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An independent method to determine the #ZA and 22 coupling constants is presented. It is accomplished
by writing a once-subtracted dispersion relation for mA and 7= scattering amplitudes slightly off the incident-
pion mass shell and evaluating the subtraction constant at the point where Adler’s consistency condition is
valid. The results we obtained are grza2/4m=20.946.7 and g,»s*/4r=11.4+5.5, in good agreement with the
earlier calculation of Chan and Meiere using a completely different method.

I. INTRODUCTION

HE determination of the meson-baryon coupling
constants plays an important role in hadron
physics. The 7NN coupling constant has long been well
known.! More recently, the KNA and KNZ coupling
constants have been determined? and tested® using the
multichannel effective-range parameters of the KN
system determined by Kim.* Finally, using the same
analysis of the KN system, the 732 and #ZA coupling
constants were determined,® but whereas the coupling
constants for the 7V and KN systems satisfied both
SU(3) symmetry and the generalized Goldberger-
Treiman relation,® those for the 7A and 72 systems did
not.> In view of the importance of the question of
whether the meson-baryon-baryon coupling constants
satisfy SU(3) symmetry or not, an independent deter-
mination of the #ZA and #ZZ coupling constants is
highly desirable.

We present here a determination of the 72A and 722
coupling constants using both Kim’s analysis of the KN
system* and Adler’s consistency condition on the strong
interactions.” This is accomplished by writing a once-
subtracted dispersion relation for 7A and =2 scattering
amplitudes slightly off the incident-pion mass shell and
evaluating the subtraction constant at the point where
Adler’s consistency condition is valid. The consistency
condition for wIV scattering has been tested by Adler
and is found to be experimentally satisfied.” We assume
here that similar conditions also hold for wA and 72
scatterings. Qualitatively, the consistency condition for
mA scattering has been tested by Martin® with very
primitive experimental data.’ Here, by using the better-
known 7A and 72 scattering data and with the assump-
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tion of Adler’s consistency conditions for wA and #2
scatterings, we hope to determine the #ZA and 722
coupling constants separately. The results we have
obtained are

geo2/Ar=20.946.7, gezs?/dr=114+55, (1)

in good agreement with the earlier calculation of Chan
and Meiere using a completely different method.?

In Sec. I, a detailed calculation of the 7ZA coupling
constant is presented. We write a once-subtracted
dispersion relation for wA scattering and choose the sub-
traction point at which Adler’s consistency condition is
valid. In particular, it is shownexplicitly how an
extrapolation for the scattering amplitude is made from
the physical =A scattering where experimental data
exist to the unphysical wA scattering when one of the
pion masses is equal to zero. In Sec. ITI, we summarize
a similar calculation for the #ZZ coupling constant and
give our conclusion in Sec. IV.

II. DETERMINATION OF =X A COUPLING
CONSTANT

Let us first consider the matrix element M,:
Ma=3(Ms+Mo+p) @)

for the wA scattering process depicted in Fig. 1, where &
and ¢ are the initial and final four-momenta of the pion,
and similarly p; and p; are those for the A particle. M4

F16. 1. 7-A scattering.
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can be considered as a function of s, £, and k2, where
s=—(k+ps)?, t=—(k—q)?, and k? is the four-
momentum squared of the incident pion. We write %?
explicitly since we shall consider processes in which the
incident pion is off its mass shell. The matrix element
My can be decomposed into the usual invariants,'?
MA(S,t,kZ) = d(PJ)

X[ —=Ax(s,t,k%) 5ty (k+¢)Bals,tk?) Ju(ps) . (3)
The Adler condition is then obtained for the amplitude
Ay in the limit £,— 0, in which case s=A2?, {=u?, and
k?=0, where u and A represent the mass of pion and
the A, respectively. In this limit, Adler has shown®

Aa(s=A2 t=pu? £2=0)=0. 4)
We shall use the variable
v=(1/4A)(s—u), 5)
u=—(k—ps)?=202+p2—s—1—k2.
Then Eq. (4) is identical to
App=0,t=p% k*=0)=0. ©)

where

In order to write a dispersion relation, we consider
Ap(v, 1=u? k*=0) as an analytic function of ». Further-
more, A, has poles when s=2? and =22 i.e., in the
v plane when v= =+, where

vp=(Z*—A%)/2A, M

and branch points at s= (u+A)? and »= (u-+A)? ie.,
cuts in the » plane from — e« to —y¢ and v¢ to «, where

ve=p+u?/2A. (®)

With the usually assumed asymptotic behavior, the
function A, satisfies the following once-subtracted
dispersion relation:

Red (v, t=u? k2=0) =ReAx(vo, t=u?, k2=0)
g,gAgl"ﬁhr(E —A) v p(v:—re?) }
An [_ A =) (p2—ro?)
2(v2—v¢?) /‘” v ImANG t=p2, k2=0)
ve

- @' ) (9>
=) 6/ =)

where the pole term has been explicitly separated out
from the integral and g.sa is the rationalized, renormal-
ized 7ZA coupling constant (e.g., g.n*/4r=14.5).

The subtraction constant is evaluated at vo=0, where
the Adler condition, Eq. (6), is applicable. Hence
Eq. (9) reduces to

™

grza? 4r(Z—A) 2
Reds(v, (=p?, k2=0) = — ° v o
4m A vp(vy?—v?)

2?2 /w ImAL(, t=u? k2=0)

c Y (2 —p?)

10 K. Nishizima, Fundamental Particles (Benjamin, New York,
1964), p. 148.

&' . (10)

™
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This equation is essentially what we shall use to deter-
mine the #2A coupling constant. In order to carry out
the numerical calculation, we shall replace the ampli-
tude 44(v) in terms of wA phase shifts. However, in this
case, the amplitude 4, for the process shown in Fig. 1
is unphysical since the incident-pion mass is equal to
zero, i.e., k*=0, while all other particles are on their
mass shells. We first write 4, in terms of the amplitudes
fiand fy ast

( J1i(W+A)
[(EsAA) (Fp+A) T2

fz(W—-A)
- ) 11)
[(E:—A) (Ef—A)]”z) (

where W =1+/s is the total c.m. energy,

Eq=(W2+A%)/2W (12)
is the incident A energy in the c.m. system, and
Ep=(WH-A*—p?) /20 (13)

is the outgoing A energy in the c.m. system. The
amplitudes fi and f» are given by

f1=go[fa+l’m’(x)—fz—Pz-l’(x)] (14)
and
f2=li::1 (fr—fi)P{(3), (15)

where Pi(x) are Legendre polynomials, x=cosf is the
cosine of the c.m. scattering angle which at t=pu?
(and k%2=0, ¢*= —p?) is

ptoo\Vz
¥ =cosf = (H— ——) )
Ef*—A?

and fi are the off-mass-shell wA partial-wave scattering
amplitudes with orbital angular momentum / and total
angular momentum I-£%. Since Kim’s parameters and
all the Y* resonance data are for mA— wA with both
pions on their mass shells, in order to take the off-mass-
shells effect into account we multiply their partial-wave
scattering amplitudes by a factor

(16)

(Gott/qon)? an

where / is the orbital-angular-momentum quantum
number for each partial wave, and

Qors= (E&—A)1?, gon=(E/—ANYE (18)
We then evaluate Eq. (10) at the KN threshold »=rzy,

ie.,
vev=(1/20)[(N+K)*—A*],
where Kim’s phase-shift analysis is most reliable.

11'W. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959),

(19)
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The integral in Eq. (10) was evaluated in two parts:
(a) the low-energy region from »¢ at threshold up to a
cutoff energy corresponding to the total c.m. energy
W=1612 MeV (in this region Kim’s parameters for
S1y2, P1j2, and Py, waves were used); (b) the resonance-
energy region (above W=1612 MeV) where we used
all the known Y,* resonances from the Particle Proper-
ties Tables!? and assumed the narrow-width approxima-
tion to evaluate their contributions. The narrow-width
approximation consists of noting that near a resonance
the partial-wave scattering amplitude f; may be
represented by

1 3T

frm e,
g (We=T)=4irs

(20)

where T', and T'z are the partial and total widths, and
¢ is the momentum of the particle in the c.m. system.
Then the imaginary part of f;is given by

Im fi=(Tp/2q)w6(W —Wg). (21)

Table I lists the relevant Y* resonances and their
parameters which we use in our evaluation. The last
two columns give their individual contributions to the
resonance-energy-region integral.

The numerical results are’?

Reda(vzw,u?0)= —39.28 2,
coefficient of pole term=+4 2.25 F?,

22
integral (low-energy region)= —86.52 F?, (22)
integral (resonance region)= — 0.03 F2,
We hence obtain
grz0?/Am=20.9-£6.7. (23)

We note here that the claculation is sensitive only to
the value of Red and the low-energy integral. On the
other hand, the contribution from the resonance-energy
region is insignificant. Any change in the parameter
and the shape of the resonances will not change our
result more than 2 or 3%,. We also estimated the con-
tribution from the integration beyond the resonance
energy by assuming a wA total cross section of 30 mb
or less. Due to the highly convergent behavior of the
integrand, the contribution was less than 0.59, of that
from the low-energy region and hence negligible in
comparison to the uncertainty in the low-energy
integral.

Because of the insignificance of the contributions
from the resonance-energy and high-energy regions,
the quoted error in Eq. (23) is solely due to the un-
certainty of Kim’s effective-range parameters. We
varied each of Kim’s 24 parameters used in this calcula-
tion within their quoted errors and assumed that they
were not correlated. Our final error given in Eq. (23) is
the square root of the sum of the squares of these errors.

12 A. Barbaro-Galtieri ef al., Rev. Mod. Phys. 42, 87 (1970).
13 Units are in fermis.
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TasLE I. The relevant ¥* resonances and their parameters.

Contribution to

Branching resonance-energy
Mass ratios (%) integral (#?)
MeV) I JP T (MeV) wA = A =
1520 0 $ 16 e 4 +9.268
1670 0 - 30 cee 50 —0.074
1690 0 3= 45 ... 55 +2.189
1815 0§+ 75 e 11 +0.474
1830 0  §~ 80 cee 30 —0.734
2100 O - 140 e 1 cee +-0.020
1670 1 - 50 32 50 —1.609 —35.609
1750 1 N 80 20 0 +0.046 —0.0
1765 1 5= 100 15 1 +0.830  4-0.107
1915 1 &+ 50 5 0.4 —0.087 —0.012
2030 1 i 120 35 S +0.795 4-0.188

It has also been suggested that Kim’s parameters
may not be meaningful enough to be used near the wA
threshold. In order to test the significance of this calcu-
lation, we examined the various contributions from the
low-energy integral by subdividing it into several parts;
our results are

low-energy integral
(from W =1254-1329 MeV) = — 6.95 F2,
(from W =1329-1404 MeV) = —57.59 F?,
(from W =1404-1479 MeV) = —20.61 F2,
(from W=1479-1554 MeV)=— 0.49 F?,
(from W=1554-1612 MeV)=— 0.88 F2,

This calculation shows that the first integral corre-
sponding to the integration from the wA threshold to
the 72 threshold is not important and the last integral
is negligible, which means that if we had chosen a
different cutoff energy in the low-energy integral, it
would hardly change our result. The dominant contri-
bution is from the second integral where the ¥ ,*(1385)
lies. This is in analogy to Adler’s calculation for the
w-N case,” in that the N*(1238) dominates the integral.

Lastly, we completed our calculation by using a set
of K-matrix parameters for the S wave given by Martin
and Sakitt.'* This again did not affect our result. The
coupling constant we obtained is grza?/4r=18.7. This
is because the integral is dominated by the ¥,*(1385),
so changing the set of S-wave parameters will not
change our result.

III. DETERMINATION OF =XX COUPLING
CONSTANT

For the n2 system, the scattering amplitude, after
crossing, often contains isospin 2. Since we have no
knowledge of I=2 phase shifts, we must consider a
combination of /=0 and 1 amplitudes which is crossing-
even. Investigation of the 72 system shows that there is

14 B, R. Martin and M. Sakitt, Phys. Rev. 183, 1345 (1969);
183, 1352 (1969).
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only one crossing-even combination that does not
involve I=2 amplitudes:

Ms@)=2Ms(I=1)—Ms(I=0)
=TM yo3+(v) =3[ Mo3*(0)+ M r++ ()],

where we have suppressed ¢=pu? and k2=0 arguments.
For the combination M3(v), we decompose it into
invariants As(v) and Bz():

M) =a(p)L—As()+5iy- (k+)Bs() Ju(ps) -

In order to find Adler’s condition for the above 72
combination, we make the following observations. For
the wA system the Adler condition is a null condition.
This occurs because the Born term in wA scattering is
due to T exchange, and the A mass difference is non-
zero. Now in the 72 scattering, there are both 2 and A
exchanges; the A exchange does not contribute because
of the A mass difference, but the Z exchange does. Its
contribution can be easily obtained using a method
similar to that used by Adler to derive his consistency
condition for #V scattering. However, they differ by a
factor of 4 due to the different normalizations of the
amplitudes. For the 7N case, M y=3(M *p+M.p); the
s-channel nucleon pole occurs only in the 7~ scattering,
and hence the Born term is proportional to $(V2g.xn)?2.
For 72 scattering, M z=TM ys3+—3(M r~z*+ M +s+); the
s-channel 2 pole occurs infboth 72+ and 7~Z* scat-
terings, andjthe Born term is therefore proportional to
7(grz2)2—3(grzz)? 1.e., a factor 4 in difference. There-
fore, after a straightforward calculation, we obtain

(24)

(25)

As(p=0,t=p2, k2=0)
KZ2(0)

167 grzs?
2 4r

where the pion form factor for the #Z2 vertex, K**7(k?),
is evaluated at k2=0. In the derivation here, we have
used a generalized form of the Goldberger-Treiman
relation for 2 8 decay.

The pion form factor K2#7(k?) is normalized to unity
at k2= —pu?, i.e., when the incident pion is on its mass
shell. Since we have no direct knowledge of K27 at
k?=0, we expand it in a perturbation series about

2= —pu?, at which point it is 1, and assume that it does
not vary significantly from 1 at k2=0. This is partially
substantiated by the good agreement obtained by Adler
in the wlV case.”

We then write a dispersion relation for Az by con-
sidering Ax(v, = u?, k?=0) as an analytic function of ».
Similar to the wA case, Ax(v) is an even function of ».
Tt has poles when s=A? 3? and #=A% 2% and branch
points at s= (u+A)? and u= (u+A)% However, only
the A pole contributes here. This is because the = pole
does not contribute to the invariant amplitude 45,
because the residue is proportional to the mass difference
between the scattered and exchanged baryons and is
therefore zero. Thus in the » plane As(v) has poles only
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at y=-v,, where

va=(A2—22)/22, 27
and cuts from — w0 to —v¢’ and »¢’ to «, where
ve'=[(A+p)2—2%]/22. (28)

Again, with the usually assumed asymptotic behavior,
the function Ay satisfies the following once-subtracted
dispersion relation:

Reds(v, t=p2 k2=0)=Red s(vo, t =u2, k2=0)
ngAZ[IZW(A——Z) VA(Vz—Voz) ]
4 z wa2—r?) (va2—vo?)
© ' ImAs(, t=u?, k2=0)
|
ve!

2(1/2—'1/()2)
(V'Z—Vz) (V/2_V02)

dv', (29)

™

where the pole has been explicitly separated out from
the integral. (The extra factor of —3 in the pole term
occurs because only the M,~z+ term which has a factor
of —3 in the M amplitude can have a A intermediate
state.) The subtraction constant is evaluated at »y=0
where the Adler condition, Eq. (26), is applicable, and
Eq. (29) then becomes

z 4x 4 Zya(va2—r?)
2v? /°° ImAz(/', t=p2 k2=0)

+—P
T Sy V' (v'2—»?)

Reds(y,t=p? k?=0) =

dv'. (30)

Using the value for g.sza?/4n previously calculated,
Eq. (30) becomes an equation for grzs?/4w. Similarly to
the 7A case, we evaluate Eq. (30) at the KN threshold.
From the fact that A5 is a particular combination of
I=0,1 amplitudes [Eq. (24)7], we can use Kim’s analysis
of the KN system for the low-energy region but this
time for the 7= 0,1 phase shifts for the 72 system. The
contribution in the resonance region is obtained using
both the I=0,1 ¥* resonances listed in Table I. We use
a similar extrapolating procedure as that in the A
scattering. The numerical results are'?

Reds(ven, t=p? k2=0)= —134.19 I?,
pole term= —146.29 I2,

31
integral (low-energy region)= — 89.10 F2, (31)
integral (resonance region)=- 5.82 I2.
Hence we obtain'®
grz3s?/4r=11.41+5.5. (32)

IV. CONCLUSIONS

The results we have obtained here are in extremely
good agreement with those in a previous calculation.?

15 The estimated error is obtained by varying both the value of
gx2a% and Kim’s parameters about their mean values.
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However, we shall also point out here that in the
previous calculation the resonance data used were from
the 1968 Particle Properties Tables.’® These data have
been somewhat revised, especially the dubious 1690 ¥*
resonance, which has not been seen in later experiments
and has since been removed from the 1970 tables.!? In
order to compare more meaningfully the results of this
calculation with that of the previous one, we recalcu-
lated the 7ZA and #ZZ coupling constants using the
method of Chan and Meijere® with the newer resonance
data listed in Table I. We found that the resonance
contribution to the wA scattering has changed from

516 F* to 0.33 F? (33)

and for the =2 scattering the resonance contribution
has changed from

—829F? to —3.57 F?, (34)
so that the #AZ coupling constant changes from
21.5+7 to 17.8%7 (35)
and the 722 coupling constant changes from
11445 to 9.043. (36)

It should be noted that these values, though changed,
are still consistent with the previous calculation and are
in good agreement with the results of our calculations,
Egs. (23) and (32). None of these values agrees with
the SU(3) prediction. Table II compares these results
with the SU(3) limit. Although the values obtained
for g.s= do agree with the SU(3) prediction, it should
be emphasized that this value follows directly from the
value of g.s1, which does not agree with exact SU(3).
If instead a value of 10 were used for g,za%/4w, then
Eq. (30) would yield 3.5 for grzz?/4m, which definitely
is not the SU(3) result.

16 A, H. Rosenfeld ¢f al., Rev. Mod. Phys. 40, 77 (1968).
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TasLe II. Comparison of coupling constants calculated from
Kim’s analysis of the KN system and those obtained from exact
SU(3). The resonance data are from the 1970 Particle Properties
Tables [Particle Data Group, Rev. Mod. Phys. 42, 87 (1970)].

Dispersion relation
A amplitude plus B amplitude

Coupling Adler condition (Chan-Meiere SU@Q)
constants (this calculation) method) limit
geza/4m 20.94-6.7 17.847 7
gxzs?/Am 11.445.5 9 £5 9

We would also like to comment here that, though
these two calculations utilize the same experimental
data for input, there is no reason that they should give
similar results since the methods used are completely
different. In Chan and Meiere’s calculation, they used
an unsubtracted dispersion relation for the scattering
amplitude B, while in this calculation we use a once-
subtracted dispersion relation for the amplitude 4. It is
well known that the 4 and B amplitudes emphasize the
various partial waves quite differently.

From the good agreement between these two calcula-
tions, we tend to be more confident in saying that the
meson-baryon coupling constants may indeed violate
SU(3) symmetry as in the case of decuplet— baryon
~+meson."’
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