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An independent method to determine the ~ZA and mZZ coupling constants is presented. It is accomplished
by writing a once-subtracted dispersion relation for ~h. and mZ scattering amplitudes slightly o8 the incident-
pion mass shell and evaluating the subtraction constant at the point where Adler's consistency condition is
valid. The results we obtained are g sss/4n= 209&6 7 and g sss/4n = 11.4&55, in good agreement with the
earlier calculation of Chan and Meiere using a completely diferent method.

I. INTRODUCTION

'HE determination of the meson-baryon coupling
constants plays an important role in hadron

physics. The m-EX coupling constant has long been well
known. ' More recently, the ElVA and ESZ coupling
constants have been determined' and tested' using the
multichannel effective-range parameters of the KX
system determined by Kim. ' Finally, using the same
analysis of the KX system, the xZZ and mZA coupling
constants were determined, ' but whereas the coupling
constants for the zX and EX systems satisaed both
SU(3) symmetry and the generalized Goldberger-
Treirnan relation, those for the ~A and m.Z systems did
not. ' In view of the importance of the question of
whether the meson-baryon-baryon coupling constants
satisfy SU(3) syrnrnetry or not, an independent deter-
mination of the ~RA and xZZ coupling constants is
highly desirable.

We present here a determination of the ~LA and xZZ
coupling constants using both Rim's analysis of the KX
system' and Adler's consistency condition on the strong
interactions. ~ This is accomplished by writing a once-
subtracted dispersion relation for ~A and xZ scattering
amplitudes slightly o6 the incident-pion mass shell and
evaluating the subtraction constant at the point where
Adler's consistency condition is valid. The consistency
condition for xS scattering has been tested by Adler
and is found to be experimentally satisfied. v We assume
here that similar conditions also hold for xA and ~Z
scatterings. Qualitatively, the consistency condition for
xA scattering has been tested by Martin' with very
primitive experimental data. ' Here, by using the better-
known ~A and mZ scattering data and with the assump-
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II. DETERMINATION OF ~XX. COUPLING
CONSTANT

Let us erst consider the matrix element Mg.

3IIs ', (M s+M +——s)—- (2)

for the mA scattering process depicted in Fig. 1, where k
and q are the initial and final four-momenta of the pion,
and similarly p, and pr are those for the A particle. M.&

7l

k

FIG. 1.m-A scattering.

tion of Adler's consistency conditions for mA and xZ
scatterings, we hope to determine the xZA and ~ZZ
coupling constants separately. The results we have
obtained are

g z &'/4sr =- 20.9~6.7, g»'/4sr = 11.4~5.5, (1)

in good agreement with the earlier calculation of Chan
and Meiere using a completely different method. '

In Sec. II, a detailed calculation of the xZA coupling
constant is presented. We write a once-subtracted
dispersion relation for mA scattering and choose the sub-
traction point at which Adler's consistency condition is
valid. In particular, it is shown"', 'explicitly how an
extrapolation for the scattering amplitude is made from
the physical xA scattering where experimental data
exist to the unphysical zA scattering when one of the
pion masses is equal to zero. In Sec. III, we summarize
a similar calculation for the ~ZZ coupling constant and
give our conclusion in Sec. IV.
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can be considered as a function of s, t, and k', where
s =- —(k+p~) ', t = —(k —q) ', and k' is the four. -

momentum squared of the incident pion. We write k'
explicitly since we shall consider processes in which the
incident pion is off its mass shell. The matrix element
Mq can be decomposed into the usual invariants, "
M/, (s,t,k2) =2/(p;)

&&[—Ag(s, t, k2)+-sip (k+q)Bg(s, t, k2)]u(P,). (3)

The Adler condition is then obtained for the amplitude
Aq in the limit A:„—+0, in which case s=-A.', t=p', and
k'=0, where p, and A represent the mass of pion and
the A, respectively. In this limit, Adler has shown'

This equation is essentially what we shall use to deter-
mine the xZA coupling constant. In order to carry out
the numerical calculation, we shall replace the ampli-
tude Aq(v) in terms of 2rA phase shifts. However, in this
case, the amplitude Ag for the process shown in Fig. 1
is unphysical since the incident-pion mass is equal to
zero, i.e., tt'=0, while all other particles are on their
mass shells. We first write A~ in terms of the amplitudes
f2 and f2 as

fg(W+A)
Ag ——4m—

[(E,+A) (Et+A)]"'

Ag(s=A2 t= p'k', =0)=0.
We shall use the variable

(4)

where
v = (1/4A) (s —u),

n= —(k —pt)'= 2A.'+ p,
'—s —t —k'.

where 1V=ps is the total c.m. energy,

E;= (W'+A. ')/2W

is the incident A energy in the c.m. system, and

(12)

Then Eq. (4) is identical to

As(v= 0, t = p, ', k'= 0) = 0. (6)

In order to write a dispersion relation, we consider
A z(v, t= p', k'= 0) as an analytic function of v. Further-
more, Aq has poles when s=Z' and n=Z', i.e., in the
v plane when v=&v„, where

v = (Z2 —A.')/2A,

Et= (W'+A. ' —p')/2W (13)

f2=K [f/+P/+2'(&) —f/-P/-2'(2')]
E=Q

(14)

is the outgoing A energy in the c.m. system. The
amplitudes fq and f2 are given by

and branch points at s= (p+A)' and 2/, = (p+A)', i.e. ,

cuts in the v plane from —~ to —vg and vq to ~, where
f2=K (f/ -f/+)P2'(~), (15)

va= p+ p'/2A.

Kith the usually assumed asymptotic behavior, the
function A~ satisfies the following once-subtracted
dispersion relation:

Red'(v, t= p,",k'=0) =Re-Ag(vo, t= p ', k'=0)-
g:/, '

42r(Z A) v. (v' —v—o2)

A (v„'—v') (v, 2 —vo')

2(v' —vo2) "v' Im.4/, (v', t, =p', k'=0)

yg V V V VO

where the pole term has been explicitly separated out
from the integral and g q~ is the rationalized, renormal-
ized 2rZA coupling constant (e.g., g /v2/42r = 14.5).

The subtraction constant is evaluated at vQ =0, where
the Adler condition, Eq. (6), is applicable. Hence
Eq. (9) reduces to

g, ,P 42r(Z —A) v'
Red'(v, t= p', k'=0) = ——

42r A v, (v„'—v')

2v' "ImAA(v') t= p' k'=0)-
+ P — — ——dv'. (10)

7P t g V P

'0 K. Nishizima, Pundamental Particles (Benjamin, New York,
1964), p. 148.

where P&(x) are Legendre polynomials, x= cost/ is the
cosine of the c.m. scattering angle which at t=p, '
(and k'=0, q'= —p') is

2 l/2

x=coso= 1 2,g2
(16)

and f/~ are the off-mass-shell 2rA partial-wave scattering
amplitudes with orbital angular momentum / and total
angular momentum l&—', . Since Rim's parameters and
all the Yq* resonance data are for zA. ~~A. with both
pions on their mass shells, in order to take the off-mass-
shells eBect into account we multiply their partial-wave
scattering amplitudes by a factor

(q.«/q-)' (17)

where / is the orbital-angular-momentum quantum
number for each partial wave, and

(18)q
—(E 2 A2) 1/2

q
—(E 2 A2) /. /2

We then evaluate Eq. (10) at the KX threshold v= vg/r,
i.e.,

vg/v = (1/2A) [(E+E)'—A2],

where Rim's phase-shift analysis is most reliable.

"W. Jacob and G. C. Wick, Ann. Phys. (N. Y.) t, 4&& i&9o9).
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~ I'„

q (Wa —W) —-', iT'r
(20)

where I'„and I'p are the partial and total widths, and

q is the momentum of the particle in the c.m. system.
Then the imaginary part of fi is given by

Imfi ——(1'„/2q)mb(W —Wg). (21)

Table I lists the relevant I'* resonances and their
parameters which we use in our evaluation. The last
two columns give their individual contributions to the
resonance-energy-region integral.

The numerical results are"

Red'(viYs/, p', 0) =- —39.28 I".',
coefficient of pole term=+ 2.25 F',

integral (low-energy region) = —86.52 F',
integral (resonance region) = —0,03 F' .

We hence obtain

g gs'/4ir = 20.9&6.7. (23)

Ke note here that the claculation is sensitive only to
the value of ReA and the low-energy integral. On the
other hand, the contribution from the resonance-energy
region is insignificant. Any change in the parameter
and the shape of the resonances will not change our
result more than 2 or 3'Po. We also estimated the con-
tribution from the integration beyond the resonance
energy by assuming a mA. total cross section of 30 mb
or less. Due to the highly convergent behavior of the
integrand, the contribution was less than 0.5% of that
from the low-energy region and hence negligible in
comparison to the uncertainty in the low energy
integral.

Because of the insignificance of the contributions
from the resonance-energy and high-energy regions,
the quoted error in Eq. (23) is solely due to the un-
certainty of Kim's effective-range parameters. We
varied each of Kim's 24 parameters used in this calcula-
tion within their quoted errors a,nd assumed that they
were not correlated Our final .error given in Eq. (23) is
the square root of the sum of the squares of these errors.

"A. Barbaro-Galtieri et ul. , Rev. Mod. Phys. 42, 87 (1970).
~~ Unj. tg are in fermis.

The integral in Eq. (10) was evaluated in two parts:
(a) the low-energy region from / o at threshold up to a
cuto6 energy corresponding to the total c.m. energy
W=1612 MeV (in this region Kim's parameters for
Sl/s I r/s and I s/s waves were used); (b) the resonance-
energy region (above W= 1612 MeV) where we used
all the known F»* resonances from the Particle Proper-
ties Tables" and assumed the narrow-width approxima, -

tion to evaluate their contributions. The narrow-width
approximation consists of noting that near a resonance
the partial-wave scattering amplitude f/, may be
represented by

TABLE i. The relevant F* resonances and their parameters.

Mass
(MeV)

Branching
ratios (%)

I j~ I" (MeV) s-A s Z

Contribution to
resonance-energy

integral (F')
xA ~Z

1520
1670
1690
1815
1830
2100
1670
1750
1765
1915
2030

0 -' 16 . 41
0 —,

' 30 ~ ~ ~ 50
0 —', 45 ~ ~ ~ 55
0 —', + 75 . . - 11
0 -' 80 ~ 30
0 -',= 140
1 2 50 32 50
1 -' 80 20 0
1 -', 100 15
1 -', + 50 5 0.4

-';+ 120 35 5

~ ~ ~

—1.609
+0.046
+0.830
—0.087
+0.795

+9.268
-0.074
+2.189
+0.474
—0.734
+0.020
—5.609
—0.0
+0.107
—0.012
+0.188

It has also been suggested that E&im's parameters
may not be meaningful enough to be used near the xA
threshold. In order to test the significance of this calcu-
lation, we examined the various contributions from the
low-energy integral by subdividing it into several parts;
our results are

low-energy integral

(from W = 1254-1329
(from W = 1329—1404

(from W= 1404—1479

(from W= 1479—1554

(from W= 1554-1612

MeV) = —6.95 F',
MeV) = —57.59 F',
MeV) = —20.61 F',
MeV) = —0.49 F',
MeV) = —0.88 F'.

This calculation shows that the first integral corre-
sponding to the integration from the xA threshold to
the mZ threshold is not important and the last integral
is negligible, which means that if we had chosen a
different cutoff energy in the low-energy integral, it
would hardly change our result. The dominant contri-
bution is from the second integral where the Fr*(1385)
lies. This is in analogy to Adler's calculation for the
7r Pease, r in that -the E*(1238)dominates the integral.

Lastly, we completed our calculation by using a set
of E-matrix parameters for the 5 wave given by Martin
and Sakitt. '4 This again did not affect our result. The
coupling constant we obtained is g rs'/4s-= 18.7. This
is because the integral is dominated by the Yi*(1385),
so changing the set of S-wave parameters will not
change our result.

III. DETERMINATION OF ~XX COUPLING
CONSTANT

For the 7' system, the scattering amplitude, after
crossing, often contains isospin 2. Since we have no
knowledge of I=2 phase shifts, we must consider a
combination of I=0 and 1 amplitudes which is crossing-
even. Investigation of the m.Z system shows that there is

"B.R. Martin and M. Sakitt, Phys. Rev. 183, 1345 (1969);
183, 1352 (1969).
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only one crossing-even combination that does not
involve I= 2 amplitudes:

at v= +vg, where

vg-—— (A' —Z')/2Z, (27)
Mz(v) =2Mz(I = 1)—Mz(I = 0)

= 7M oz+(v) —3LM~-z+(v)+M +z+(v) j, (24)

where we have suppressed t= p,
' and k'= 0 arguments.

For the combination Mz(v), we decompose it into
invariants Az(v) and Bz(v):

Mz(v) = e(p f) t A z(v)+- —,'iy. (k+ q)Bz(v) JN(p;) . (25)

In order to find Adler's condition for the above mZ

combination, we make the following observations. For
the xA system the Adler condition is a null condition.
This occurs because the Born term in xA scattering is
due to Z exchange, and the Zh. mass difference is non-
zero. Now in the xZ scattering, there are both Z and A.

exchanges; the A. exchange does not contribute because
of the ZA mass difference, but the Z exchange does. Its
contribution can be easily obtained using a method
similar to that used by Adler to derive his consistency
condition for ~N scattering. However, they differ by a
factor of 4 due to the different normalizations of the
amPlitudes. For the mX case, M~= zp(M +„+M -v); the
s-channel nucleon pole occurs only in the m. p scattering,
and hence the Born term is proportional to p(kg ~~)'.
For 7rZ scattering, Mz= 7M Iz+ —3(M -z++M +z+); the
s-channel Z pole occurs in„both ~'Z+ and z Z+ scat-
terings, and~the Born term is therefore proportional to
7(g„zz)'—3(g zz)', i.e., a factor 4 in difference. There-
fore, after a straightforward calculation, we obtain

Az(v=0, t=p' k'=0) 16pr g.zz'

Ezz (0) Z 4m.
(26)

where the pion form factor for the m ZZ vertex, Ezz (k'),
is evaluated at k'=0. In the derivation here, we have
used a generalized form of the Goldberger-Treiman
relation for Z P decay.

The pion form factor Ezz~(k') is normalized to unity
at k'= —p', i.e., when the incident pion is on its mass
shell. Since we have no direct knowledge of E~~ at
k'=0, we expand it in a perturbation series about
k'= —p', at which point it is 1, and assume that it does
not vary signi6cantly from 1 at k'= 0. This is partially
substantiated by the good agreement obtained by Adler
in the xX case.~

We then write a dispersion relation for Az by con-
sidering Az(v, f= p', k'= 0) as an analytic function of v.
Similar to the prA case, Az(v) is an even function of v.
It has poles when s=A' Z' and I=A' Z' and branch
points at s= (p+h.)' and u=(p+A)'. However, only
the A. pole contributes here. This is because the Z pole
does not contribute to the invariant amplitude Ag,
because the residue is proportional to the mass difference
between the scattered and exchanged baryons and is
therefore zero. Thus in the v plane Az(v) has poles only

and cuts from —~ to —vg' and vg' to ~, where

v p'= L(A+ p)' —Z'J/2Z. (28)

Again, with the usually assumed asymptotic behavior,
the function A~ satisfies the following once-subtracted
dispersion relation:

ReAz(v, t= p, ', k'=0) =ReAz(vp, t =p', k'=0)

g.zg' 12m.(h. —Z) vg(v' —vp')+-
4m. Z (v~' —v')(vd —vp')-

2(v' —vp')
+ — P

"v' ImAz(v', t =@',k'=0)
dv', (29)

v' —v v —voVg

where the pole has been explicitly separated out from
the integral. (The extra factor of —3 in the pole term
occurs because only the 3f -z+ term which has a factor
of —3 in the M~ amplitude can have a A intermediate
state. ) The subtraction constant is evaluated. at vp=0
where the Adler condition, Eq. (26), is applicable, and
Eq. (29) then becomes

16pr g zz' g.zg' 12~(h.—Z) v'
ReA z(v, t =p', k'=0) =— +-

Z 4n- 4~ Zv.q(vg' —v')

"ImAz(v', 1=p' k'=0)
dv'. (30)

v p vvg'

ReA z(vs~, f =p', k'= 0) = —134.19 F',
pole term= —146.29 F',

integral (low-energy region) = —89.10 F',
integral (resonance region) =+ 5.82 F'.

Hence we obtain'

g zz'/4n. = 11.4&5.5.

IV. CONCLUSIONS

(31)

(32)

The results we have obtained here are in extremely
good agreement with those in a previous calculation. '

"The estimated error is obtained by varying both the value of
g qg' and Kin's pararoeters about their mean values.

Using the value for g,z&'/4m previously calculated,
Eq. (30) becomes an equation for g zz'/4~. Similarly to
the m.h, case, we evaluate Eq. (30) at the KX threshold.
From the fact that A~ is a particular combination of
I= 0,1 amplitudes LEq. (24)J, we can use Kim's analysis
of the KN system for the low-energy region but this
time for the I= 0,1 phase shifts for the mZ system. The
contribution in the resonance region is obtained using
both the I=0,1 I'* resonances listed in Table I.We use
a similar extrapolating procedure as that in the ~A.

scattering. The numerical results are"
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and for the xZ scattering the resonance contribution
has changed from

—8.29 F' to —3.57 F',
so that the m.AZ coupling constant changes from

21.5+7 to 17.8&7

and the mZZ coupling constant changes from

11.4&5 to 9.0&5.

(34)

(35)

It should be noted that these values, though changed,
are still consistent with the previous calculation and are
in good agreement with the results of our calculations,
Eqs. (23) and (32). None of these values agrees with
the SU(3) prediction. Table II compares these results
with the SU(3) limit. Although the values obtained
for g xr, do agree with the SU(3) prediction, it should
be emphasized that this value follows directly from the
value of g qq, which does not agree with exact SU(3).
If instead a value of 10 were used for g xq'/4sr, then
Eq. (30) would yield 3.5 for g ques/4sr, which definitely
is not the SU(3) result.

~e A. H. Rosenfeld et at. , Rev. Mod. Phys. 40, 77 (1968).

However, we shall also point out here that in the
previous calcula, tion the resonance data used were from
the 1968 Particle Properties Tables. "These data have
been somewhat revised, especially the dubious 1690 Y&*

resonance, which has not been seen in later experiments
and has since been removed from the 1970 tables. "In
order to compare more meaningfully the results of this
calculation with that of the previous one, we recalcu-
lated the mZA and mZZ coupling constants using the
method of Chan and Meiere' with the newer resonance
data listed in Table I. We found that the resonance
contribution to the xA. scattering has changed from

5.16 F' to 0.33 F'

TAmx.z II. Comparison of coupling constants calculated from
Kim's analysis of theE E system and those obtained from exact
SU(3). The resonance data are from the 1970 Particle Properties
Tables LParticle Data Group, Rev. Mod. Phys. 42, 87 (1970)g.

Coupling
const', nts

Dispersion relation
A amplitude plus 8 amplitude
Adler condition (Chan-Meiere
(this calculation) method)

g zs'/4e-

g ss'/4jr
20.9&6.7
11.4+5.5

17.8%7
9 +5

We would also like to comment here that, though
these two calculations utilize the same experimental
data for input, there is no reason that they should give
similar results since the methods used are completely
different. In Chan and Meiere's calculation, they used
an unsubtracted dispersion relation for the scattering
amplitude 8, while in this calculation we use a once-
subtracted dispersion relation for the amplitude A. It is
well known that the A and 8 amplitudes emphasize the
various partial waves quite differently.

From the good agreement between these two calcula-
tions, we tend to be more confident in saying that the
meson-baryon coupling constants may indeed violate
SU(3) symmetry as in the case of decuplet~baryon
+meson. 'r
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