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Scalar Form Factors just beyond the Tree Approximation*
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Using the algebra of currents and current divergences derived from the chiral SII(3) symmetry-breaking
model of Gell-Mann, Oakes, and Renner and a method of pole and cut dominance, we derive two-parameter
etfective-range formulas for scalar (I=I= ', )Err an-d ('I= J=O)vm- form factors. The fit to the I= ,' s-wav-e
E7f phase-shift data of Antich et al. favors their "lower" solution with m, =1150 MeV and supports the
existence of a broad It. resonance. It is shown that the introduction of the similarly broad e resonance which
emerges from these considerations into the weak-interaction scheme Eg0 ~ e ~ ~m makes agreement with
the experimental value of the El,'-Eq mass difference difficult, if the EJ. mass shift is not small.

I. INTRODUCTION

'N this paper the detailed derivation of two-parameter
effective-range formulas for the s-wave (I=7=0)7'.

and (I=J= —,')Krr form factors is presented. The version
of the unitarized hard-meson approach" employed
here combines the algebra of currents' with a method
of pole and cut dominance. 4 ' Because the partial-wave
amplitude which results from this generalized form-
factor approximation2 lacks a left-hand cut, our treat-
ment may be characterized as being "just beyond the
tree approximation. "However, as we show below, this
does not appear to limit the usefulness of two-parameter
6ts to the experimentally determined phase shifts in
the two cases of interest.

While it was enough to use the chiral SU(2) current
algebra in our earlier abbreviated treatment of the
scalar ~~ form factor, ' our present discussion of both
(7' and Krr) s-wave sy'stems is uni6ed in our relying
on the model of SU(3) XSU(3) symmetry breaking due
to Gell-Mann, Oakes, and Renner. ' This facilitates a
fuller exploration here of the role of current-algebra
constraints in our model with only right-hand-cut
dynamics.

In Sec. II, we consider the s-wave Em system in detail;
Sec. III is given over to a discussion of several points
relating to the s-wave xm. system which were omitted
in our earlier paper. '

where'
c= 2v2 (m. ' —err')/(m, '+ 2rrtrr') .

The absorptive part of W-„0 is given formally by
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scalar form factor,
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with the customary covariant normalization factors
omitted. The current divergence B),Vq(' ' )~+ is given
in terms of the scalar densities n; which transform as
components of (3,3*)(l)(3",3) in the model of Gell-Mann,
Oakes, and Renner' by

V (6—irl/K2 — rr(+s)c~(6 i7l—
2 ' 2

II. S-WAVE Xm SYSTEM AND KAPPA

Our approach to unitarization in the s-wave
(I=J=-,')K7r channel is just a modification of the usual
method of pole dominance4' to include the relevant
Ex cut in place of a narrow resonance pole. Thus we
introduce the matrix element
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' This result follows from applying low-energy considerations
to the general scalar vertex of Ref. 6, —(p;(p) (~, (ps(pl))

o'(t)b&'0&iu+P(t)ds;s, , ~, k=1, . . ., 8, j=0, . . ., 8, and neglecting
the dependence of a and p on t, so that

m2
(V 3)P (V 3)p(g2) ~

L(&-")+ (v'l) j L
—(v'-:)+-; (v'-.') j

This symmetry-breaking model seems to imply the equality of the
decay constants F =FE. and we shall use them interchangeably
throughout.
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1/2

general cons&uera io
1'tude to have the for1)K«partial-lv»e a~iI—

g

I
(f+o

( ( I)K (pI) out
I )2~2(2I (q )

42I'

g A (1+)2)/&2(0)
I KX

3(Kt) I p.(t') I'
q„(t)=-,

16 (gt') (t' —t)
(8)

2 [P (t)+X(t)3[~ '(t)& ""()'
the ~-6eM~(t) h s lyt he left hand cut and the

propaga or t)„v(t) js given by

to jt. This &s

p 2f ) ip, m F«m«
~ ~ 2 2 P&p.m. 'p. (t)

pf+
i ( +m. ')(p'+2+ 2 p m«

+i
df~o „, ;„..[( +(q )K-(P')«tl
4x

A (g—)2)/ '(x),( 0( I)KD(p)«tl J()(x2)[

(1+'2)/)/2(0))
I 0) (11)

g. ~(x,)Ao (x) (12)

~

Gell M»n —Oak es—R.ennner modelSince, »
breaking one has) try bre8, &lng,

5'1() ) (. ..) /~2(4-)5)/)/2 (1 A ('+" 1=(~'A»

acto

p f =F—«f+

is that of a generahze form-

rizes toth f to i tiofactor approximation, is to assume e
valid off-shell,

(13)
I(+(')K (p')o tl —-'~2( '(q')K'(p o t[(~'tq

~ A '"'"' '(o) IK (p)&X~~
with'

(Q6)m. '
8'1(C) = (14)

dQq (p2+m«2)
o

24x F~mJ;
d4X e'&'

' t on, p), now given by1 nomial constraint on q,T e poyno

IX[(~+tq( +( ')K—(p')out
l
—-'2v2(n'(q))K'(p out

X&(xo)L&„A (' ")/~(x) ()„A„(1+)2)/)/2 0) I Q)

pvfv

J'x

3i(q'+m ') 1

2&2F«F, m«2 m~2—

zp))m)) f(q)p
K

(q'+m. ')

wo- article unitarity. Moreover, st

is assumed that f(q,p) is linear' in

The deiv io o p o

1' d
h 1 h hlf

on the amp i u e,
ffn(4tlon w lc re athe divergence condi

shell" amplitude,

'-"-' d"' '[(- (q)K-(p)-tl
4x

—2%2(2r'(q') K'(P') Out
I )()(X())

))2( i
() A (1+)2)/)/2(0)pl())X[A,('-"»~tx,a„„

pf(q p)—,F.(t) f.(q,p)
q'+m '

the unequal-mass case
h h

s reasonable cn t e
ection

f n amplitude linear in t, u, s, an e m, ass i
in t and —q;. or

if(q~p)l 2 & (2)'= «') —0

Am~2

so that

3m' 1

2%2F«F. m«2 —m. '

—if(q, p) =—
2m~

(t—m«' —m ') (18)
2px

mains a free parameter now. b ssumin
[t= —(p+ q) 'g:

f( p) 2+B't+Cq+Dp,
2 ——m 2one has for q

—+ 0, p'= —m«,

A+(8—D)m 2=0,

(19)

(20a)

ls sasatisfied by taking

(16)f,=i (A p,+Bq„),
'

factionmomentan y re'1 f e arameters. Satis
os~ o cpof Adler's self-consistency con i ion r



SCALAR FORM FACTORS ~ ~ ~ 2695

for p~0, q'= —m ',

A+(B—C)m '=0,
and. for q, p -+ 0,

F.F—~A = (Q—', )W&(c)/c, (20c)

The algebra of current divergences' imposes the con-
straint

lim W„o(q', t) =i(K (—p) Iq-+0, t-+m~2

XLQ/&'
—'2&1&

c&&, y&, «—'»&&2]
I 0)

with f given on-shell by

—if(q, p) =B(t—m&r' —m. ')
so that
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(27)
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The alternative free parameter 8 is related to the old
8 by
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the absorptive part of 8'„omay be written compactly as
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From the integral equation for the scalar form factor
F„(t), we have
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next comparing with absorptive part of S'„owith respect
to q2 as given by Eq. (24), we find

We reconstruct the function 8', o from its absorptive
part (with respect to t) up to an unknown pole in q'
with assumed constant residue —iy, 3m 2/'
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is to be imposed on the unsubtracted integral equation

To simplify matters, we may set the unknown residue
p equal to zero at this point. Then the boundary con-
dition
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2Q(t) (Qt)+2Q i~Q(t)ln--
Qt mrc+m ~ t
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enhancement, in the sense that tts~ /m„'~4t, as com-
parecl with the e (m,~900 MeV), for which t,„»/m, '
[4a"=(m;+m;)', the threshold energy squaredj, we
do not ignore this distinction here as in our earlier dis-
cussion' of the (I=J= 0)7rs. channel.

A simple Inethod for obtaining an eRective-range
solution for F„(t) has recently been given by the author. '
F„(t) has the form

F.(t) = [n+Pt+4'(t)h(t) —4'(0)h(0)'j —', (33)
where

P(t) = —— -', B(t—m~' —m. ')
16m 2F—1 I

IIOO

Ft MeV

I I 1

l 300 l500
(35)

v2F rr(m. ' mrc')—

from unitarity considerations. From the boundary
condition [Eq. (31)J, we find

v2
—+-tt (0)

mx2 —m '

FIG. 1. Plot of the s-wave, I=-', Xm. phase shift, bt)('12&, derived
from the two-parameter expression (39). The fit is determined by
taking»a, =1150MeV as in Aritich et at (Rei. 11.) and 8 v2/—
F~yg~ for which go( ~ )~0.11&m~ The doubling of data points
taken from Ref. 11 reflects the determination of phase shifts
from experimental data modulo ~. Our 6t prefers the lower
solution.

or, alternatively, merely eliminating y, we have to deal
with the subtracted integral equation'

3m 2

—P mrrs+m '—-- —,(36)
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It is worthwhile noting that the boundary condition
[Eq. (31)) is imposed at the zero [which we might
expect from soft-meson considerations" to be located
slightly below the physical threshold (mrc+m )'],

3m 2

(38)= ~f(t)F.(t)t =m Jr'-+m. '
v2BFIc(m. ' —mrc')

we find a t"'i = ts&""(t,t ~ )/(mrrm»)~0 11m» ', ap-.
proximately half the soft-meson result. ' The 6t de-of the s-wave Ex amplitude rather than at t=O as in

the discussion of Gell-Mann, Oakes, and Renner. s

Since the ~ (m„~1150 MeV) is a relatively low-lying
"P. Antich, A. Callahan, R. Carson, B. Cox, D. Denegri, L.

Ettlinger, D. Feiock, D. Gillespie, G. Goodman, G. I.uste, R.
Mercer, A. Pevsner, R. Sekulin, and R. Zdanis, in Proceedings of
the Conference on ~m and E7f Interactions, edited by F. LoeRer
and E. Malamud, Argonne National I aboratgry, l969, p. 508
(unpublished) .

9Equations (26) and {28) imply y=0 and this is reflected in
Eq. (32b)."R.W. Griflith, Phys. Rev. 176, 1705 (1968).

is the anticipated two-parameter effective-range formula
for F„(t). To compare with the Xs. scattering phase
shifts $0( t' ) obtained by Antich et al."in a study of the
reaction E+p ~ Z+s. tk++, we require that 5,&'"&(mz)
=s/2 for mg= m„= 1150 MeV (the value given in Ref.
11) artd P(mrc' —-', m ') =0, at the location of the soft-
meson s-wave amplitude zero, t m~' —-', m '. In this
case, B~ U2/Frrmrr', an—d froin

to"t"= (gt/Q)e'e '"" sing t't"
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rived fron1

cotbp&'i'&

&2/(m&' m—') —(16~'/B) F elt (t)+p(t) Reh(t)
)

(39)

has been plotted in Fig. 1 along with the data points ot
f. 11. Note that the experimental phase shifts are

l tiondetermine mo u o vrd d dulo vr in a Chew-I. ow extrapo. a
'

r 6t lainlusing ethe one-pion-exchange model. Our 6t p ain y
f the lower solution which resonates aavors e a
MeV. (However, this "resonance has a wi
several hundred MeV. )

III. S-WAVE ~~ SYSTEM AND EPSILON

Ke observe that the generalized form-factor apploxl-
nla io11 at n allows one to express the scalar propagator

rm. Thus6'(t) and its inverse
I
6'(t)) ' in compact form. us,

" «'3Q(t') IF(t') I'
~'(t) =—

~ 16pr(gt') (t' —t)

F(t')
dt'

(t' t) (—t' 2m—.'+2/BF. )

2F F(t) F(2m —' 2/BF —)
)

B t —2m '+2/BF

with F(t) precisely given by

1 2
F(t) = ——+t3 t —2m. '+

m. '

If we introduce the (isosca, lar) sigma field, '

o = —
I Wr(c)/&3](us+v2up), (40)

3 1—
h(t) —',B(t—2m. ')+—

16~'F Ii
(47)

and the matrix element

W, = d'x e
—"*(s-+(p)

I 0(xp)

XI &.~."+'"' '(x),~(0)hl0), (4»
with

BC„=GI:X,ES 0-, (48)

If it is assume
~ ~ d" that Es' weak interactions are

mediated by the ~, which implies an effective weak
interaction of the form"

then one finds, following the scheme Es' —+ e —+ xx,( +(p) I (0) I +(q)) = —F(t), t= —(p —q)' (

(+(p) (q)outl (o)lo)=F(t), t= (p+q)' (4—2b

then the derivation in this case goes through in muc

quately sketched in our earlier paper, ' we remark that
the boundary condition

I'(Kss —+ 7rx) =tt/rs

G 'X '3Q(mlr')
I
F(mlrs)

I

s

m~ 16~m~

6p9, '—Imh'(mrr'),
m+

(49)

F(0) =- —m, ',
to be imposed on the integral equa, tion

with a Ks' mass shift bs (second order in Gz) given by

F(t) =
1 " 3Q(t') 1

dt' — ——+-',B(2m ' —t')
rrF 4 2 16s.gt' F

Thus,

Gp9, '—Rem'(mls') .
2851/

Bs =Re i d'x(Esp(p) I T(se„(x),x,„(0))I Esp(p))

(50)

is sln1ply a g00 a
~ ~

l d pproximation to the correct one,

F(2m ' —2/BF )= —m ',
in this case."
"I ted in our earlier commun&cation t .ahat the method oft was no e

25 67 (1970)g does not appear to handle properly the problem o
so that their (one-parameter) 6t is erroneously

h th t t - t 6t
duces to the unitarized soft-pion result

parameter B is itted by requiring an s-wave amplitude zero at t e
corresponding soft-pion point, t = &m '.

Red '(mrs')
~S=-

2rs Imh'(mrr')

ReLF (mrr') j—'

2rs Im[F(mrr')] —'

1—cot5pp(mrr') .
2~s

"R.Arnowitt, P. Nath, P. Pond, and M. H. Friedman, North-
eastern University report, 1969 (unpublished).
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Note that since 3oo(rrtsr')~sr/4 in our model, the value
of bq which results is twice as large as that calculated

by Arnowitt et u/. "Hence in this model the calculated
El,'—E~' mass difference bl. —bq can no longer be
said to be "in excellent agreement with experiment. ""
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We study the E,4 decay form factors using a method introduced by Fubini and Furlan. The amplitudes
which we extrapolate from the soft-pion limits to the physical point diBer slightly from the previously used
ones. Our choice is motivated by the collinear parametrization. These amplitudes are simply related to the
E,4 form factors and to the E-m scattering amplitudes, which appear on equal footing. The calculated
decay rate 1' = (2.3&0.3)X10' sec ' lies within the experimental error.

I. INTRODUCTION

' &HE form factors for the decay E,4 were first calcu-
lated by Callan and Treiman' from current

algebra. These authors contract over one of the pions of
the 6nal state at a time and obtain values for the form
factors in the two soft-pion limits. Their results for the
form factor F3, however, differ considerably, depending
on",which of the momenta of the two pions is put equal
to zero. Weinberg' later explained the rapid variation
of F3 by taking a nearby E pole explicitly into account.

In all these calculations the form factors F1 and F2, on
which the decay rate Fz,4+ only depends, were taken", to
be constant. The results of Refs. 1 and 2 give for the
E',4+ decay rate

Frc„+——(1.6&0.2) X 10' sec ',
whereas experimentally, '

I"rc„+=(2.9&0.6)&&10' sec '.
It seems to us, however, that the discrepancy between
theory and experiment could be accounted for by the
variation of the form factors between the soft-pion limit
and the physical point.

In this paper we apply an extrapolation method of
I'ubini and Furlan4 which makes use of the collinear

*Supported by the National Council for Scientific Research in
Lebanon.' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153
(1966).' S. Weinberg, Phys. Rev. Letters 1'7, 336 (1966).' R. P. Ely et al. , LRL Report No. UCRL 18626, 1968
(unpublished) .' S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968).

parametrization in the rest frame of the particles to
study the appropriate matrix elements. The method of
Ref. 4 has several advantages:

(a) The ambiguity that different choices of the
amplitudes to be extrapolated may lead to different
results on the mass shell is resolved, the physical ampli-
tudes at threshold and the ones related to them by
crossing being directly related to the soft-pion limits
through dispersion relations.

(b) The Low representation of the amplitudes deter-
mines their asymptotic behavior, thus giving informa-
tion about the possibility of writing dispersion relations
and the number of subtractions needed.

(c) Anomalous thresholds are absent in the physical
sheet, where the dispersion relations are written.

(d) Since we are working in the rest frame, we can
make use of strong parity and angular momentum
selection rules to calculate the corrections to the soft-
pion limits.

The form factors F~, F~, and F3, and the E-z
scattering amplitudes at the threshold will appear
naturally on the same footing in sum rules.

We obtain for the E,4+ decay rate

Ftr„+= (2.3&0.3)X 10' sec '.

II. COLLINEAR PARAMETRIZATION AND
X,4 FORM FACTORS

The E,4+ form factors are dered in the following
way:


