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Using the algebra of currents and current divergences derived from the chiral SU (3) symmetry-breaking
model of Gell-Mann, Oakes, and Renner and a method of pole and cut dominance, we derive two-parameter
effective-range formulas for scalar (I=J=3)Kr and (I =J=0)z= form factors. The fit to the I =% s-wave
K phase-shift data of Antich et al. favors their “lower” solution with #2,=1150 MeV and supports the
existence of a broad « resonance. It is shown that the introduction of the similarly broad e resonance which
emerges from these considerations into the weak-interaction scheme K — ¢ — 7 makes agreement with
the experimental value of the K1°-Ks® mass difference difficult, if the K;° mass shift is not small.

I. INTRODUCTION

N this paper the detailed derivation of two-parameter
effective-range formulas for the s-wave (I=J=0)rr
and (I=J=%)Kr form factors is presented. The version
of the unitarized hard-meson approach!? employed
here combines the algebra of currents® with a method
of pole and cut dominance.*® Because the partial-wave
amplitude which results from this generalized form-
factor approximation? lacks a left-hand cut, our treat-
ment may be characterized as being “just beyond the
tree approximation.” However, as we show below, this
does not appear to limit the usefulness of two-parameter
fits to the experimentally determined phase shifts in
the two cases of interest.

While it was enough to use the chiral SU(2) current
algebra in our earlier abbreviated treatment of the
scalar wr form factor,? our present discussion of both
(rm and Kr) s-wave systems is unified in our relying
on the model of SU(3) X.SU(3) symmetry breaking due
to Gell-Mann, Oakes, and Renner.® This facilitates a
fuller exploration here of the role of current-algebra
constraints in our model with only right-hand-cut
dynamics.

In Sec. II, we consider the s-wave K= system in detail;
Sec. IIT is given over to a discussion of several points
relating to the s-wave wr system which were omitted
in our earlier paper.?

II. SS'WAVE K= SYSTEM AND KAPPA

Our approach to wunitarization in the s-wave
(I=J=%)Kn channel is just a modification of the usual
method of pole dominance*® to include the relevant
Kr cut inplace of a narrow resonance pole. Thus we
introduce the matrix element
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with the customary covariant normalization factors
omitted. The current divergence 9\Vy®="" is given
in terms of the scalar densities #; which transform as
components of (3,3%)®(3*3) in the model of Gell-Mann,
Oakes, and Renner® by

VNG = _Li(\/3) gy (6—iT) (2)
where?
c=2V2(m.2—mx?) /(m*+2mg?) . 3)
The absorptive part of Wz is given formally by
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and, making use of the alternative definitions of the
scalar form factor,
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and the assumption of K cut dominance, simplifies to
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7 This result follows from applying low-energy considerations
to the general scalar vertex of Ref. 6, —(P;(p)|u;|Pr(p"))
=a(®)djdix+B O)dir, 1, k=1, ..., 8, j=0, ..., 8, and neglecting
the dependence of o and g8 on ¢, so that
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This symmetry-breaking model seems to imply the equality of the

decay constants F,=Fx and we shall use them interchangeabl
throughout. ey
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where
Q) =3{LE—ms2—mx®)?—Ammx*]/1}1/2,

and F,=94 MeV. As we noted earlier,® from rather
general considerations of unitarity we expect the I=0
(I=3%)Kr partial-wave amplitude to have the form
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where N(#) has only the left-hand cut and the «-field
propagator A,(#) is given by
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Our approach, which is that of a generalized form-

factor approximation, is to assume the factorization
valid off-shell,
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which still satisfies two-particle unitarity. Moreover, it
is assumed that f(g,p) is linear® in t= —(p+¢)?, p%
and ¢>
The derivation now proceeds by either of two equiv-
alent routes. (a) One considers the additional con-
straint imposed on the amplitude, expression (9), by
the divergence condition which relates the ‘half-off-
shell” amplitude,
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8 This assumption is less reasonable in the unequal-mass case
than in the equal-mass case (e.g., 7r) where the s-wave projection
of an amplitude linear in ¢, #, 5, and the masses, — g2, is still linear
in ¢t and —g2. [For example, in #r scattering, Q%(t) =3t—m.2.]
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to it. This is
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Since, in the Gell-Mann-Oakes-Renner model of
SU(3)XSU(3) symmetry breaking,® one has
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Eq. (11) factorizes to
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The polynomial constraint on f(g,p), now given by
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Jo=i(4p+Bg), (16)

with A and B momentarily free parameters. Satisfaction
of Adler’s self-consistency condition requires

—if(g,p) ‘ g0 (p*=—mg? =0

Amg? 3,2 1
= + , (A7)
FK Z\EFKF,,r mK2—m,,2
so that
. m"rz
_if(qylb) =

WV2F F » Mot —mg?

B
+ —(—mg—m.?) (18)
2Fk (
on the mass shell, p?= —mg? ¢*=—m,2; only B re-
mains a free parameter now. (b) Assuming the following

Li=—@+9%:

—if(g,p)=A+Bt+Cq>+Dp?, (19)
one has for ¢ — 0, p*= —mxg?,
A+(B—D)mg?=0, (20a)
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for p — 0, ¢*= —m,2,

A+(B-C)ym2=0 (20Db)
and for ¢, p — 0,
—F.FrA=(VHWi(o)/e, (200)
with f given on-shell by
—if(q,p) =B(t—mx?—ms?)
. 3 Ma?
@)

-+ .
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The alternative free parameter B is related to the old
B by

B=B/2Fy. (22)
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the absorptive part of W, may be written compactly as
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We reconstruct the function W, from its absorptive
part (with respect to #) up to an unknown pole in ¢
with assumed constant residue —1y,
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next comparing with absorptive part of W o with respect
to g% as given by Eq. (24), we find
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The algebra of current divergences® imposes the con-
straint

lim T ,0(g%0) =K~ (p)]

g-0, t—»m
X[Q40=12 9,17, =D ie]| 0)
= —3i(v/$)F gmx® 27)
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From the integral equation for the scalar form factor
F,(t), we have
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To simplify matters, we may set the unknown residue
v equal to zero at this point. Then the boundary con-
dition

3,2
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Fi1c. 1. Plot of the s-wave, I =% Kr phase shift, §,1/2, derived
from the two-parameter expression (39). The fit is determined by
taking m,=1150 MeV as in Antich ef al. (Ref. 11) and B~—+2/
Fomg?® for which @o®/»>0.11m,~1. The doubling of data points
taken from Ref. 11 reflects the determination of phase shifts
fr<l)m experimental data modulo =. Our fit prefers the lower
solution.

or, alternatively, merely eliminating v, we have to deal
with the subtracted integral equation®

1
F(t) = —(mg*—m,?)
® \/2( K

1

[380-ma=m.2 L —
’ e e \/'Z_FK(m,,z——mK2)]
L300 1E01?

F .
x/ g ST
mgrmn? 16w/ (' —1)

It is worthwhile noting that the boundary condition
[Eq. (31)] is imposed at the zero [which we might
expect from soft-meson considerations!® to be located
slightly below the physical threshold (mx—+m.)%],

(32b)

3ma?

V2BF g(m.2—mxg?) ’

l=mg*+m,>—

of the s-wave Kw amplitude rather than at {=0 as in
the discussion of Gell-Mann, Oakes, and Renner.$
Since the « (m:~1150 MeV) is a relatively low-lying

9 Equations (26) and (28) imply =0 and this is reflected in
Eq. (32b).
1o R, W. Griffith, Phys. Rev. 176, 1705 (1968).
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enhancement, in the sense that {3, 57/m,2~%, as com-
pared with the e (m2900 MeV), for which £ ™/m 2~
[tw¥= (m;+m;)?, the threshold energy squared], we
do not ignore this distinction here as in our earlier dis-
cussion? of the (I=J=0)r7 channel.

A simple method for obtaining an effective-range
solution for F,(?) has recently been given by the author.!
F(?) has the form

F(t)="[a+Bt+¢(Or® —¢(0)R0) I,  (33)
where
” arQ(t’)
h()=1—1 —
® —/(mK+m1r)’ WO =1
2Q(1) ((\/ ¢)+2Q> irQ(1)
= In — ,
V4 Mg+ Vi
1> (mg+m.)? (34)
and
3
Y()=— o2 W[%B(t—sz—m,rz)
Mor?
- , 5
+\/ZFK(m,r2——mK2)] (33

from unitarity considerations. From the boundary
condition [Eq. (31)], we find

V2
4= ———4y(0)
MEE—Mr?
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—B| m Mg’ — ————————— |,
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is the anticipated two-parameter effective-range formula
for F,(t). To compare with the Kr scattering phase
shifts 8¢¢1/2) obtained by Antich ef al.!! in a study of the
reaction Ktp— Ktn~A+*, we require that 6012 (mg)
=m/2 for mrp=m,=1150 MeV (the value given in Ref.
11) and y(mx2—3im,2)=0, at the location of the soft-
meson s-wave amplitude zero, i~mg?—gm,2. In this
case, B~—V2/Fgmg? and from

LD = (\/t/Q)eisu(U” sing, 1/
=mp(OF.(1), (38)

we find @D =11l E")/(mrm-)~0.11m,~", ap-
proximately half the soft-meson result.!* The fit de-

1 P, Antich, A. Callahan, R. Carson, B. Cox, D. Denegri, L.
Ettlinger, D. Feiock, D. Gillespie, G. Goodman, G. Luste, R.
Mercer, A. Pevsner, R. Sekulin, and R. Zdanis, in Proceedings of
the Conference on 7w and K= Interactions, edited by F. Loeffler
and E. Malamud, Argonne National Laboratory, 1969, p. 508
(unpublished).
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rived from
— cot§p/®
V4’
_ V2/(mx®—ms*) = (16%/ B)F By (1) +¢(1) Reh(0)
()

b

(39)

has been plotted in Fig. 1 along with the data points of
Ref. 11. Note that the experimental phase shifts are
determined modulo = in a Chew-Low extrapolation
using the one-pion-exchange model. Our fit plainly
favors the lower solution which ‘‘resonates” at 11350
MeV. (However, this ‘“resonance” has a “width” of
several hundred MeV.)

III. S-WAVE ==z SYSTEM AND EPSILON

If we introduce the (isoscalar) sigma field,®

o= —[Wilc) /N3 J(us+V2uo) , (40)
and the matrix element
I/Ve=/d4x e = (rt(p) | 6(x0)
X[0,4,0+1M(x),6(0)]]0), (41)
with
(T (P o(0) |7t (q))=—F({), t=—(p—q?* (42a)
and
(wt(p)r(g)out|s(0)[0)=F(), t=—(p+¢?* (42b)

then the derivation in this case goes through in much
the same fashion as before. Since this has been ade-
quately sketched in our earlier paper,? we remark that

the boundary condition
F(O) = —’WL,,-Z, (43)

to be imposed on the integral equation

| 30() 1
F()=— / a —»*[— — —|—%B(2m,r2——t’):l
T J amy? 16w/t F,.
\F@)?
X , (44)
/' —t

is simply a good approximation to the correct one,

F(2m 2—2/BF ;)= —m,?, (45)

in this case.!?

12 Tt was noted in our earlier communication that the method of
J. J. Brehm, E. Golowich, and S. C. Prasad [Phys. Rev. Letters
25, 67 (1970)] does not appear to handle properly the problem of
subtractions so that their (one-parameter) fit is erroneously
overconstrained. We must emphasize that our two-parameter fit
(Ref. 2) for #oo precisely reduces to the unitarized soft-pion result
of L. S. Brown and R. L. Goble [Phys. Rev. Letters 20, 346
(1968)] in the nonresonant limit (8=0) if the remaining free
parameter B is fitted by requiring an s-wave amplitude zero at the
corresponding soft-pion point, ¢ = §m.2.
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We observe that the generalized form-factor approxi-
mation allows one to express the scalar propagator
As(f) and its inverse [A*(f) ]! in compact form. Thus,

1 = d'3Q)|F()|?
As(f) = — / e
T Jamgr 16w(\/1) (' —1)

1 /2F, (!
55

2wi\ B D (=)' —2m.*+2/BF,)
- 2F,,|:F(t)—F(2m,r2—2/BF,,)
~ BL  i—2m.2+2/BF, ]

(46)

with F(f) precisely ‘given by

F<t>={— ' +B(t—2m#+—;——)

Mr®

.2

’ h(t)[lBa—z ) — },1 )
16r2F, L i F,J '

If it is assumed!® that Kg° weak interactions are
mediated by the ¢, which implies an effective weak
interaction of the form?!?

30w=Gr\Ks', (48)

then one finds, following the scheme Ks* — ¢ — =,
T(Kg®— mm)=Hh/7s
GFZ)\¢2 SQ(mKZ)

= | Fmx?) |
MK 167!'1%1{

Gr\E

= ImAs(mKZ) s
mK

(49)
with a Kg® mass shift 65 (second order in Gr) given by

0= Re ’1[(1496(]{50(?) 1 T(gcw(x);gczu(())) ‘ KSO(?)>}

GpIN\E
=— —— ReA*(mg?). (50)
2mr
Thus,
h ReAs(mx?)
- 275 ImA"(mKZ)
o Re[F(mg) !
 2rs Im[F(mx?) T
h
=— C0t5oo(mK2) . (51)

275

18 R, Arnowitt, P. Nath, P. Pond, and M. H. Friedman, North-
eastern University report, 1969 (unpublished).
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Note that since 8go(mx2)>~m/4 in our model, the value
of 85 which results is fwice as large as that calculated
by Arnowitt ef /.13 Hence in this model the calculated
K 9—Kg" mass difference 6,—38s can no longer be
said to be “in excellent agreement with experiment.” 3
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We study the K4 decay form factors using a method introduced by Fubini and Furlan. The amplitudes
which we extrapolate from the soft-pion limits to the physical point differ slightly from the previously used
ones. Our choice is motivated by the collinear parametrization. These amplitudes are simply related to the
K4 form factors and to the K-x scattering amplitudes, which appear on equal footing. The calculated
decay rate I'= (2.3+£0.3) X 10% sec™ lies within the experimental error.

I. INTRODUCTION

HE form factors for the decay K. were first calcu-
lated by Callan and Treiman! from current
algebra. These authors contract over one of the pions of
the final state at a time and obtain values for the form
factors in the two soft-pion limits. Their results for the
form factor Fs, however, differ considerably, depending
on,which of the momenta of the two pions is put equal
to zero. Weinberg? later explained the rapid variation
of F3 by taking a nearby K pole explicitly into account.
In all these calculations the form factors F; and Fs, on
which the decay rate I'x,,+ only depends, were taken’to
be constant. The results of Refs. 1 and 2 give for the
K.t decay rate

Ik, +=(1.6+0.2) X 10 sec™,
whereas experimentally,?
Tx,+=(2.940.6) X 10% sec!.

It seems to us, however, that the discrepancy between
theory and experiment could be accounted for by the
variation of the form factors between the soft-pion limit
and the physical point.

In this paper we apply an extrapolation method of
Fubini and Furlan* which makes use of the collinear

* Supported by the National Council for Scientific Research in
Lebanon.
( 1 C.) G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
1966).
2 S. Weinberg, Phys. Rev. Letters 17, 336 (1966).
3R. P. Ely et al., LRL Report No. UCRL 18626, 1968
(unpublished).
4S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968).

parametrization in the rest frame of the particles to
study the appropriate matrix elements. The method of
Ref. 4 has several advantages:

(a) The ambiguity that different choices of the
amplitudes to be extrapolated may lead to different
results on the mass shell is resolved, the physical ampli-
tudes at threshold and the ones related to them by
crossing being directly related to the soft-pion limits
through dispersion relations.

(b) The Low representation of the amplitudes deter-
mines their asymptotic behavior, thus giving informa-
tion about the possibility of writing dispersion relations
and the number of subtractions needed.

(c) Anomalous thresholds are absent in the physical
sheet, where the dispersion relations are written.

(d) Since we are working in the rest frame, we can
make use of strong parity and angular momentum
selection rules to calculate the corrections to the soft-
pion limits.

The form factors Fi, Fs, and F3 and the K-w
scattering amplitudes at the threshold will appear
naturally on the same footing in sum rules.

We obtain for the K.+ decay rate

Tk, = (2.340.3) X 10% sec'.
II. COLLINEAR PARAMETRIZATION AND
K., FORM FACTORS

The K.t form factors are defined in the following
way:



