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requirement of TCI' invariance can be stated in the Equations (7) and (9) yield
for m

(nl TlE')=x,A *e"

(e]TlE')=2 e"-

Here 5 is the scattering eigenphase in the channel e.
CP invariance requires A =ReA . Combining Eqs.
(5) and (6) with Eq. (1), the right-hand side of Eq.
(3) can be expressed in terms of e and the A 's and, if
A = ReA for all channels, assumes the simple form

2(1+l~l')—'(e Q 3 '+e* P A ').

The imaginary part of Eq. (3) can then be written as

(m2 —ma) Ree=Ime (Q X 2 ').

Beside Eq. (3), unitarity also requires

v, =2 l(hl&l&i, ') I' ~

If we again choose the complete set k as the set of seM-

conjugate channels o., we obtain

yi —yg ——2 —(Q X.A„') .
1+ [el'

Thus, while unitarity and TCP invariance require the
sum on the right-band. side of Eq. (3) to have the phase

Ps, Eq. (4), the same conditions require e to have the

phase @, given above, ' which could also have been
deduced directly from Eq. (65) of Ref. 2. Equation (10)
admits two solutions for P, differing by 180'; thus it
might be thought that a sign factor, e.g., the sign of

cos@„ is an additional independent parameter. ' How-

ever, this can always be taken positive by convention.

The redefinitions
l
X')~lE') e —+ —e, l

Xi') —+l Eio),
'

and lE2O) —+ —lE'20) leave E'q. (1) unchanged; hence
it is possible to regard Res&0 as the convention which

de6nes the distinction between Eo and Ko states. '0

Consequently, in superweak theories (defined by
2„=Red for all channels), all CP-noninvariant
phenomena in neutral kaon decays are determined by
the single real parameter

l el.

' If all channels n could be characterized by the same value of),we would have tabb, =X tan@ .
' In this connection, see the discussion of M. Nauenberg, T. D.

Lee, C. N. Yang, and I,. Wolfstein, in ProceeCirlgs of Ihe l'hirreenfh
IrIIernatiorlul Colference orI, High ENergy Physics (University of
California Press, Berkeley, 1967},p. 81."By a happy coincidence, this convention agrees with the usua
terrestrial definition of E' and E' states.
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A Veneziano model is proposed for the reaction m p ~ gn. This reaction is interesting since only the A2
trajectory can contribute in the t channel, and only T= —, trajectories appear in the s and I channels. We limit
the terms in our model to those which have leading asymptotic behavior in two channels. We emphasize the
intimate connection between resonance parameters and both forward and backward cross sections.

I. INTRODUCTION
" 'N this paper, we consider a Veneziano-type model
& ~ for the reaction vr p —+ rtn. Our main purpose is to
empha, size the intimate connection between the low-

energy resonance parameters and the residue functions
for both the forward (small t) and the backwa, rd (small u)
differential cross sections for large s. Kith a similar
purpose in mind, the Veneziano scheme has been
investigated for vrE elastic sca ttering by several

f Work supported by the U. S. Atomic Energy Commission,

authors. ' It has been found that, in general, there is a
sa, tisfactory correlation between the low-energy reso-
nance parameters and the forward differential cross
sections. However, the predicted backward cross sec-
tions are, on the whole, unsatisfactory. In I, the pre-
dicted cross section is too big by several orders of magni-
tude. Berger and Fox' come within a factor of 2 for
the 0 width, but they do not consider the fit to be

'S. I'enster and K. C. Wali, Phys. Rev. D I, 1409 (1970},
hereafter called I; see also E. Berger and G. Fox, Phys. Rev.
188, 2120 (1969}.References to their related papers are contained
in these papers.
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quantitatively acceptable. It has been suggested' that
absorption effects are necessary. But prior to drastic
modification of the simple Veneziano scheme, it would
be interesting to see whether the discrepancy is confined
to the m.N system in which both isospin T=—,'and T=~
baryonic trajectories, and both isospin T=0 and T= 1
mesonic trajectories, contribute. In contrast, the re-
action tr P ~ ttn has considerable simplifying features.
It has only one trajectory in the t channel, the A2,
and only T=2 trajectories in the s and u channels.
Thus we are at least free of the ambiguities associated
with the 6 exchange. '

From the known mass spectrum in the low-energy
region ( 1.6 GeV), we introduce two T=2 baryonic
trajectories N and N~, along with the A2 trajectory in
the t channel. By imposing suitable resonance con-
ditions, we can ensure that only the observed particles
appear in the energy region of interest. By fitting the
principal features of forward scattering, we predict the
backward scattering at several energies. At present,
there is no experimental information in the reaction
tr p —+ ttn for sufficiently high s and small u. Such
information will be very useful in testing the model.

In Sec. II, we discuss the specific form of the scatter-
ing amplitude. In Sec. III, the resonance conditions
and the forward differential cross sections a.re used to
evaluate the constants in the model. Using these
constants, we plot the backward differential cross
sections. The concluding section is devoted to the dis-
cussion of the results.

II. FORM OF AMPLITUDE

As in I, we start with the invariant amplitudes A (s,t,u)
and B(s,t,u) expressed as sums of Veneziano-type
terms. Following Miyamura, 4 we consider only those
terms which give rise to leading Regge behavior in all

the channels. Thus,

B(s,t,u) =«[PiBN. (2, 1)+P2BN, (2,1)
+ ttBN N

A(s, t,u) =43r[ttlCN. +(23, 1)+tt2CN, +-(2,1)+X1CN.+(2,2)
+ 2 N,+(2,—2')+&3CN.N,+(2,2)5, (2 2)

where
1'(-'m —.(s))1'(n —(t))

B+(-,' ,m)n= ~s~u
p

F(23m+n (ts3) -tl(t))— —
F(-,'m n.(s))N—-' n t2l„(u))—

B,„+(21 m, 23n) = — -&s~u, (2.3)
1'(2'm+-2'n —n, (s) —t3„(u))

1'(-,'m —t3,(s))I'(2'n —n3(u))
B,(-2, m, 23n) =—

I'(-21m+ ,'n ot.(s) n,„-(u)—)—
~ C. Lovelace, Nucl. Phys. 312, 252 (1969).' V. Barger and D. Cline, Phys. Rev. Letters 19, 1504 (1967).
4 O. Miyamura, Progr. Theoret. Phys. (Kyoto) 42, 305 (1969).

Miyamura has considered the same set of Veneziano terms used
here. He has also discussed the resonance spectrum. Our analysis
divers from his in only minor details. We are mainly concerned
with correlating forward and backward cross sections with these
resonance parameters.

$+—(1+~
—3»a ( t ))

+—1 (1~e
—i» [a» (»)—1/21)

then for fixed t, s —& ~,
B/4~~ (—Pl —4)Vl'(1 —a(t))(a' s) '" '

A/43r ~ (ttl+tt2) &+1'(1—tl(t)) (n's) "',
for fixed u, s —&~,

(2.4)

(2.5)

(2.6)

(2 &)

B/4~ ~ {[( Pl —4) EN—.++ ( tel+—4) kN. 5
)((tits)a ' »1 1 2p(3 —QN (u))
+[( P2+4—)br,++ ( P2 4—)br—„5

&&(a's) ""'"' "'1'(-' —aN (u))II, (2 g)

A/43I ~ ([(ttl+lll+X3) 5N» + (ttl ill ~3)$N» ]
X(a'S) "'"' "'&(2—oN. (u))
+[(tt2+tl2+~3)PNp +(tt2 ~2 ~3)ENp ]

X(a's) "'"' "'1'('—aN, (u))) (2 9)

To ensure the correct signatures for the N and N7
trajectories, we require

—4+4 = P2+tt =0-,

ttl —Xl—X3=tt2+ X2+ X3=0,

(2.10)

(2.11)

so that we are left with four constant pa, rameters
which we shall take to be ttl, tt2, pl, and Xl. Note that
the high-energy differential cross sections computed
from (2.6)—(2.9) depend only on ttl, ttt2, and Pl.

III. NUMERICAL EVALUATION OF
PARAMETERS

As has been customary in the Veneziano fra, mework,
we assume linear trajectories all with the same slope,
i.e.,

o(t) = 23+&'t,

n ( N) s+ 32(s=t2M), 2—

t2N, (s) = —23+(3'(s—M,2),

(3.1)

(3.2)

(3.3)

where M is the nucleon mass and 3f~ is the mass of
X*(1518).The universal slope n' is chosen to be 0.9
GeV '.

The main feature of the differential cross section for
tr P ~ ttn, as in the reaction tr P ~ tr3n, is the turnover
nea, r t 0. This requires a delicate cancellation between
the invariant amplitudes A(s, t,u) and B(s,t, u). Thus,
from our fit (see Iiig. 1) to the forward differential
cross-section data, 5 we find

pl=1.3 GeV '
' O. Guisan, Phys. Letters 18, 200 (1965).

(3.4)

The functions C,+, C,„+, and C, are analogously de-
fined beginning with

C(a,b) = F(a)F(b)/F(a+b —1) .

If we define the signature factors
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IOO—

To determine p& and p& separately, we require that
there be no parity partner at nN, (M' r') = —',. From Eqs.
(A4) and (AS) in I, this condition implies that the ratio
of the coeKcients of the», term (», is cosine of the
scattering angle) in the invariant amplitudes 2 and
8 must be (3f—3II7)' Evaluating this ratio in our
model, we find

p2/pg p2/pi =——3II~—3E.

Combining (3.12) with (3.4) and (3.5),

(3.12)

IO—

0,2
I

0.4

I 1 I

I

e

f

0.6
-t (GeV )

0.8

5.9 GeY/c

I3.5 Ge V/c

1.0 1.2

, 9.8 GeV/c

pl 0.52 GeV ', @2=0.75 GeV '. (3.13)

With this information, we can predict the backward
cross section, the partial width for the A "(1518)—+ Ey,
and the f/d ratio for the coupling of cV'r octet to the
octets of the pseudoscalar mesons and the baryons.
The predicted backward cross sections for several
energies are shown in Fig. 2. From the known total
width of iV, (1518),

~N*-N"/P» i i= (10&&10 ')% (3 14)

to be compared with an experimental number ~—,'%.
The corresponding f/d ratio parameter f is given by

FIG. j.. Differential cross section for m p —+ gn in the small-3 region. f= 0.27. (3.15)

and

pi+ p'= »pi/~'~ (3.5)

To determine the remaining constant X~, we examine
the additional states predicted by the model. At nN (s*)

there are no J~= ~+ particles, since we have im-

This implies an s-channel helicity-Rip amplitude with
coupling five times as large as the helicity nonflip
amplitude. ln the language of Gell-Mann, Frautschi,
and Zachariasen, ' if one writes

iO

f+=~(~)bi(~) ('(~'s-) '" "',
f-= (-~/4~')'" (t)P.(t) -b.(~)]&+( ")- ' -",
then

b2(0) =6bi(0) .

(3.6)

(3.8)

The particle at uN (cV') =--,' is a pure J~= —,
'+ state,

since there is no pole in the invariant amplitude
A(s, f,u) at this point. It can, therefore, be identified
with the nucleon pole, yielding the residue condition

do- pb
du GeV2

4.0 GBY/c

42gNN gNN„/4~= 2Pi/e'. (3.9) 5.9 GeY/c

gNN, = (1/~~) (1 4f)—gNN. , —

we find from (3.4) and

gNNx /4~

(3.10)

If we use exact SU(3) to relate gNN„ to gNN (we use
the notation of Ref. 7),

IO-I—
/

/
/

/
/

/
/

/
/

/
/

/
/

9.8 GeV/c ~

f= 0.31. (3.11) IO

S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev.
126, 2204 (1962}.

7 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).

-I.O -0.8 -0.6 -OA
-u (GBV2)

-0.2 0.0

FIG. 2. Differential cross section for 71- p —+ gas in the small-I region.
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posed the signature conditions (2.8) and (2.9), but these
are additional states with J~=-'+. Since the 8 ampli-
tude does not vanish at this point, we cannot remove
both the J~= ~+ states. We choose to identify the Roper
resonance N~(1.47 GeV) as the daughter state of n~ (s*)
=—,'. This is not inconsistent with the presently known
uncertainties in the mass and the width of the Roper
resonance. If we make this identification, again ap-
pealing to Eqs. (A4) and (A5) of I, we ffnd

A.g=1.98 GeV '.
This completes the determination of all the constants
in the model. A Yukawa-type coupling constant g»z„
of the Roper resonance to A g can be determined by
using the experimental width of the Roper resonance
decaying into xS. If we take this width to be 0.26
GeV, we find giv~~„/4ir=2. 6. If the Roper resonance
belongs to an octet, the corresponding f/d ratio pa-
rameter f has a value of f=0.34.

The particle spectrum in the region of interest is
completed by a parity doublet J =—,

'+ at e~„=~. The
state has a much larger coupling to qE compared to

the ~ or the ~+ states at the same mass. We identify
this —', state to be the Nii*(1550). We use the experi-
mental numbers

Far„* x/Fr=0. 35, F~„* „~/F =0.65

to calculate Fr for the N*(1550); we ffnd

I'~= 160 MeV.

For energies higher that 1600 MeV, the particle
spectrum becomes parity-doubled on both the leading
trajectories and their daughter trajectories.

Dt. CONCLUSIONS

We have written a Veneziano model for n. p —& gn
using only terms with leading Regge behavior in two
channels. At the same time, we have obtained quali-

tative agreement with the experimental widths of the
known resonances. Unlike the xS problem, where
terms with nonleading Regge behavior must be added
to obtain the correct resonance spectrum, the leading
terms suffice. (The small width for the J"= ~~+ daughter
at E~=~ would make the particle hard to And in this
reaction. )

We have also predicted a backward differential cross
section with our model. It should be pointed out that
the backward cross section is sensitive to the universal
slope' of the Regge trajectories. If o.' is increased to
1.0 GeV ', and if the other parameters are changed
slightly to maintain the correct particle spectrum and
widths, the contribution of the E~ trajectory tends to
cancel. This cancellation lets the E trajectory dominate
the backward cross section, and a sharp dip appears
near E = ——,'. For the slope n'=0. 9 GeV ', there is
less cancellation, and hence more effect on the small-u
cross section from the X~ trajectory. Experimental data
for the reaction irp ~ gn at small u would therefore be
quite important in testing the model in general, as
well as determining more accurately the slope n'. A
recent experiment by Coleman et a/. ' has shown the
reaction m. p~ gm in the backward region. Although
they were unable to measure a cross section, they deduce
a value g„'/g ' 0.18&0.06 which is far too large to
agree with Eqs. (3.10) and (3.11). In a resonance
fit to vr p-+ gn and yp —+ qn, , Deans and Holladay"
ffndg„'/g '(10 '. Further studyisneeded to determine
the coupling g,~~.

8 Some analyses of data involving A ~ exchange indicate that the
effective A2 trajectory does not have a slope near 0.9 GeU '. See
R. D. Mathews, Nucl. Phys. Bl1,339 (1969).One may explain the
Qatter effective trajectory as being due to effects of Regge cuts.
See M. Blackmon, Phys. Rev. 178, 2385 |',1969). Since we And a
reasonable fit to the forward data, and since universal slopes are
essential to a Ueneziano model, we have not considered changing
the slope of the 2 ~ in our numerical work.

' S. Coleman et a/. , Phys. Letters 303, 659 (1969).' S.R. Deans and W. G. Holladay, Phys. Rev. 165, 1886 (1968).


