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Note that since 3oo(rrtsr')~sr/4 in our model, the value
of bq which results is twice as large as that calculated

by Arnowitt et u/. "Hence in this model the calculated
El,'—E~' mass difference bl. —bq can no longer be
said to be "in excellent agreement with experiment. ""
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We study the E,4 decay form factors using a method introduced by Fubini and Furlan. The amplitudes
which we extrapolate from the soft-pion limits to the physical point diBer slightly from the previously used
ones. Our choice is motivated by the collinear parametrization. These amplitudes are simply related to the
E,4 form factors and to the E-m scattering amplitudes, which appear on equal footing. The calculated
decay rate 1' = (2.3&0.3)X10' sec ' lies within the experimental error.

I. INTRODUCTION

' &HE form factors for the decay E,4 were first calcu-
lated by Callan and Treiman' from current

algebra. These authors contract over one of the pions of
the 6nal state at a time and obtain values for the form
factors in the two soft-pion limits. Their results for the
form factor F3, however, differ considerably, depending
on",which of the momenta of the two pions is put equal
to zero. Weinberg' later explained the rapid variation
of F3 by taking a nearby E pole explicitly into account.

In all these calculations the form factors F1 and F2, on
which the decay rate Fz,4+ only depends, were taken", to
be constant. The results of Refs. 1 and 2 give for the
E',4+ decay rate

Frc„+——(1.6&0.2) X 10' sec ',
whereas experimentally, '

I"rc„+=(2.9&0.6)&&10' sec '.
It seems to us, however, that the discrepancy between
theory and experiment could be accounted for by the
variation of the form factors between the soft-pion limit
and the physical point.

In this paper we apply an extrapolation method of
I'ubini and Furlan4 which makes use of the collinear

*Supported by the National Council for Scientific Research in
Lebanon.' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966).' S. Weinberg, Phys. Rev. Letters 1'7, 336 (1966).' R. P. Ely et al. , LRL Report No. UCRL 18626, 1968
(unpublished) .' S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968).

parametrization in the rest frame of the particles to
study the appropriate matrix elements. The method of
Ref. 4 has several advantages:

(a) The ambiguity that different choices of the
amplitudes to be extrapolated may lead to different
results on the mass shell is resolved, the physical ampli-
tudes at threshold and the ones related to them by
crossing being directly related to the soft-pion limits
through dispersion relations.

(b) The Low representation of the amplitudes deter-
mines their asymptotic behavior, thus giving informa-
tion about the possibility of writing dispersion relations
and the number of subtractions needed.

(c) Anomalous thresholds are absent in the physical
sheet, where the dispersion relations are written.

(d) Since we are working in the rest frame, we can
make use of strong parity and angular momentum
selection rules to calculate the corrections to the soft-
pion limits.

The form factors F~, F~, and F3, and the E-z
scattering amplitudes at the threshold will appear
naturally on the same footing in sum rules.

We obtain for the E,4+ decay rate

Ftr„+= (2.3&0.3)X 10' sec '.

II. COLLINEAR PARAMETRIZATION AND
X,4 FORM FACTORS

The E,4+ form factors are dered in the following
way:
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dye' ' (m' —qb')

X&- (q.) I
TD.(y)A"-(0) IE (p»

I:F~'(q++q-) b+Fp'(q+ —q-) b

+Fp'(P —q+ —q-)b), (1)

whereas for q =xg+,

Fg (x=O)+Fo (x=O)

cV' —(cV—m)'
LF~ (0)+Fp (0))

3E'

3E' (IV —m) ' (—2'f—+)
3II' 5 f

(7a)

where m and M denote the masses of the x and E
mesons, respectively, ~ (q,) Lp. (qb)) refers to either the
pr+(q+) I vr (q )) or the pr (q ) I or+(q+)), D= B„A„is the
divergence of the axial-vector current with the quantum
numbers of the pr meson, (0!D,blpr' ')= f m', A&,

x
denotes the axial-vector current with the quantum
numbers of the E meson, and the F s are functions of
the invariants.

The amplitude defined in Eq. (1) contains a E pole
close to the physical region and cannot be chosen as the
smooth function used for extrapolation. We shall choose
instead to study the following amplitude:

x(pr I
TDb(y)Abx (0) I

E+)(m' —qbo), (2)

Fg+(x= 0) —Fo+(x= 0) =0,

Fp+(x=0) =0.
(6a)

(6b)

which is free of singularities, with

q~=(p q+ q )——-
We consider the special configuration where all particles
are at rest, p= q+= g =0, and use the collinear
parametrization

qb xq.= x(m——/M) p.

Kith this parametrization, 3II(x) is a function of the
parameter x only. 3l(x= 1) is given in terms of the form
factors F; evaluated at the configuration where all
particles are at rest. cV(x= —1) is simply related to
the E-pr scattering amplitudes at threshold. M(x=O)
corresponds to the soft-pion limits.

To simplify the notation, we define

F;(x)=
I
(M' —qP)/3f')F, (x) .

In this notation we have from Eqs. (1) and (2)

3fp(x) = (i/&2M)l Fr(x)(q++q )o+Fo(x)(q+—
q )o

+Fp(x)(p —
q+

—q-)o) (5)

We recall that, as we are working in the rest frame, only
the time components of the currents contribute. Now
standard soft-pion techniques give the following:

For the x+ meson soft, i.e., q+.=xg,

Fp—(x=O) =
3II'—(M —m)' IV (f —f )

352
(7b)

F,b(x= —1)= (&if'/M) Tth(E++~ -+ E++~ ), (10)

where fx is defined similarly to f and where
Tbb(K++7r'~E++pr ) denotes the scattering matrix
element for the corresponding reaction at threshold.

III. ASYMPTOTIC BEHAVIOR OF AMPLITUDES

In order to write down dispersion relations for the
form factors, we start by examining the asymptotic
behavior of M'(x).

The Low representation reads

ebb(x) =—(2~)' (m' —qb') (cV—qP)

m2

&-.ID l~)&.IA"-IE+&
XE ~(p- —q+ —q-)

(qe+qb —pn) o

(1r IAb lm)(m!Db!E+)
~(p —p- —qb), (»)

(p-qb- p-) o

where f+, f are the usual Ego form factors

&~'(q) I vb I E'(p)) = —(1/v2) I:f+(&+q)b+f-(p —q) b)

evaluated at the physical point with p=q=0.
F,(x= 1)= {L3II'—(M' —2m)')/3E')F;(x= 1) are form

factors evaluated at the physical point where all
particles are at rest. We have additional information on
3E(x) at x= —1, since we can see from Eqs. (2) and (5)
that this point corresponds to the crossed amplitude:

~~, (x= —1)=- (i/~v2)LF, (x= —1)(q++q ),
+Fob(x= —1)(q~—

q )p

+Fob(x= —1)(p—
qg

—
q )p)

=I (3E'—q)')/M')(pr IAp l~ 'E+) (8)

because our particles are at rest (qP=3I') in the equa-
tion above and E-pole dominance of Ao~ becomes
exact at this point.

The E pole, on the other hand, contributes only to
E3, so that

Fyb(x= —1)=Fob(x= —1)= 0
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so that, for large x,

Mbb(x) —+ nx'+Px'+ (12)

The constants n; and p; cannot be determined; they
correspond to the usual polynomial ambiguity in disper-
sion relations, and we shall neglect them.

d'y e"b "(~
I [~o~ (0),Db(y 0)) I

I~+&,
3f'

c = d'y e'ob'(pr
I
[Ao (0),Db(y, 0)) I

K+&.
SI'

We assume these quantities exist.
To see what this result implies for the form factors,

we use Eqs. (5) and (12); e.g., for M (x),

where n and P are linear combinations of the following
constants: IV. DISPERSION RELATIONS AND SUM RULES

Using the results of Sec. II, we can write the following
dispersion relations'":

—',[Fg (x=1)+Fb (x=1)+Fg (x= —1)+Fg (x= —1)

+F2—(x= —1)]=Fg (x=o)+Fp—(x=o)
dx

+ — —— Abs[Fg (x)+Fp (x)), (16a)
x(x' —1)

p[Fp (*=1)+Fp (*=—1))

q pMo (x) =(i/M&2)(Fg +Fo Fp )(—q+
—f )

+Fo (p q )+—(F~ Fp F—p )((g —)')

1 (/$
=J'o—(x =0)+-

x(x' —1)
AbsF p

—
(x) . (16b)

nq o+Pq —o+ ' ' — (14)
Q p~oQ

(q~ q ), (p q ), and (q )' can be considered as inde-
pendent invariants; this means that every factor
multiplying them in Eq. (14) ha, s to have an asymptotic
behavior similar to the one appearing on the right-hand
side of this equation. In particular,

Fi
—

(x)+Fp
—

(x) — n ix'&&Pgx'+

( )
Fp—

(x) —npx'+Ppx2+

(15b)
x[Fg

—
(x) —Fo

—
(x) —Fo

—
(x)] —nox'+Pox'+ .

(15c)

where n, and p, do not depend on x.
The polynomials appearing on the right-hand side of

Eqs. (15) do not contribute to the absorptive parts of
the dispersion relations. Similar results hold for F; (x).

dx
=Fp+(x=o)+-

x(x' —1)
AbsF o+(x) . (17b)

The next step is to examine the structure of the absorp-
tive part of M(x). The reduction technique can be
applied to decompose AbskI as follows:

The dispersion relation for x(F~ —Fp —Fo ) is less
reliable due to the enhancement of the intermediate
region in the integral over the continuum; we shall
therefore not use it.

From the quantity M+, we obtain in a similar fashion

—',[F&+(x=1) Fp+(x =—1)+F&+(x=—1) Fo+(x= ——1)]
ds

=+Fg+(x =0) —Fo+(x=0)——
x(x' —1)

&&Abs[Fg+(x) —Fp+(x)), (17a,)

—,'[Fp+(x =1)+Fo+(x=—1))

AbsM"(x) =l(2~)'[Z(ol jbl~, lt+&&~,~'I j~-lo»(p-+P —q)b+& &ol jib~ &~&,~'I ~j-I& +»( P—qb)

+Z&~ I jbli, lt"&.«I j~-Io&t'(P~+P —
q

—qb)+E&~ I jbl&&.&~pl j~-Ilt'&.~(p~ —q.—qb)

—2&0 l j~-I ~', &+&&&',~
I jbl 0&~(p'+q +qb) —&(0li ~ i'&«', ~

Ij b &+&.-~(pb+q. +qb P)—
—p&OI j~-I~',z+&,&m'I jblo)s(p —q,) —Q(~

I
&-I&'&,(&'I jbIK+&,B(p„+qb p)], (—18)

where the subscript c denotes the connected part of a

matrix element and where

jb= (1/f m')( +m')Db,
jlr-= (1/M')(0+M')Ao~ ~

' The integrals may start at @=1, where the integran6s are
in6nite. The integral converges nevertheless since Absg~
(g~ —1)"' see, e.g. , Ref. 4.

For details of the derivation of Eq. (18) we refer the
reader to the Appendix.

Figure 1 is a diagrammatic representation of the
different terms in the decomposition of Eq. (18). Since
we are working in the rest frame, the states n, n', k, k'

can only be 0+ states; the states m, m', l, l' can only be
0 states. The contribution of m, m'= x' and I, /'= E+
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vanish identically owing to the presence of the factor
(m' qs—')(SI2 qP—) in our choice of a smooth function.

In the matrix elements (7r ( jr'-~n')„(n, ~'( j~-(0),
(&I j& Il~+& and (0I j& Ik Z+) jlr- is dominated by
the E pole which contributes only to Fs,. we expect
therefore the contribution of the continuum to 8~&J"2

to be small compared to that to Ii3. If we neglect the
former as a first approximation, we obtain from (6a),
(7a), (9), (16a), and (17a)

—,'(Fi(x=1)—Fp(x =1))=0,
(19)

)b

—,'(F,(x=1)+F,(x=1))=
3f' (hf m) '

(
—23ff~— —

.M'
7r

M' —(M —m)'
I'i(x=1) =F2(x=1)=2x

SI'—(kf —2m)'

Our result differs from that of Callan and Treiman' by
the factor 2t M —(3/I —m) j/$M —(M —2m) ]=1.2
because of our different choice of a smooth function.

From Eq. (20) we can now calculate the E,4+ decay
rate:

I'rc„+= (2.3&0.3)X 10' sec ',

whereas experimentally,

(21) FIG. 1. Diagrammatic representation of the contributions to
the absorptive part of 3f (x) in Eq. (18). The crossed diagrams
may be obtained by interchanging j~- and j|,.

I'lr„+=—(2.9&0.6)X 10' sec '. (22)

1 dx 3f' —(M —m —mx) '
AbsF(x), (23)

x(x'-1) iV2

where F(x) =Fi(x)&F2(x), or, approximately (taking
xV=3.5 m),

1 dS
F(1)=1.2F(0)+-

x(x—1)

(6—x)
AbsF (x) . (24)

5

Had we written once-subtracted dispersion relations

N. Cabibbo and A. Maksymowicz, Phys. Rev. 13'7, 8438
{1965);168, 1926(E) (1968).

'A current-algebra estimate of uo by one of us (see Ref. 8)
gives ao ——0.25 or 0.6; the latter value would slightly decrease the
value of F~„+.This of course also applies to all other calculations.

8 Q, F, Nasrallah, Nucl. Phys. B11,240 (1969).

We have used the result of Cabibbo and Maksymowicz'
with the x x s-wave, I=o, scattering length ao=o. '

It might now be asked how our approximation differs
from that of Callan and Treiman. ' For comparison we
rewrite Eqs. 16 and 17 as

1 M' —(cV—2m) ' cV' —(M —m) '
F(1)= F(0)

2 3f' ~2

for the quantities F(x) themselves, we would have
obtained

dS
F(1)-F(0)+-

x(x—1)
AbsF(x), (25)

which yields the Callan-Treiman' result upon neglect
of the continuum.

Both dispersion relations, Eqs. (24) and (25), are in
our approach, of course, equivalent; however, the
neglect of the continuum constitutes two diGerent
approximations. In our case the integrand is damped
for 1(x(11,i.e., in the low and particularly strongly
in the intermediate vr-m. regions. Indeed the factor (6—x)
changes sign at x=6, thus leading to cancellations. If,
as we expect, the variation of F(x) is mainly due to the
6nal-state x-x interaction, it becomes clear why our
approximation is the better one.

What can we say about E3? Ke have two sum rules
at our disposal, (16b) and (1/b). In this case the con-
tribution of the dispersion integrals may be sizeable and
one could as mentioned above estimate it by considering
the intermediate states n, n'=-a, k, k'=|T and using
E-pole dominance of jz-. If we nevertheless neglect the
contributions of the dispersion integrals, wc have from
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(16b), (7b) and (10)

Ps(1)+ T,~( K+ 7r+~ K+m+)

3f' (M—m)—'( 3f(f~+f )
(26)

In order to check to what extent the neglect of the
continuum is justified, one would need more accurate
information on the E-z scattering lengths and on the
parameter (=f /f+.
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APPENDIX

In this appendix we present a simple derivation of Eq. (18) which shows the separation of Abs3f into the parts
appearing in the fgure. This will help to illustrate the notation.

Abs~ob(*) =2 dy ~'" "(~'(q,) ILjb(y) jx-(0)3IK+(P)&=4 dy ~*" "(~
I jbb)jx-(0) —jr'-(0) jbb) IK+& (A1)

This can be rewritten using the creation operators of the "in" states:

Abs3Eob(x) =-,'dy ~'" &&OI ~.(q.)jb(y) jr'-(0)«+(P) I 0) ct—.

dy e'"'"&ol(jb(y)~.(q.)+L~~(q.)~jb(y)3)(«'+(p) jx (0)+I jx (0)~«"+(p)3)Io) —c t.

dy 8'~b "{p&O'Ij b(y)«'+(p) IN&&~l~. (q.)jr~-(0) IO&+Z&OI jb(y) l~)

x&~I &.(q.)l jx-(0) «'+(P)llo&+Z«IL~. (q.),jb(y)j«'+(P) I~&«l jx-(0) I o&

+Z«IL~ (q ),jb(y)3lk&(kll jx-(0),«+(P)glo& —c t.), (A2)

where c.t. means crossed terms and where we used the fact that La, (q,),«++(p) j=o. Integrating over dy, we
obtain 6nally

~ob(&) =l(2~)4hZ«l jbll K+&&+ ~'I jx-IO)~(p-+p qb)+Z—&OI jbl ~&&~ ~'I jx IK+&.&(-p- qb)—

+Z&7r'I jbl V&+& «I jx-lo&~(Pb+P q. qb)+2&&—'I j—blk& &kl jx-IK+&.~(Px —q- —qb) —c t.3, (A3)

where, for instance, &kl jx-I K+&,= (kl Ljlc-(0)«++(P)pl 0) denotes the connected part of (klj Ir IK+&.
-'


