Introduction to General
Relativity (Mcoraw-HiO, New York, 1965).
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quantum modihcations may remove classical singular-
ities in the full theory of general relativity.

In a separate section, we discuss the transformation
group leaving the action (1) invariant. This invariance
mimics —in an elementary fashion to be sur- the
invariance under coordinate transformations of the
full theory of gravitation. Maximal invariance is
secured only when VLp] has the special form E/p.
This allowed addition is rather like the "cosmological
term, "which is the only invariant modification of the
Einstein action that is possible.

Although our model is extremely simplified, it
retains certain features of the full theory. These include
positivity requirements Lp (t) &0], similar algebraic
structure of action and thus of equations of motion,
invariance under transformations imitating coordinate
transformations, and singular classical solutions of the
free theory. Elsewhere, ' we have discussed held models
based on the present example, and we will return to
those models in a subsequent paper.

II. QUANTIZATION OP SINGLE-DEGREE-
OF-FREEDOM MODEL

At hrst glance, the natural approach to the
quantization of our model is to introduce canonical
operators P and Q satisfying the Heisenberg commuta-
tion relation

LQ,P]= i7z,

and proceed in familiar fashion. As usual, we would
assume that we could adopt either the Q or the P
representation. However, the physical requirement
P&0 leads to the consequence that Q can tiot be
diagonalized. For example, if we diagonalize P and
represent it as multiplication by k, then all wave
functions iP(k) must vanish for k (0; or, in other words,
inner products cover only positive k values:

(fl4) = lip(k) I'dk

In this representation, Q=i7i8/Bk, so that e "o/"=e' / "
Thus

e's/s "ip (k) =if/(k+s),

which may well translate the function lP(k) out of the
allowed set of states. As a consequence, e

—"@I"is cot a
unitary operator which is necessary if Q is to be
diagonalized.

Alternative Kinematical Group

An alternative kinematical operator pair may be
considered instead. To determine the appropriate
operators we proceed heuristically as follows: Multiply
both sides of the Heisenberg commutation relation by

' See Ref. 1; also, J. R. Klauder, J. Math. Phys. 11, 609 (1970).

P and dehne

B=-:(PQ+QP).

Then it follows that

l B,P]=i7iP, (2)

1 cl

=exp r —+—
2 cl ink//

(sirB/siP) (k) —s—
)rlP (s—rk)

which is clearly a unitary transformation on the
appropriate space of functions f(k), k&0. It is not
unreasonable, albeit unconventional, to regard P and 0
(and not P and Q) as the "basic" variables. ' This
viewpoint is rather like that of adopting currents
rather than fields as basic' Lsince Kq. (2) forms a
closed Lie algebra], and this similarity will be even
more apparent in a subsequent discussion of field
models.

Let us introduce the family of unitary operators

p[p it]=~i'/ssi tiny)B/s

which characterizes the one group. By our hypothesis
all other operators are functions of the basic pair P and
B, or of the unitary operators ULp, q]. Elsewhere we
have discussed' the nature of general operators con-
structed in the form

4l. M. Gel'fand and M. A. Naimark, Dokl. Akad. Nauk SSSR
SS, 570 (1947); E. W. Aslaksen and J. R. Klauder, J. Math.
Phys. 9, 206 (1968).

s The models constructed by C. W. Misner LPhys. Rev. 186,
1319 (1969); Relativity, edited by M. Carmeli, S. I. Fickler, and
1.. Witten (Plenum, New York, 1970), p. 55j solve the relation
PB,I'j=iViP by the equivalent solution, P =e&, B=iViB/8p.

6 See, e.g., R. F. Dashen and D. H. Sharp, Phys. Rev. 165,
1857 (1968); D. H. Sharp, ibid. 165, 1867 (1968).' E. W. Aslaksen and J. R. Klauder, J. Math. Phys. 10, 2267
(1969).

which is recognized as the commutator of a two-
parameter Lie algebra. This is the Lie algebra of the
so-called affine group, the group of translations and
dilations (without refiections) of the real line: x ~ p 'x
—g, p& 0. Analysis of the representations of this group'
shows that there is an irreducible representation that
respects the requirement P)0 and in which both P
and 8 generate unitary transformations. In the rep-
resentation in which P is multiplication by k, it follows
that

/r cl cl
B=,'ihl k—-+ —k l.

ilk Bk I
Thus

8 8
e"e/"=exp ——,'r k—+—k

Bk Bk
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and have shown that at least formally

t(p, q) =Tr(TPU'[P, qj).
While such a viewpoint is completely correct, it is
somewhat luxurious in the single-degree-of-freedom
model. We may always introduce

Q=p(P 'B+BP ')

as an auxiliary operator. This expression demonstrates
that Q is Hermitian, i.e., &tplQI p)*=(plelit), without
asserting that Q is self-adjoint as is necessary to generate
unitary transformations.

Existence of Quantum Dynamics

Certain symmetric combinations of I' and 8 or of
P and Q yield self-adjoint operators suitable to act as
dynamical generators. Let us consider the Hamiltonian

K=QPQ+'U(P) =—K,+'U(P)

suggested by our classical model. In the "free" model
the evolution operator is given by

Up(t) =exp( —itePQ/A)

8 8
=exp ikt—k-

Bk Bk

It may be shown that
8 8

/, p:) ep(iln k =//k)— —
Bk 8k

Xp(k, t; ~)ip(~)d~,

in which

Xp(k t' z) = (i7it) 'Jp(2(k/i)'/'/At)e'&~+"i/"'

where Jp is the usual zero-order Bessel function. With
the standard integral representation for Jp, we also find

X,(k, t; k') = (2~iAt) —'

exp( (i/At) [k+k' 2(kk') "' c—osg'] }do'.

This relation suggests that we introduce a two-dimen-
sional vector y=(yi, yp) and define y'=k. Then Xp
is recognized as the propagator for circularly symmetric
functions of y. Specifically, if

Ep(y, t; y') —= (iri7it)
—' exp[(i/At) (y —y')']

and y. y'=—yy' coso', then

Ah') = &ph' t ' V')k(V') v'dv'did'

Xp(k, t; k')$(k') dk'.

The evident unitarity of Ep for arbitrary square-
integrable functions of y, and the invariance of the
subspace of circularly symmetric functions under Ep,
establishes the unitarity of Xp.

If the potential term 'U(P) is bounded from below,
then general theorems assure us that K generates
unitary transformations. Indeed one has that

e
—Ax/p —lim [e &pep/pne —o'o/p ]n— n

In turn, this expression may be combined with our
formulas for Xp to determine a Feynman path integral
for our model in much the same fashion as Nelson has
done for conventional Schrodinger mechanics. 8

Classical Singularity Is Removed
in Quantum Theory

In the absence of a potential (V—=0), the classical
solutions exhibit a singularity which is in no way
evident in the quantum theory. The appropriate
classical Hamiltonian Hp ——pq' leads to the two equa-
tions of motion j=—2pq and q=q'. The solutions are
given by

P(t) =P'(1—q't)',

q(t) =q'(1 —q't) —',
where p'= p(0) and q'=q(0). The energy of the solution
is E=p'q'p, and it is clear that every solution with
nonzero energy possesses a singularity at t=g' '. At
the singularity, q(t) becomes infinite while p(t) vanishes,
violating the physical requirement that p) 0.

Quantum-mechanically this singularity does not
arise. Note erst that

[P,Xp] = —2iAB,

[B,Kp] = —i7iXp

for Kp ——QPQ. Thus P, B, and Kp form a three-param-
eter Lie algebra. The time-dependent operator P(t) can
therefore be given as a linear sum of the three genera-
tors. Specifically,

P(t) —=e'pep""Pe 'pep'/" =P—2tB+t'Xp

as follows from the appropriate commutation relations.
The expected value of P(t) is then given by

&P(t)&—=8 IP(t) I~t&=&P& —2t(B)+t'&Xo).

This expression achieves its minimum at t=(B&/(Kp&,
with the consequence that

&P (t)&
&&P(t))-- =&P&

—(B&'/(Xo)

Since &it I iP) = 1, it follows that

(B&'+lA'= l(41PQ I +& I'=
I Q I

P'"P"'e
I iP& I'

«~IPI~&Q IQPQI~&=&P&«.&

8 E. Ne/son, J. Math. Phys. S, 332 (1964}.
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Therefore, we have the time-independent bound

&P(t))-.&-'fh'/&Xo)

demonstrating that the quantum solutions have no
singularity.

Classical Singularity Disappears from Weak-
Correspondence-Principle Viewpoint

As a different procedure to study the classical
singularity, we adopt the approach of the weak corre-
spondence principle. ' In this approach, one chooses

II(p, q) =&p q I
x—

I p q&

as the classical Hamiltonian appropriate to the quantum
Hamiltonian X.Here the states

I P, q) are members of an
overcomplete family of states" (OFS) and are de6ned by

I p, q) = U[p, q] I 0) —e'» h"e*&-'"» «
I 0)

where I0) is a rather general unit vector. We impose
the requirements

&olo&=&ol pl o

&olQlo&=&olBlo&=o.

In virtue of these modest requirements, we find the
specific mean values

&p,ql (~P+PQ+») I p q) =~P+&q+&pq

Of course, not all mean values mimic their operator
construction. Consider the general Hamiltonian

X=QPQ+'U(P) .

In this case, the mean values become

&(p q) =&p ql x I p q) =pq'+ lh(p),
where

p'(p) =(ol e
—'~~~»e«Xe'&'~»»~l0)

=&OI p 'QPQ+&(pP) Io)
—=p-'t+ (p)

Even when 'U=O, there is a modification of the
"free" classical Hamiltonian such that

II,(p,q) =pq'+A/p.

Here A. = &0 I QPQ I 0) is a positive constant which can. be
made arbitrarily small but which vanishes only in the
limit A —+ 0.

If we adopt Ho(p, q) as our classical Hamiltonian,
what changes arise in the classical solutions' The
modified equations of motion read

qi= 2pq ~

q=q' —p 'h. ,

' J. R. Klauder, J. Math. Phys. 4, 1058 (1963);8, 2392 (1967)."J.R. Klauder, J. Math. Phys. 4, 1055 (1963).

which have as their solution

P(t) =P'(1 q*—h)'+,
q(t) =q*L(1—q*t)+(»/p*) (1—q*t) '] '.

Here e =h/E, where E is the energy of the solution, and

p =p
q*=q'/(1 —e/p')

represent "renormalized" initial values at /=0. Ev-
idently, the classical singularity is now removed and
p(t)&»=A/E. The minimum of p(t) occurs at a
renormalized time t=q* '=q' '(1—»/p'). These mod-
ified classical solutions incorporate the essence of the
quantum solutions, and this serves as strong motivation
for the adoption of the appropriately modified classical
Hamiltonian.

III. COORDINATE TRANSFORMATION
IN VARIANCE

Here we demonstrate a limited coordinate invariance
of certain of the models under study, in particular,
those for which V(p) =E/p. Let us adopt the quantum
Hamiltonian

X.=QPQ+CP

where C is a constant. The importance of this class of
Hamiltonians stems from the fact that

[B,P]=ASAP, [P,X.]=—2iM, [B,X,]= iPiX„—
indePe»ide»tt of C. Thus for any value of C we still have
a closed, three-parameter Lie algebra corresponding to
a three-parameter Lie group. Indeed, it is the same
abstract group for any value of C. Let

p~+ n ] I = g't&3'ol'It/ —'the-pltlzth s(»p)&l@

denote the unitary group operators, and let us consider
the differential expression

i7i U[p, q, t]id U[p, q, t]

formed from small variations in the variables p, q, and
t. This differential is an element of the Lie algebra;
specifically,

iVi Utd U = (pdq pq'dt)P-
(2qdt+dp/p)B (d—t/p)X, . (3)—

Note that the expectation in the state IO) integrated
over the independent variable yields the classical
action:

I= ib&0
I
U"[p(t),q(t), t](d/dh) U[p(t), q(t), t] I

0)dh

(Pq Pq' I /P)dh— —
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using our earlier requirements on ~0) and introducing

z=(0[ac, ]0)=x+c(0[x- [0).
Now the differential coeffIcients in (3) are each invariant
under left group translations. Let

~D»q &7= ~Lp. q,&o7~Lp, q, &7

where po, qo, and tz remain unvaried. Then

ikU~dU=i7sUdU)

which leads to the three diGerential forms

pdq ppd t—=pdq —pq'dt, (4a)

2qdt+dp/p=2qdh+dp/p, (4b)

d&/p =d&/p. (4c)

Solutions to these differential relations (the Maurer-
Cartan equations") exhibit the invariance transforma-
tions of the classical action. It is convenient to split
up the result into three basic invariance transforma-
tlons one each fol $0, po and qo. The 61st ls the trivial

"P.M. Cohen, Lie Groups (Cambridge U. P., London, 1961).

transformation p=p, q=q, t=t+t, . The second is
given by q= pop, q=q/po, f=pot Th. e third transforma-
tion reads

P=p(1+qot)
q= (&+qo&)'q+qo(~+qo&),

t =&(1+q,t)-'.

It is clear that the first transformation applies to any
potential V(p). The second and third transformations
require that V(p) =E/p. Note that any value of E is
consistent since that term in the action is separately
invariant according to (4c). Under the second trans-
formation the two terms pq and pq' making up the free
action are separately invariant —invariance would be
maintained even if pq' were changed by a scale factor
to npq'. Under the third transformation, however,
there is "mixing" of pq and pq' and no separate scaling
would be possible. The latter transformation has much
of the appearance of a coordinate transformation:
The "metric" p(t) transforms homogeneously as a
"tensor, " while the "connection" q(t) possesses an
inhomogeneous term as well.
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The classical self-energy problem for charged tachyons is more serious than that for charged bradyons.
As a result, the theoretical basis for generally expected experimental properties of such objects is shaky.

ISTORICALLY, the problem of a classical electro-
.. magnetic charged particle coupled to an external

field has been complicated by the self-energy problem
associated with the point singularity at the location of

the particle. Methods used to deal with this' are suitable
only for particles whose speeds do not exceed that of

light, however, and it appears that for tachyons the
problem is rather more severe than usual. This fact may
have bearing on theoretical expectations concerning the
experimental properties of charged tachyons. ' The pur-

pose of the present paper is to point out the difhculties

involved since they do not appear to be generally

recognized and they are fundamental in character.
If a tachyon is not itself the source of an electro-

magnetic field, its equation of motion in a given external

' F. Rohrlich, Classical Charged I'articles (Addison-Wesley,
Reading, Mass. , 1965); Phys. Rev. Letters 12, 375 (1964).

~ O. M. P. Bilaniuk, V. K. Deshpande, and K. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962); G. I'einberg, Phys. Rev. 159, 1089
(1967).

field is most naturally taken to be that following from
the action principle based on the Lagrangian

I.=m&/x'(n)']'12+qx'(n) e(x),

where x'(a) I'—=dxl'(n)/dn, with n an arbitrary parameter,
the tachyon mass no& is defined to be real, and we have
used the space-favoring metric. %hen the tachyon is the
source of a field, the Lorentz force equation following

from (1) is expected to contain an additional term for
the radiation reaction, So, to determine the full equa-
tions of motion for the charge, it is necessary to solve
the Maxwell-Lorentz field equation in the presence of a
prescribed tachyon source and to compute the energy
and momentum of radiation.

For a source with world line prescribed by the
equations

the electromagnetic field equation in the Lorentz gauge


