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certainly present in the process 0 (8)+-,'+(8) -+0 (8)
+ s+(8), should decouple from the process 0+ (8)
+—',+(8) ~ 0 (8)+—,'+(8). At first sight, this appears to
conQict with the factorization, since, according to our
scheme, there is a nonvanishing 10 contribution for the
process 0+(8)+-,'+(8) —+ 0+(8)+-',+(8). An obvious solu-
tion, consistent with the factorization, will be to assume
another 10 trajectory coupled strongly to 0+(8)-sr+(8)

but not to 0 (8) ——,'+(8). However, discussions about

implied physical consequences are beyond the scope of
this paper.
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Pion-nucleon charge-exchange polarization is calculated in various Veneziano representations for TIN
scattering. Our results are in qualitative agreement with the expermiental data for some sets of parameters.
It is not possible, however, to resolve the nonuniqueness of the Veneziano representation from this informa-
tion alone.

I. INTRODUCTION

t'T is well known that in a process like sr p ~ sr'n, in
- the t channel only one Regge pole can be exchanged—in this case the pole corresponding to the p trajectory—and consequently the phases of the spin-nonQip and

the spin-Qip amplitudes should be equal. This results in
a vanishing polarization at high energies where the
Regge-pole model becomes applicable. However, there
is experimental evidence of nonvanishing polarizations
at pion laboratory energies of 5.9 and 11.2 GeV/c,
although single-Regge-pole fits are good for differential
cross sections at these energies.

Several models have been proposed to explain both
the polarization and the differential cross sections for
the charge-exchange process. All of them involve adding
a background term to the p-trajectory contribution, and
justify such an addition. The addition' of a secondary
trajectory p' with the same quantum number as that of
the p trajectory, but with a different intercept, can
introduce the required phase difference between the
spin-Rip and spin-nonQip amplitudes without changing
the cross section significantly. An alternative model'
requires a Regge cut—which presumably is connected
with the Gribov-Pomeranchuk phenomenon —to pro-
vide the necessary background. A fairly successful
model' was to treat the polarization as arising from the

' R. K. Logan, J. Beaupre, and L. Sertorio, Phys. Rev. Letters
18, 239 (1967).

s C. B.Chiu and J.Finkelstein, Nuovo Cimento 48A, 820 (1967).
3B. R. Desai, D. T. Gregorich, and R. Ramachandran, Phys.

Rev. Letters 18, 565 (1967).

interference between the Regge-trajectory contribution
and the direct-channel resonances occurring on indefi-
nitely rising baryon trajectories. It may be recalled that
in this model the significant contributions were derived
from the resonances in the neighborhood of the energy
value, and that the Breit-Wigner tails of the resonances
were not important.

The Veneziano model for the scattering amplitude
explicitly contains both the resonance poles correspond-
ing to a rising trajectory and the Regge asymptotic
behavior. Naturally we should expect that it auto-
matically contains the necessary interference terms to
give the appropriate polarization. Indeed, polarization
could form one of the stringent tests for the Veneziano
model. However, it is not possible to write a unique
Veneziano representation.

We make a comparative study of various Veneziano
representations for mÃ charge-exchange scattering with
respect to their prediction for polarization.

II. IGI'S MODEL

We erst consider Igi's model4 for the m-E invariant
amplitudes A and B. These are obtained by requiring
(a) crossing symmetry, (b) Regge asymptotic behavior at
high energies, and (c) constraints implied by isospin. We
use p and f trajectories in the t channel and X, Ae, and
X~ trajectories in the s and I channel; we identify

amplitudes with t-channel isospin I,= 0 (1) by means of

4 K. Igi, Phys. Letters 28B, 330 (1968).
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the subscript f (p):

Af(stttu) = (Pftia, /7r)[C(1 —nf(t), 2
—n))t (s))+C(1 n—f(t), 2 n—N (u))+C( ', -n—pta(s), -', —n))ta(u))]

+(p;,/ )[C(1— (t), l —.,(s))+C(1— (t), l —.,(u)) —C(l —~ (s), l —.,(u))]
+ (pf ti„/ t)r[C(1 n—f(t), $ —n))t, ( s)) +C(1—nf(t), 2 n&—,(u)) C—(~ n&—,(s), —', —n)v, (u))], (1)

Bf(s,t,u) = (Pf/w) {B(1 nf—(t)& ~
—niva(s)) —B(1 nf—(t)t 2

—n))ta(u))

+P[B(1—nf(t), k —n~ p(s)) —B(1—nf(t), k —n~t(u))]
+q[B(1—nf(t), —',—n)v, (s))—B(1 nf—(t), ', —n—pf( u))]
+p[B(~—n)v. (s) ~

—n~;(u)) —B(2 —nt, t(s) 2
—n~.(u))]

+q[B(2—n~. (s), 2
—n~,u)) —B(2—n~, (s), 2

—n~;(u))]&, (2)
with

p+q= 1

A p(s, t,u) = (Pp/tr){C(1 —np(t), -', —npt. (s))—C(1—np(t), -', —n)v. (u))
+P LC( —.(t), —.— ( ))—C( —.(t), —.— ( ))]
+q'[C(1 —n p(t), -'; —n)v, (s))—C(1—n p(t), $ —n))t, (u))]
+p'LC(-; — .(), —;—,( ))—C(-; —„,(), —;— .( ))]

+q'[C(-; — .(.), —;— „( ))-C(-; — „(.), —;— .( ))]), (4)
with

p'+q'= 1, (5)

Bp(s, t,u) = (pp, pt./tr) [B(1—n p(t), —',—npf. (s))+B(1—n p(t), -', —nfl. (u))+B(-', —n)v. (s), -', —n))t.(u))]
+(p.../ )[B(1—,(t), l- .,(s))+B(1-,(t), —:—.,(u)) —B(-:—.,(s), -'- .,(u))]

+(pp, &,/~)[B(1 n, (t), —,
'——nti„(s))+B(1—n, (t), —',—nN, (u)) —B(-', —n)v, (s), ', n)v-„(—u))], (6)

B(~,r) = 1'(~)1'(7)/1"(~+7),
C(~,X) = 1'(~)1'(X)/1'(~+ X

—1)

The invariant amplitudes at this stage satisfy crossing
symmetry explicitly. It may be noticed that each of
these amplitude has the right (t,s) and (t,u) terms to
give the appropriate Regge behavior together with the
right signature factors. Thus as s —+~

A)f2'(s, t,u) = —(Af+2A, ),
AB)2'(s, t,u) = Af —Ap t

(7a)

(7b)

~sap, f(t)(1~$ iKap, f(t))

~sap, f (t) (1~~ iaap, f (t))—

We have implicitly assumed that as s —+~, tan7rn(s) ~i,
which is easily incorporated in evaluating our gamma
functions through Stirling's approximation. Sy this
trick, which has by now become a standard practice in
the Veneziano model, we have introduced a phase to
the apparently real scattering amplitude. The non-
leading terms in the above amplitude will carry the
requisite phase difference between the spin-Aip and the
non-spin-Rip amplitudes; together with this we have
real background terms coming from the (s,u) terms. All
this together would produce a nonzero polarization.

We may improve now the constraints due to isospin.
From the t-channel amplitudes Af and A„we may
obtain amplitudes with s- or I-channel isospin I, „=-~

or —,
' through crossing. They are, for example,

f(t) =,(t),
n,v.(s) = nt, ,(s) = n)v, (s),

pf, t,.———2p'p„p, ,~,————',ppf,

Pf &a Ppt Pp Na Pf

Pf ))t,= (1 P')Pp, Pp, )v, =—(1—P)Pf.

(8)

(9)

Equation (8) is the familiar exchange degeneracy and
the Chew-Frautschi plot for mesons seems to support
it. The relations in Eq. (10) are the same conditions
used by Igi. The degeneracy implied by Eq. (9) is a
consequence of the isospin crossing relation. It is,
however, true that the baryon trajectories do not appear
degenerate and this condition is only approximately

YVe must now ensure that, say, in the I,= —, amplitude
there will be no pole term corresponding to the I= ~3, Aq

trajectory and that there will be poles corresponding to
E and E~ only.

The absence of pole terms corresponding to the hq
trajectory in (7a) requires

nf(t) = n, (t), Pf, tt, = —2P'P„n))t. (s) = ng, (s) .

Similar conditions can be obtained from the other
invariant amplitude 8 and the I,= —,

' amplitudes. %e
may collect all the conditions implied by isospin con-
straints as follows:



7r X CHARGE —EXCHANGE POLARIZATION I N ~ . .

n„(0)=nf(0) = 0 5. . (12)

This leaves us with four parameters, p„pf, p, and p',
in terms of which the amplitudes will be completely
specified.

Using Singh's' notation, we may define

ei+t/4M'
A'(s, t) =A(s, t)+ - —B(s,t),

1—t/4Miv'
(13)

where the pion laboratory energy co is given by

e~= (s—Miv' —M„')/2Miv.

The charge-exchange (CEX) amplitude can be written
in terms of the corresponding t-channel isospin
amplitudes:

Aoax = —v2A p

Bop.x= v2B&. —

The imaginary parts of Ap and Bp in the forward
direction (t=0) are related to the difference between
s. p and s.+p elastic scattering. Following Igi, we use
them as inputs:

satisfied. However, even when the trajectories are not
degenerate, the fact that their slopes are equal together
with Eqs. (8) and (10) would imply the absence of the
unwanted poles from the leading trajectory. It is the
daughters of the trajectories that will cause trouble and
will have their poles appearing simultaneously in the
I= ~ as well as the I=—', amplitudes. With a view to
examining how far the unadorned Veneziano model
explains the polarization phenomenon, we shall consider
two alternatives: Firstly, we shall keep Eqs. (8)—(10)
intact and assume an average trajectory for the baryons.
We then hope, at least, to derive some qualitative
features implied by Igi's version of the Veneziano model.
Next we shall consider a more realistic set of baryon
trajectories (however, with the same slope), ignoring
the presence of unwanted poles in the baryon channels.
Again emphasis will be on the qualitative features. In
both the alternatives we will assume, after Igi, a uni-
versal slope for the trajectories. Thus

slope=0. 86 GeV ',

ImAf'(s, t=0) =-14.6s't' mb

1mB'(s, t=0) =54.1s 'i' mb GeV.

(16)

(17)

Using Eqs. (16) and (17) together with Eq. (15), we get
the parameters as

Ps=44.5 mb,

p =0.266,
p'= 0.22.

III. FENSTER-WALI MODEL

In all the three cases of Igi's model that we considered
in Sec. II, we are plagued with unwanted poles in the
baryon spectrum. Since the trajectories appear as linear
functions of the variable s rather than of W (=Qs),
parity doublets are unavoidable. However, by using
more subsidiary Veneziano terms, it is possible (by a
judicious choice of coef5cients) to eliminate the first few

poles of wrong parity in each trajectory. Fenster and
AVali' have used this to write a Ueneziano amplitude for
~E scattering. The amplitude represents the low-energy
region well up to 1.6 GeV. All parity doublets in this
region are eliminated and the resonance parameters for
Ds(1236) and iV~(1518) are reproduced. The various
parameters that occur in the scattering amplitude are
determined. by using in addition the normalization at
j,=0 of the amplitudes and the shape for very small
negative t for the charge-exchange-scattering data. We
treat this amplitude as Case 3.

Case Za. We need all the four parameters. The re-

maining parameters can be determined by using infor-
mation on backward scattering. The set of parameters
as determined by Igi are

P, =-20.16 mb GeV, P& ——25.7 mb, P= —0.526,
p'= 0.852, n&.(0) = —0.256, n&,(0)= 0.18,

n~„(0)= —0.55.

Case Zb. An alternative procedure to determine the
parameters p, p', and pr is to use the information on the
residue of the f-Regge pole derived from finite energy
sum rules (FESR). We use the following results for this

purpose:

IrnA p'(s, t=0) = 2.14s't' mb

1mB'(s, t=0)=43.7s 'I'mb GeV.

These yield
P,=20.16 mb GeV

IV. RESULT AND DISCUSSION

With the explicit form for the amplitudes A' and 8,
so determined, it is straightforward to obtain the

(14) polarization, using

2 s do
(15) p(s, t) = -- — (—4k't —t') "' Im(A B) — (19)

2
(2 ,' p) pf = y, = 71—.8—0mb.

4k s sx dt
Case 1. When the baryon trajectories are degenerate,

no further parameters need be determined. For baryons» Fig. 1, the calculated values of the polarization at
we use n, ii(0) = —0.256. pion laboratory energies of 5.9, 1:1..2, and 18.0 GeV are

' V. Singh, Phys. Rev. 129, 1889 (1963). s S. Feaster aiid K. C. Wali, Phys. Rev. D 1, 1409 (1970).
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Fxo. 1. Polarization results for zN charge-exchange scattering
using a Veneziano model with case-1 parametrization. Baryon
trajectories are treated as degenerate.

FrG. 3. Smooth curves correspond to the results with case-2b
parametrization, which makes use of FESR results together with
forward scattering data. Dashed curves show the polarization for
case 3, the Fenster-Kali model.
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plotted as a, function of momentum transfer. Since the
aim was merely to find the qualitative features, no
attempt was made to obtain deta, iled parameter fits. In
cases 1 and 2a, which use both forward and backward
xS scattering data, to hx the parameters, the calculated
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FIG. 2. Polarization results for ~N charge-exchange scattering
using a Veneziano model with case-2a parametrization. Baryon
trajectories are nondegenerate and the parameters make use of
forward and backward xN scattering data.

FIG. 4. Fits to ~N charge-exchange differential cross section
using a Veneziano model with case-1 and -2a parametrization for
energies 5.9 and 18 GeV/c. Dashed curves correspond to case 1.
Smooth~curves show the differential cross section for case 2a.
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Fxo. 5. Fits to m-N charge-exchange difFerential cross section
using a Veneziano model. Smooth curves correspond to case-2b
parametrization, which makes use of FESR results together with
forward scattering data. Dashed curves show the fits to the dif-
ferential cross section for case 3.

values of the polarization have the same sign and
approximately the same order of magnitude up to
t = —0.3 (GeV/c) ' as the experimental numbers. Beyond
this momentum transfer, the calculated values show a
tendency to keep increasing, whereas the experimental
indications, though scanty, have no such trend. (See
Fig. 2.) However, it is seen that the polarization depends
sensitively upon the details of parametrization. In case
2b, where the parameters for the amplitude are fixed by

using FESR's rather than the backward scattering data,
the polarization, though of the same order of magnitude,
bears opposite sign. (See Fig. 3.) Further, in case 3,
using the Fenster-Wali amplitude, we And a polarization
that is even smaller in magnitude and again of oppo-
site sign.

We have also plotted the s. p —+ s-'n differential cross
sections for cases 1, 2, 2b, and 3 in Figs. 4 and 5, for
energies 5.9 and 18.0 GeV. The predicted curves for the
various cases follow the general trend of the experi-
mental data, although they do not reproduce it pre-
cisely. This is only to be expected in view of the very
limited number of parameters that the model is required
to depend on. We may mention that a better fit is
possible if more satellite terms are included.

In conclusion, we have considered a model with very
few parameters to explain the qualitative features of the
charge-exchange scattering data. The various versions
of the Veneziano model for xÃ scattering yield a polari-
zation that agrees in order of magnitude with the ex-
perimental value for small momentum transfers, but
depends for its sign on the details of parametrization.
It is significant that the correct order of magnitude for
the polarization has been obtained without any new
parameters as required in interference models. However,
it is doubtful whether this information could be used to
settle the problem of nonuniqueness~ of the Veneziano
representation.
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