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A duality requirement and a simply proportionality hypothesis involving the residues of baryonic Regge
trajectories are used to derive a self-consistency condition for the scattering of pseudoscalar mesons from
spin-} baryons. Essentially, the condition states that the differences between the residues of even- and
odd-signature baryon trajectories are the components of an eigenvector of the s« #% channel crossing
matrix. Several different forms of the consistency condition are discussed, one of which involves residues of
trajectories in the physical region, at the energies of the lowest resonances on the trajectories. Experimental
values of partial widths of resonances are used to check this latter form for =NV, A, and == scattering.

The agreement with experiment is good.

I. INTRODUCTION

EVERAL years ago, Chew used the static model of
pion-nucleon scattering to derive a simple bootstrap
condition! The condition is that the residues of the
possible poles in the P-wave channels (of 2/ and 2j
equal to 11, 13, 31, and 33) form a four-component
eigenvector of the static-model crossing matrix, with
eigenvalue one.? The relation between the A width and
the #VN coupling constant implied by this condition is
satisfied fairly well.

On the other hand, the corresponding condition for
K-meson—nucleon scattering is violated badly. Since
KN states are exotic (contain no resonances or bound-
state poles) the condition implies that the residues of the
poles in any P-wave KN channel vanish, in contra-
diction with experiment. Recently, however, a different
self-consistency condition obtained from a duality as-
sumption has been successful for the KN and KN
systems. This is the condition that the baryonic Regge
trajectories that contribute to KV scattering occur in
exchange-degenerate pairs, and that the residues of the
even- and odd-signature members of each pair are
equal?

In this paper we derive a more general consistency
condition for the residues of baryonic Regge trajecto-
ries, a condition applicable to amplitudes that are not
exotic in either the s or # channel. If one of the channels
is exotic, as in the case with the KV amplitudes, the
condition reduces to that mentioned above. If the odd-
signature couplings are small (as they are in pion-
nucleon scattering) the condition is a simple modifica-
tion of the Chew bootstrap condition.

This type of consistency condition has been derived
previously, from an idealized Veneziano model in which
the external particles are spinless.* The present deriva-
tion is an improvement in two important ways: First,
we use a duality assumption that is weaker than that of

* Supported in part by the U. S. Atomic Energy Commission.

1 G. F. Chew, Phys. Rev. Letters 9, 233 (1962).

2 The crossing-matrix form of the bootstrap condition is dis-
cussed in detail by R. H. Capps, Nuovo Cimento 34, 932 (1964).

3 See, e.g., V. Barger, Phys. Rev. 179, 1371 (1969); R. H.
Capps, Phys. Rev. Letters 22, 215 (1969).

4R, H. Capps, Phys. Rev. D 1, 2395 (1970).

the Veneziano model; second, we include the baryon
spin. Including the spin allows us to derive realistic
conditions that may be compared to experiment.

The consistency conditions are derived in Sec. IT and
are applied to #V, wA, and =2 scattering in Sec. III.
Possible extensions of the model are discussed in
Sec. IV.

II. DERIVATION OF CONSISTENCY
CONDITIONS

A. Spinless External Particles

We consider a meson-baryon scattering amplitude 7%,
where 7 denotes the internal quantum numbers of the
initial and final particles. Temporarily, the baryon spins
are neglected. We consider the s-channel amplitude at
an intermediate energy, near the backward (small-u)
direction, and assume that the contributions of #-channel
Regge poles are negligible. The duality assumption may
be stated®

(ImT;*ees%) =(ImT ;%) , ¢y

where T;Rezee is the contribution of #-channel Regge
poles, T';;"s is the contribution of s-channel resonances,
and ( ) denotes some semilocal average over s and .

It is assumed that the even- and odd-signature
trajectories that contribute to T'y;®e##* are exchange-
degenerate (though the multiplicity and quantum num-
bers of the two different sets need not be the same).
Each trajectory may be associated with a set of daugh-
ters, i.e., trajectories of spin lower by one or more units.
We assume that the contribution of such daughters in
the Regge region may be neglected, in which case Eq.
(1) leads to

ai(X-uiH—)'—Xui(‘)) =Zsi(+)_Zsi(_) ) (2)

where a; is a constant, X,,;@® are the sums of theresidues
of the u-channel trajectories of signatures & [averaged
over the region of % involved in Eq. (1)], and Z,; are
the contributions of resonances of parities == to the
right-hand side of Eq. (1). The minus sign in the combi-

5 A lucid discussion of the duality assumption is given by Haim
Harari, Phys. Rev. Letters 22, 562 (1969). This paper contains
references to other papers on duality.
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2 MESON-BARYON CONSISTENCY CONDITIONS FROM DUALITY

nation X, —X ;0 results from the different signa-
ture factors of the exchange-degenerate trajectories.
The minus sign in the right-hand side of Eq. (2) is
convenient because the imaginary parts of elastic
amplitudes of opposite parities have opposite signs in
the backward direction.

The s-channel resonance contributions themselves lie
on Regge trajectories, so the Z are proportional to some
average over s of the residues of these trajectories. We
define proportionality constants 3, by the relation
2P =B,PX ;B where the X, are the residues of the
s-channel trajectories in the small-s region appropriate
for backscattering in the # channel. Since the Z; may
involve contributions from daughters of the leading
trajectories, the constants 8; depend on three things: the
phase-space factors involved in the Z, the relative pro-
portion of daughter contributions in the Z, and the
variation of the residue between the resonance and
Regge regions. If the above relation is substituted into
Eq. (2), the result is

(X i =X i) =D X ;P —,OX 0. (3)

We must keep in mind the fact that the #- and s-channel
processes corresponding to an amplitude ¢ are different,
in general.

Because of the unknown constants a; and 3;®, there
is not much content in Eq. (3). One way of gaining
content would be to adopt a specific model in which the
a and B could be evaluated, such as some models of the
Veneziano type. We wish to avoid specific models. We
make the following alternate hypothesis, which we call
the index-independence hypothesis: The ratios 8:;/a;
and B;/a; are independent of the index 7. This is a
fairly strong hypothesis, so we shall discuss the condi-
tions under which it is approximately true. It is ap-
propriate in a model in which the external baryons are
degenerate, the external mesons are degenerate, and the
baryon trajectories are degenerate. The hypothesis is
equivalent to the assumption that these degeneracies
are not accidental.

If the external baryons, external mesons, even-signa-
ture trajectories, and odd-signature trajectories corre-
spond to irreducible representations of a symmetry
group, the index-independence hypothesis follows from
group symmetry and duality. Duality, applied to exotic
states, implies that the even- and odd-signature tra-
jectories are exchange degenerate, with proportional
residues, and group symmetry then leads directly to
index independence. Thus, the physical motivation for
the hypothesis is that the dominant even- and odd-
signature trajectories seem to correspond to the 56- and
70-fold irreducible representations of SU (6).® Of course,
the trajectory-degeneracy assumption must be modified
when baryon spins are included correctly. This is done
in Sec. IT B.

6 This classification has been made by many authors; see, e.g.,
R. H. Capps, Phys. Rev. 158, 1433 (1967).
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We now complete the derivation of the consistency
conditions, using the index-independence hypothesis.
Application of Eq. (3) to a process 7 that is exotic in the
s channel leads to the condition X,;P =X,;7. Applica-
tion to the crossed amplitude (obtained by reversing the
roles of the s and # channels) then implies 3P =8, We
next assume temporarily that for some amplitude 3,
X i — X, does not vanish. Application of Eq. (3)
to this amplitude and its crossed amplitude and use of
the relation 3 =B lead to the condition [P /a P=1.
This implies that Eq. (3) may be written

Xui™® =X i = (XD =X i), 4)

The choice of signs must be the same for all 4. The
proper choice depends on whether or not the residues
change sign between the resonance and the scattering
regions.

If X,;"P—X,; vanishes for all 7, the above argu-
ment breaks down, but Eq. (4) is valid, obviously.”

The #-channel residues are related to s-channel resi-
dues by the equation X ,;®=3"; C;;X,;®, where C is
the s & % crossing matrix. Thus, Eq. (4) is the require-
ment that the X ;P —X, ) are components of an
eigenvector of the crossing matrix. If sufficient back-
scattering data are available, this type of condition can
be tested. For some reactions, however, resonance data
but no scattering data are available, so an alternative
form of the condition is useful. In order to obtain this
form, we eliminate the X,;® terms in Eq. (2) by using
the relation Z,,;® =B+ X,,;®, where the amplitude 7*
is obtained from 7 by crossing the two mesons. One then
modifies the index-independence hypothesis slightly by
assuming that B;x@®/a; is independent of 7. One then
uses an argument similar to that used above to obtain
the result

Zui =2y = (2D —ZO).. (5)

The Z are the integrals of the contributions of reso-
nances, including daughters, at an intermediate energy.?
Presumably, this energy should not be close to threshold.
It is convenient to extend the index-independence
hypothesis in order to obtain still a third form of the
consistency condition. We define ¥ ;@ to be the sum of
the residues of the s-channel trajectories at the s value
of the lowest resonance or bound state of parity &= on
the trajectory. Proportionality constants v;& are de-
fined by the relation Z; & =, BV ;& We assume that
the v;® are independent of 7, so that Eq. (5) leads to
the condition
Rui = :ERsi 5 (6)
7 An abbreviated form of the proof of Eq. (4) has been given
previously by R. H. Capps, Phys. Rev. D 2, 780 (1970). The sign
ambiguity in the consistency condition is not mentioned in this
reference.
8 When one of the channels is exotic, this condition becomes a
form of the simple duality principle. The predictions of this kind
of condition for meson-decuplet scattering have been compared

to experiment by M. J. King and K. C. Wali, Phys. Rev. Letters
24, 1460 (1970).
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where
Rvi = Yw'(+) -Y Yvi(-) )

0]

and v is the ratio Yy /¢y, This “low-energy” form of
the condition is compared with data in Sec. III.

B. Scattering of Mesons from
Spinning Baryons

We now consider the scattering of pseudoscalar
mesons from j¥=%+ baryons, treating the baryon spins
correctly. The assumption concerning baryon tra-
jectories must be modified slightly. There are two types
of even-signature trajectories, N type and A type; the
lightest physical states on these are of spin parity 3+ and
8+ respectively. These two types of trajectories are not
degenerate with each other but are assumed exchange
degenerate, respectively, with odd-signature trajectories
whose lightest states are of j¥=3%~ and §~. The multi-
plicity and internal quantum numbers of the even-
signature trajectories of either of the types need not be
the same as those of the exchange-degenerate odd-
signature trajectories.

We will apply the conditions to the A’ and B ampli-
tudes. We list the partial-wave expansions for the 4, 4,
and B amplitudes®:

Q?A(s,u) =4[ (W +m)(E—m) f1

—(W—m)(E+m)f.], (8)

qu(S,’l/t) =4W[(E”m)f1+(E+m)f2] ) (9)
A'(syu)=A4-(s—u)B/(4m—1t/m), (10)
fi=2(0-Pir1pd = Pivpd), (11a)
fo=22(aj4Pir1yd’ —a; Pjiap), (11b)

J

where m and E are the nucleon mass and energy in the
c.m. system, W=s'2) ¢;, is the partial-wave amplitude
for angular momentum j and orbital angular mo-
mentum j43%, and P;’ is the derivative with respect to
cosf of the Legendre polynomial Py. For convenience we
list the relation between E and W:

E=W+m*—p?)/2W, (12)

where u is the meson mass. In the backward direction,
the relation between s and # is

su=(m?—u2)?. (13)

The differential cross section in the back direction is
equal to (E/4xW)2|A’|%. It can be shown from the
above formulas and the relation s—+¢+u=2(m?-+pu?)
that, in the back direction,

A'={4xW/E)(fi—f2). (14)

¢ These formulas are given by Virendra Singh, Phys. Rev. 129,
1889 (1963).
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The amplitudes 4 or A’ and B are convenient be-
cause, unlike f; and f,, they are functions of s and »
only, i.e., they are even in s2 and #Y2. The crossing
properties are

4 il (S7u) =4 ‘i*l(u7s) ; (158.)
Bi(s,u) =—B(u,s), (15b)

where ¢* is the amplitude obtained from 4 by crossing the
two mesons. The crossing behavior of 4 is the same as
that of A’. The amplitudes that satisfy the #-channel
partial-wave expansions obtained by replacing s by %, W
by #Y%, and E(s) by E(u) in the right-hand sides of
Egs. (8) and (9), and cosf, by cosf, in Egs. (11a) and
(11b), are A ;(s,u) and — B;(s,u).

We will use Eq. (6), the low-energy form of the
consistency condition. The Y™ are the residues at the
P-wave resonance energy, and the ¥ are the residues
at the D-wave resonance energy. The residues ¥V are
defined for both the 4’ and B amplitudes, i.e.,

YVoiar® =Resd {/(s,u), (162)
Veis® =Res[¢*B(s,u)], (16b)

where Res denotes the residue of the s-channel tra-
jectory of the appropriate signature at the appropriate
resonance energy. The ¢? factor is included in the residue
definition for B only for convenience; this does not
change the crossing property of the residue since ¢* is
the same in the s and # channels along the back-
direction curve of Eq. (13).

If one considers the 4’ and B amplitudes and repeats
the argument that leads to Eq. (6), the following
equations result:

Ruiar==2Rg;ar,
Ry;p="FR;3,

(17a)
(17b)

where R=Y™® —y V). One should take either the upper
or lower signs in both equations. These are the basic
consistency equations for meson-baryon scattering.
We now show why the choices of signs in these two
conditions are correlated. The proper choices depend on
whether or not the residues change sign between the
resonance (intermediate-s) and Regge (small-s) regions.
Since s and # are both positive along the backscattering
curve, we see from Eq. (12) that E+m is larger than
E—m throughout the range between the resonance and
Regge regions.! Hence, we expect the (E-+m) fs term of
Eq. (9) to dominate the B amplitude. The index-
independence assumption for 4’ together with the fact
that the relative magnitude of fi and f; is not inde-
pendent of 7, implies that the (Regge region)/(resonance
region) ratios of f; and f; should be the same. Since E
and W do not change signs between the resonance and
Regge regions, it follows that A’(s,») and ¢*B(s,u)

1 Some of the quantities discussed here possess branch points
at s=0 or #=0. These branch points are not relevant here, as we
are concerned only with regions of positive s and u.
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either both change sign or both do not change sign.
However, if the s-channel residues are defined by Egs.
(16), the u-channel residues depend on A’(s,#) and
—¢2B(s,u). This leads to an extra minus sign in the
condition for B [Eq. (17b)] so that the upper sign in
this equation goes with the upper sign in Eq. (17a).

A similar argument provides another reason that one
should apply the index-independence hypothesis to A’
rather than A. (The first reason is that the back-
scattering amplitude is proportional to 4’.) Since both
terms of 4 [Eq. (8)] may be of comparable importance,
and since the s dependences of the coefficients of these
terms are different, a common s dependence of the
residues of f; and f» would not lead necessarily to a
common s dependence of all 4 ;! The index-independ-
ence hypothesis would be more artificial if applied to
the 4.

Since the Y™ are defined at the energy of the P-wave
resonances, it is convenient to identify an exchange-
degenerate trajectory by the spin (3 or §) of the P-wave
state on the trajectory. The quantity ¥,;;P is then the
sum of the residues of the P; poles in the amplitude 2,
and Y, is the sum of the residues of the D-wave
poles that correspond to angular momentum j4-1.

One may use this notation to write the 4’ and B
residues in terms of the Rys; and R, by using the P-
wave part of the partial-wave expansions of 4’ and B in
the back direction. These may be computed from
Egs. (9), (11a), (11b), and (14). If we neglect the
(E—m) term of Eq. (9), the result is

Rsiar=c1(Ro3+2Rs53) (18a)
Rsiz=c2(Reiy—Rais) (18b)

where cyand cpare s-dependent factors of proportionality.

If these equations are substituted into Egs. (17) and
the upper signs are taken in the latter equations, the
resulting consistency conditions are algebraically the
same as those of the static, reciprocal bootstrap model.!:2
If the final § or £ index of the R’s is identified with the
total angular momentum of the static model, the con-
ditions are that the R’s are components of an eigen-
vector of the static P-wave s & # crossing matrix, with
eigenvalue one. In our case, however, the R’s involve the
couplings of baryons of both parities [See Eq. (7)]. The
R’s for some amplitudes are evaluated in Sec. III.

III. COMPARISON OF PION-BARYON
CONDITIONS WITH DATA

We turn to the problem of checking the predictions
for N, wA, and 72 amplitudes, using partial-width
data. We use Eqs. (17) with the upper signs, and write

11 Tf one uses the Veneziano representation of the amplitudes,
the bootstrap condition is a condition on the form of satellite
terms. In the Veneziano model for meson-baryon scattering, it is
more convenient to use the 4 then the A’ amplitude because of the
pole at £=4m? in A’. Because of this, the Veneziano form of the
bootstrap condition used here is simple for spinless particles (see
Ref. 4), but is not simple for meson-baryon scattering.
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all #-channel residues in terms of s-channel residues by
using the equation R,;=)_;Ci;R.j;, where C is the
crossing matrix.’? All amplitudes then refer to the s
channel, so the s may be suppressed. The result of the
procedure is that the following six amplitudes are zero:

[BNO] (3)"*(Ry3p+2Rw35),

[4'N1]  ($)"2(Rwsar—Ruwsa’),

[BAO] (3)"*Rais, 19)
[B20] %(Rsos+3Rs18-+5Rs25),

[4’Z1] (%)"?(2Rz04'+3Rz14'—5R3247)
[B22] (5/36)42(2Rs08—3Rz18+Rs28),

where the Ry, 4+ and R,,p are to be written as in Egs.
(18). The first subscript on the R denotes the external
baryons, and the second the s-channel isotopic spin. The
symbols in square brackets identify the amplitudes;
here the third symbol is the f-channel isotopic spin.!?
These are the six amplitudes that are odd under spin-
isospin, § €2 % crossing, i.e., the A’ and B are odd and
even, respectively, under crossing of the internal indices.

The different trajectories contributing to a particular
Y, or V) are not all degenerate, in practice. We
ignore the possible effects of mass splitting on the
coupling constants (residues at the resonance energies).

We now turn to the problem of evaluating the
R=Y®—y¥Y), The YD are the residues of the P-
wave poles. We normalize all the Y& by setting the
contribution to ¥ ;P of any P-wave resonance on a
trajectory equal to I';/k%, where T'; is the partial width
for the decay into the state %, and % is the decay mo-
mentum. If the P-wave pole is a bound-state pole, the
corresponding quantity is CG*/[ (M +m)?—pu?], where G
is a coupling constant, M, m, and u are the masses of the
bound state, baryon, and meson, respectively, and Cisa
numerical constant. For the case of the residue ¥y 3P,
the C corresponding to the nucleon-pole contribution is
6. The 7NN coupling constant is taken as G*=14.5. The
other baryon-baryon-meson constants are calculated
from the assumption of SU(3) symmetry, with the F/D
ratio taken as the SU(6) value of 3.

We take aI';/k* for the contribution of an odd-
signature trajectory to y¥ ), where T'; is the appro-
priate partial width of the lowest state (D state) on the
trajectory, and @, is a constant, assumed to depend only
on the spin. We determine the ¢; by assuming that the
duality principle is valid for KN scattering. This leads
to the simple prediction that the contributions of A
poles of opposite parities should cancel in the R for KN
amplitudes, and that the contributions of = poles of
opposite parities should cancel. This follows because
KN states of both isospins are exotic. We obtain the
value az2=1.51 BeV? by assuming that the As»-(1520)
and Ay/e+(1116) contributions cancel in KN amplitudes,

12 The various s-# and s- channel isotopic-spin crossing matrices

are 7listed by C. Rebbi and R. Slansky, Rev. Mod. Phys. 42, 68
(1970).
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TasiLe I. Contributions of different P- and D-wave reso-
nances to the R;= ¥,V —4V;). We take #=c¢=1 and the unit
of mass to be 1 BeV.

State Resonance Contribution to R
N3k N+(938) 24.7
53 N—(1520) —4.6
N33 N—(1670) —1.7
N3 A~ (1670) —-0.9
N33 A+(1236) 9.7
Al =+(1193) 2.6
Al =~ (1670) —14
Al =+ (1385) 3.6
Al3 =~ (1765) —0.6
0% A+ (1116) 7.8
0% A—(1520) —8.3
$0% A~ (1690) —34
=03 A (1830) —1.2
>13% +(1193) 6.5
=14 = (1670) —44
=13 =+(1385) 2.2
13 =—(1765) ~0

and obtain az9.=1.53 BeV? by assuming that the
50~ (1765) and Z32+(1385) contributions cancel. All
data are taken from the recent compilation of Barbaro-
Galtieri et al®

The index-independence hypothesis requires that cer-
tain ratios involving the residues are the same for V-
type and A-type trajectories. In view of this, it is
reassuring that the values of as» and @52 computed
above are nearly equal.

The contributions of individual P- and D-wave reso-
nances to V™ and vV ;¢ are given in Table I. The
three symbols in the state label are the external baryon,
the s-channel isotopic spin, and the spin label of the

TasLE II. Values of linear combinations of the
residue functions R4 and Rp.

Combination vy ye R
[BNO] 5.0 43 0.7
[4'N1] 4.9 6.7 —1.8
[BAO] —2.0 1.4 —3.4
[B=z0] 7.9 9.1 —12
[4'=1] 11.4 9.7 1.7
[B=2] 1.3 3.3 —20
[A'NO] 42.2 6.5 35.7
[BN1] 45.9 2.7 43.2
[4’A0] 13.9 3.8 10.1
[4'=0] 11.1 7.4 3.7
[B=1] 95 11.4 —~1.9
[4'=2] —-53 46 —99

13 A. Barbaro-Galtieri ef al., Rev. Mod. Phys. 42, 87 (1970).
If a definite width is not given in the resonance table, and if a
weighted average width is not given in the data-card listings, we
have used as a width the simple numerical average of all measure-
ments listed in the listings.
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trajectory. The angular momenta of the odd-parity
resonances are one greater than this spin label. The sign
of a contribution to R in the third column is the parity
of the resonance. The R are those of the right-hand side
of Egs. (18). The particles contributing to the Y™,
Yis™®, vV, and vV ;5 are those of the IV octet, A
decuplet, j2=3%"nonet, and j¥=35" octet, respectively.

It would have been just as logical to calculate as/2 by
assuming that the A(1115) contribution to the R for
KN scattering is cancelled by the sum of the A*(1520)
and A*(1690) contributions, rather than by the A*(1520)
contribution alone. A calculation shows that this would
have decreased @32 by only 69, and all the contribu-
tions of §~ resonances in Table I by the same percentage.
The effect on the final results would be small.

In order to test the accuracy of the predictions that
certain R combinations are small, we adopt a uniform
normalization, based on the fact that (W./Ws)'2K o5
are the elements of a unitary matrix, where K is the
te2 s crossing matrix, i.e., T(a:) =25 KapT (85).* Here
W4 is the number of states in the spin-isospin multiplet
a. We use the amplitudes of Eqs. (18) with the ¢; and ¢o
replaced by (%)/? and ()2, respectively. With this
convention, the amplitudes of Eq. (19) are normalized
so that X7y wrs?/[(2I+1)(2741)]=1, where 7 is the
coefficient of each Ryy, and I and J are the s-channel
isospin and spin indices.

The Y, vV, and R are listed in Table II. The
fundamental unit of mass is 1 BeV. The first six rows
correspond to the six crossing-odd amplitudes of Eq.
(19) for which R is predicted to be zero. The next six
rows correspond to the crossing-even amplitudes ob-
tained by making the interchange 4’ <2 B in Eq. (19).
The consistency conditions are satisfied fairly well; the
crossing-odd R values are small compared to the larger
of the crossing-even values and to the larger of the Y
and y Y values of the table.

It is important to note that if SU(3) symmetry of the
residues were satisfied exactly, the ratios of ¥’s would
depend on seven independent parameters. Hence, SU(3)
symmetry and the satisfaction of two or three of the
consistency conditions does not imply satisfaction of the
others.

If the lower signs of Eqgs. (17) had been taken, the
prediction would be that the vector R; is an eigenvector
of the static P-wave crossing matrix with eigenvalue
(—1). This would imply that the quantities R for both
N- and A-type trajectories would vanish for 7% scat-
tering. This is in strong contradiction with experiment,
for the odd-parity contributions y¥© are relatively
small for pion-nucleon scattering, as can be seen from
Table I.

IV. CONCLUDING REMARKS

The duality condition, as used here, relates s-channel
resonances to the residues of #-channel Regge poles. If

14 This general property of crossing matrices is derived by R. H.
Capps, Ann. Phys. (N. Y.) 43, 428 (1967), Appendix.
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one knows the behavior of the residues of these poles
between the small-u region and the physical region for
u-channel scattering, one can obtain consistency condi-
tions of the bootstrap type.

In this paper we assume that the Py» and P
resonances are dynamically similar and that the residues
of the trajectories through them are dynamically simi-
lar. This leads to generalizations of the Chew reciprocal-
bootstrap conditions. These agree with the present
crude partial-width data reasonably well (i.e., the first
six R values in Table II are small).

Actually, the V- and A-type trajectories are not alike.
The P-wave states are not degenerate. It is interesting
that the Py, states occur at energies intermediate be-
tween those corresponding to P-state degeneracy and
those required by trajectory degeneracy.’® A useful way
to improve the bootstrap condition would be to find a
simple method of accounting for the difference between
N-type and A-type trajectories.

We illustrate this problem by considering the Regge
form [Eq. (4)] of the consistency condition for =N
scattering. The condition states that |ImA’| in the
back direction should be the same for #*p and =
scattering. The experimental data in the range of
lab momentum 4-10 BeV/¢ shows that at 180°,
| A’ 5/ A’ i=p| ~2.16 It appears from the Regge analyses
that the ratio of imaginary parts is also about 2.1 The
prediction is off by a factor of 2.

On the other hand, if the semilocal average in Eq. (1)
is taken to involve an average over angle as well as
energy, it is likely that the prediction is satisfied better,
because the wtp cross section is peaked particularly
sharply in the back direction. (Off the back direction,
the data interpretation is complicated by the presence
of B as well as 4’ terms in the differential cross section,
however.) This example illustrates that the question of
correcting for the difference in the N- and A-type
trajectories is not disconnected from the question of

15 This may not be an accident; see M. Ademollo, G. Veneziano,
and S. Weinberg, Phys. Rev. Letters 22, 83 (1969).

16 For a review of backscattering data and Regge analyses, see
V. D. Barger and D. B. Cline, Phenomenological Theories of High
Energy Scattering (Benjamin, New York, 1969), Chap. 7.
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what type of semilocal average one should take in
applying the Regge or intermediate-energy form of the
consistency condition.

Another useful way of extending the method intro-
duced here would be to derive consistency conditions
relating s- and ¢-channel residues. The /-channel residues
would be proportional to products of the couplings of
meson trajectories with meson-meson and baryon-
antibaryon states. One could not test such a condition
on a single amplitude without knowing something about
the relation between the residues of baryon and meson
trajectories. The condition could be tested for amplitude
ratios, however; i.e., one could determine an over-all
proportionality constant by applying the condition to
one amplitude, and then use this constant to test the
condition for other amplitudes. It is hoped that such a
procedure will be carried out in the future.

In a previous reference, an idealized Veneziano model
was used to derive conditions similar to those given
here, for each of the three pairs of Mandelstam chan-
nels.t7 It was pointed out that if the even- and odd-
signature trajectories correspond respectively to the
SU (6) representations 56 and 70, the s-Z and s-# channel
conditions could not be satisfied simultaneously. This
raises the question of whether or not one of these condi-
tions is satisfied at the expense of the other. If only the
56+ and 70~ baryon trajectory multiplets contribute to
meson-baryon scattering, the predictions of the s-£ and
s-u# conditions differ only by a factor of 2 in the ratio of
odd to even parity coupling, i.e., in the yV/¥V®
ratio.” The s-u condition is treated in this paper. How-
ever, since the YV /Y™ ratio is determined by as-
suming that the condition is valid for KN scattering, our
procedure is not suitable for studying the relative merits
of the s-# and s-¢ conditions. However, it may be possible
to distinguish between these conditions with the inter-
mediate-energy or Regge form of the consistency equa-
tion [Eq. (5) or (4)] if sufficiently accurate data are
available.
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