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and project this onto the one-fermion subspace to
obtain

H =n y+Prnp+H a+sgypygh(x) .
We can then proceed in one of two ways.

(a) Perform a Foldy-Wouthuysen transformation to
determine the correct nonrelativistic limit which turns
out to be (to order I/ntp)

P'
~= .+- + -~(*)- '~~(*)+~' (33)

2psp 2ssp 28$p

The presence of the p'(x) term and the gradient
coupling make this a considerably more complicated
problem than the one we have considered so far. We
also propose to take into account the strong angular

correlations between fermion and Geld wave functions
implied by the interaction term.

(b) U we find again that nonrelativistic kinematics
is untenable, the final step would be to try to solve
the Dirac equation self-consistently. Whether or not
this is possible is at this time an open question.
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The scaling behavior observed in deep-inelastic electron scattering is related to the structure of the electric
current commutation function in position space. We show that scaling is assured when that object has the
following form, which is also consistent with Regge behavior:

1 cosset p
i(P I Lj"(x),j (0)jIP) = Lg"" I I

—8"hj —e(x P)B(x') da&, FJ(~)+e(x.p)tt(x)f, (x'x.p)

Slntot)$ ' p+EP"P"Cj Ph(~"P"+hP")+—g""(P S)'j ,e(* P)tt(x') d—Fs(x)+e(xP)tt(xs)fs(xsx P)4x' p GNp

In the above, Fr, =Fs—2~Fq, and the F; are the conventional scaling functions of 3jorken. The f; are arbi-
trary, except that js(0,x P) =0. It is also demonstrated that when the coillbinafion T&+ (rs/qs)Ts of the
conventional forward Compton amplitudes, as well as T2, are unsubtracted, a new sum rule can be derived:

(P ILj'(0») j'(0)3 IP) = —~'h(x)
Fs, ((g)

2Ã p Q)S

Finally, the consequences of the same unsubtractedness hypothesis for the electromagnetic self-mass of the
target proton are discussed. The unsubtractedness hypothesis is consistent with present experimental results.

I. INTRODUCTION
' 'N this paper we relate the remarkable regularities
& - observed in deep-inelastic scattering to the behavior
of the commutator of electromagnetic currents near
the light cone. That the light-cone commutator should
be relevant in this connection has already been noted
by several authors. ' %e show that the experimental

*Work supported in part by the U. S. Atomic Energy Com-
mission under Contract Nos. AT(30-1) 2098 and AT (30-1) 20'76.

f Alfred P. Sloan Fellow.
f Also at Cambridge Electron Accelerator.' For a summary of the experimental data, see R. E. Taylor,

SLAC Report No. SLAC-PIIB-677 (unpublished). We insert
here the caveat that the experimental data are not unimpeachable
evidence for scaling. A skeptic can take refuge in the large error
bars, and other uncertainties, and insist that scaling is in fact
weakly broken, for example by logarithmic terms. We do not here
succumb to this cautionary pessimism.
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data place stringent, but simple, restrictions on the
commutator, and that the leading light-cone singularity

9, f63 (1969) (Soviet Phys. JETP Letters 9, 97 (&969)g ~ B
Ioffe, Phys. Letters 30B, 123 (1969); R. Brandt, Phys. Rev.
Letters 23, 1260 (1969).These authors discussed the behavior of
the light-cone commutator; see also Ref. 8. After completion of
the major portion of this investigation, we learned from D. G.
Boulware that he and L. S. Brown have also studied this problem.
Some of their results are to be found in I.. S. Brown, in Lectures
in Theoretical I'hysics, edited by W. K. Brittin, B. W. Downs,
and J. Downs (Interscience, New York,' to be published). Other
results are unpublished. L. S. Brown has derived a representation
for the product of two currents, consistent with scaling, by using
the spectral representation and some regularity assumptions
about the behavior of the spectral functions [see Eqs. (6.45)—(6.4/)
of Brown's paper). This is equivalent to our representation for the
commutator, Eqs. (2.4) and (2.7) below. Brown has also discussed
the connection between a q-number Schwinger term and the
longitudinal electroproduction cross section in the deep-inelastic
region. This discussion is equivalent to our sum rule, Eq. (2.8)
below.
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niay be parametrized by the observed asymptotic cross
sections. Also a new sum is derived which connects the
asymptotic longitudinut cross section with a possible
q-number Schwinger term in the equal-time commutator
of the electromagnetic current with the charge density.
Finally, we demonstrate that the divergent part of the
electromagnetic self-mass of the proton, to lowest order
in electromagnetism, is determined by the total electro-
production cross sections.

There are no adequate theories which exhibit the
experimental high-energy phenomena. In view of this,
the conclusions of this investigation do not hold in any
of the usual models. Our purpose here is to translate
the experimental results into theoretical constraints
which must be satisfied in some future theory which
will be capable of describing the electroproduction data.
It is hoped that the properties revealed here will aid in
the construction of this theory.

In Sec. II we state and discuss our results; the proofs
are postponed to Secs. III—V. In Sec. VI, our formulas
are checked against calculations in model field theories.
Various technical computations are relegated to an
Appendix.

(I) lim F;((g,v) =—F;(co)A ~ .

(II) The F,(o&) are suf5ciently regular so that they
may be Fourier-transformed. The transforms can be
generalized functions.

That these assumptions are experimentally verified is
strongly indicated by the data: Statement (I) seems to
be well established. "The validity of (II) is supported
by the preliminary results that F2(u&) =const; Fr, (rv) =0.'

Our further results —the sum rule and the analysis
of the electromagnetic self-mass —require manipula-
tions, which are reliable only if FI,(ru) vanishes rapidly
as co ~ 0, or better yet if Fi,(cv) vanishes identically. Of
course, (I) and (II) are also required.

It should be recalled tha, t the F; are zero for I&v I )1;
coF &, Ii &, and FI, are even in ~, and a positivity condition
holds: F2(o&) &~2m&Fi(a&))0. The relation to the trans-
verse (0~) and longitudinal (O.z) total cross sections is
given by

Fi((o) ~ lim vor((o, v),
y ~oo

FJ.((o) ~ lim va z((u, v) .
y -moo

II. SUMMARY AND DISCUSSION

Of interest for total inelastic scattering processes is
the commutator function

It is convenient to introduce a tensor decomposition
of C""(q,p) which differs from (2.1):

c"(q P) =
I
A" qq—3c, —

rep"P" q—p(q"P"+q—"P")+g""(q P)'3~ (2 2)
C "(q,p) = d'x e' *(p

I Lj (x),j (O)] I p)

qp y qv F
P'q

El, (M,V) = 4G)'Vci(GO, v),

F,(~,v)= ~2'vC(~, )v.

The object of present interest is

(2.3a)

(2.3b)

g~ F,

The state
I p) is the target state of 4-momentum p",

p'= m' (spin averaged if it is a fermion), j& is the elec-
tromagnetic current operator, and q is the virtual
photon 4-momentum. The second equality defines a
gauge-invariant tensor decomposition, and Lorentz-
invariant functions F; have been introduced. They
depend on v—= q p and q'. Frequently we shall use

q'/2—q p and v as independent variables. Also the
combination F~—2coF~ will be called Fl,.In the literature
F~ is usually called S'~ and F2 corresponds to vW2 ~ The
total transverse and longitudinal cross sections are
directly expressible in terms of the F;.

The analysis of the light-cone singularities of the
commutator of electromagnetic currents is based on the
following assumptions about the functions F,.'

' In addition to assumptions (I) and (II), our analysis relies on
mathematical manipulations which may be described as plausible
rather than rigorous. Thus implicitly, we are also assuming

c"(x,p) =i(PILj (x),j (O)hl p)
a"a"jci(x', * P—)+I P"P"&

—p a(avp"+a"pv)+gv"(p a)'Jc, (x', x p), (2.4)

and the task i.s to determine the form of c;(x', x p) such
that

C,(~,v) = i d4x —e'&'c;(x', x p) (2.5)

sufhcient regularity and uniformity of the various expressions
with which we are dealing. These assumptions are numerous and
uncontrollable, and it would serve no purpose to list them here.
However, we present several derivations, and this should clarify
and isolate the necessary mathematical underpinnings. Neverthe-
less, one of our assumptions is suKciently important to require
explicit mention here: Statement (I) is assumed to hold for all co,
positive and negative; while experimental evidence established its
validity only for co)0.

4 The scaling of F2 is much more firmly established than that
of Fg.

possesses the convergent high-energy behavior in v, at
fixed co, indicated by (I) and (2.3).

Since c""(x,p), and therefore c;(x', x p), is causal
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(i.e., vanishes for x'(0), it follows that

c,(x', x.p) = c(x p) 0(x')f;(x', x.p)

+e(x p)8(x')s toi(x p)

+g e(x P)(&~i(xs)5, &~&(x.P). (2.6)
n=l

Here 6t"&(x') is the nth derivative of 5(x'). Only a, finite
number of such derivatives is present; an infinite num-
ber would destroy locality. ' '

ci(x', x p) = «(x.p)6(x')
4x'

coscdx ' p
rfM Fz(M)

+e(x p)0(x') fi(x' x p) (2.7a)

cs(x', x p) = e(x p)0(x')
4x' 0

slnMx' p
F,(~)

tox' p

+e(x p)0(x') fs(x', x.p), (2.7b)

fs(x', x p) =fs(x', x p) fs(0, x p). —

The formulas (2.7) are derived in Sec. III. It is shown

by Fourier-transforming (2.6) that finite limits are
attained only when (2.7) is true. It is also demonstrated
that the representation (2.7) is consistent with Regge
behavior. s

' We are here ignoring the mathematically feasible situation of
an infinite number of derivatives of 8 functions, with coefficients
sufficiently constrained so that the sum remains local.

Throughout the paper we make use of the fact that expressions
of the form e(xo)8(x') and e(xo)b(x') are .Lorentz scalers; hence
they may also be written as ~(x.p)0(x') and e(x- p)B(x'), since p is
timelike, with positive time component.

' If the integrals over co do not converge in the usual sense,
they are to be interpreted as generalized functions. Such general-
ized functions may be ambiguous if alternative prescriptions can
be given for avoiding singularities. This is further discussed at the
end of Sec. III A.

8Note that the complete commutator function c&"(x,p) has
singularities snore violent than a 8 function at x~=0. Only the
invariants c;(x', x p) can be characterized by the statement that
they are no more singular than 5 functions at the light cone. It
is seen that by virtue of the double-derivative operation, which is
required to pass from c;(x', x p) to c&"(x,p), the latter object is
more singular than a 5 function. This remains true even if PI, =0,
in which case the invariant functions possess only step-function
singularities, while the complete tensor function will involve
derivatives of 5 functions. Also the lightlike commutator con-
sidered by Brandt (Ref. 2) can easily be shown to involved these
derivatives of b(x').

A. Simple Representation

Our first result is that Fz(o~) is finite if, and only if,
all derivatives of the 6 function are absent from
ci(x', x p): st'"'(x p) = 0, n&~1. Similarly, Fs(ce) is
finite if, and only if, all 5 functions are absent from
cs(x', x p): s, &"~(x p) = 0, n~& 0. Furthermore, the lead-

ing surviving singularity near the light cone is deter-
mined~ in terms of Fl, and F~'.

B. Schwinger Term Sum Rule

The second result of this investigation is a sum rule
which connects a possible q-number Schwinger term in
the

l
js,j'] equal-time commutator with the asymptotic

longitudinal cross section parametrized by Fl,. The sum
rule is

co F ( )
dto — . (2.8)

(d

Section IV is devoted to a derivation of (2.8)—several
methods are presented. First we establish (2.8) directly

by passing to the equal-time limit with the Oi compon-
ents of our representation for c""(x,p). Alternatively,
one may use the new Bjorken high-energy limit' to
arrive at the sum rule. These two derivations involve
manipulations which may be unreliable —interchanges
of limits, etc. Some light on the validity of such steps is
shed by showing that (2.8) requires a no-subtraction
hypothesis about the dispersive representation of cer-
tain portions of the forward Compton amplitude. The
validity of this hypothesis is related to properties of
FI.. The argument is presented in Sec. IV C."

%hether or not the integral occurring in the sum rule
converges is an experimental question. Preliminary data
indicate that Fz(&o) is consistent with zero, ' in which
case convergence is obviously assured. The identical
vanishing of Fr, (to) would then be a strong indication
that the Schwinger term is a c number, as has been
frequently conjectured. To our knowledge this is the
only instance where the q-number nature of the
Schwinger term is being probed experimentally. "

Although experimental data can be converted,
through the sum rule (if it is convergent) into informa-
tion about the $js,j'] equal-time commutator, the con-
verse argument may be unreliable. That is, even if it is
postulated that the Schwinger term is a c number,
before concluding that Fl,——0, one must first know
whether the sum rule converges; specifically, it is neces-
sary to know that Fr, (&o)

—& O(to'+') as to —+ 0.
l
There

is no trouble from the infinite range in (2.8), since
Fi,(to) =0 for &o&1.] A diverging sum rule very likely
indicates that the connection between the Schwinger
term and Fl, is lost, rather than that the Schwinger term
has infinite matrix elements; (see Sec. IV C).

Unfortunately, there is no satisfa, ctory a priori argu-
ment concerning Ft,(0). A straightforward application

9 J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
'This method is quite analogous to the techniques used by

C. G. Callan, Jr. and D. J. Gross /Phys. Rev. Letters 22, 156
{1969)gin the derivation of their sum rule.

"The Grat Weinberg sum rule LS. Weinberg, Phys. Rev.
Letters 18, 507 {1967}]is sensitive to the properties of the
Schwinger term. However, its validity is not conclusive evidence
for the c-number nature of this object; see D. J. Gross and R.
Jackiw, Phys. Rev. 163, 1688 (1967); D. G. Boulware and R.
Jackiw, ibid. 186, 1442 (1969).The sum rule (2.8) is related to a
connection derived by J. M. Cornwall and R. E. Norton, ibid.
177, 2584 (1969), between the Regge residue function associated
with gl, (co,p) and the Schwinger term. See also J. M. Cornwall,
R. E.Norton, and D. Corrigan, Phys. Rev. Letters, 24, 1141 (1970).
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of the Regge-Pomeranchuk lore indicates Fr,(0)&0
(see Sec. III 3). On the other hand, the experimental
data are not inconsistent with the hypothesis that the
usual Pomeranchuk pole decouples from this amplitude,
or even from the entire process.

We remark here that the present rule is quite diferent
from the one obtained by Callan and Gross. "In their
calculation, they relate various integrals over P2 and
Ill. to the tensor structure of

Our formula (2.8) makes no reference to this object.
Of course, neither of the two sum rules can be checked

by explicit calculation in realistic Geld-theory models. "
In Sec. VI it is shown that our result is satisfied in free-
field theories. However, it is further shown that in
lowest-order perturbation theory for a theory of fer-
mions, with a vector-meson interaction, the sum rule is
violated. In that theory F&(&o) does not exist, nor are
the manipulations with limits valid.

The present representation for the Schwinger term,
(2.8), bears a striking resemblance to the analogous
relation for the vacuum-expectation value of that ob-
ject, expressed in terms of the total electroannihilation
cross section, o.(q') ":

= i&I'8(x) dq'q'o (q') . (2.9)
32% A p

C. Self-Mass Divergence

of that object. The answer is'

( 2

8m~
I
I+ d&OFs(or) ln~+(finite terms). (2.10)

In the above, bm is the self-mass of the target, to lowest
order in electromagnetic interactions. I. is related to a
subtraction constant in a fixed q' dispersion relation for
the Compton amplitude; hence it is not directly related
to the measured cross sections. In Sec. V, we show that
if the sum rule of Sec. II B is correct, then the diver-
gent part of the electromagnetic self-mass can be com-
puted in terms of measurable (in principle) deep-
inelastic cross sections. If Fr, (~) does not vanish, then
the self-mass is quadratically divergent. If Fi,(&o) is
identically zero, there is probably still a logarithmic
divergence; the logarithmically divergent term has the
form

~mdiv =
dg' sz

g' 7l p

cV—— d&e F,( )&oI. (2.11)
)

Here 3f is a non-negative quantity, determined by the
nonscaling corrections to the cross sections.

A. Fourier-Transform Analysis

The general form for c,(x', x p) which follows from
causality I Eq. (2.6)$ is repeated here for reference:

III. DERIVATION OF REPRESENTATION

We present the derivation of the position-space
representation I Eq. (2.7)) for the commutator func-
tion. Our method is a direct exercise in I'ourier analysis.
At the end of this section, it is demonstrated that the
representation is consistent with Regge phenomenology.

+e(x p)8(x')s &'&(x p)

+Q e(x p)3&"&(x')s;&"&(x p). (3.1)

The existence of Fs(&0), the vanishing of Fr, (&0), the
no-subtraction hypothesis about a portion of the for- o&(x'~ x'p) ='(x'p)e(x')f'(x'~ x'p)
ward Compton amplitude, and the Cottingham for-
mula" for the electromagnetic self-mass can be com-
bined into a calculation of the logarithmic divergence

"C. G. Callan, Jr. and D. J. Gross, Phys. Rev. Letters 22, 156
(1969l.

"In theories where the electromagnetic current is bilinear
in Fermi 6elds which interact by meson exchange, F1 and F2 do
not exist beyond the Born approximation, while FI, does not
exist beyond erst-order perturbation theory; see R. Jackiw and
G. Preparata, Phys. Rev. Letters 22, 975 (1969); 22, 1162(E),
(1969); Phys. Rev. 185, 1748 (1969); S. L. Adler and Wu-Ki
Tung, Phys. Rev. Letters 22, 978 (1969); Phys. Rev. D 1, 2846
(1970). Only in the physically unrealistic, superrenormalizable
scalar meson theory with a cubic meson interaction do the F;
exist, at least in lowest-order perturbation theory. However, all
is not well, since the F; possess a singularity of the form (co—1)
D. J. Gross and R. Jackiw (unpublished).

4 See, e.g., J. D. Sjorken, Phys. Rev. 148, 1467 (1966).Formal
sum rules based on this commutator can be derived; J.D. Bjorken,
ibid. 148, 1467 {1966);V. Gribov et pl. , Phys. Letters 24B, 557
(1967);J. Dooher, Phys. Rev. Letters 19, 600 (1967); R. Jackiw
and G. Preparata, Ref. 13."W. N. Cottinghani, Ann. Phys. (N. Y.) 25, 424 l1963l.

n=l

In addition to the derivatives of 5 functions, which we
have exhibited explicitly in (3.1), there may also be
contributions to c;(x', x p) which behave as "fractional
derivatives" of 5 functions. By this we mean generalized

"Heinz Pagels, Phys. Rev. 185, 1990 (1969); G. B. West
(unpublished). It should be remarked here that this expression
for the logarithmic divergence of bm does not coincide with the
one of J. D. Bjorken, ibid. 148, 1467 (1966); i.e., it is not simply
related to (p ~

LB'j'(O,x),j;(0)g
~ pl. This diRerence is traceable to

Bjorken s use of an unsubtracted dispersion relation for T&, while
we permit a subtraction. For more general treatments of the con-
nection between commutators and self-mass divergences, see J.M.
Cornwall and R. E.Norton, ibid. 1'73, 1637 (1968);D. G. Boulware
and S. Deser, ibid. 175, 1912 (1968). Our formula (2.10) is consis-
tent with these investigations.
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functions of the form

[(x'—iex P) —(x'+icx. P) ]s,& &(x P),
where n is an arbitrary, positive noninteger quantity.
Sy arguments completely analogous to those presented
below, which show that the derivatives of 5 functions
violate scaling, and hence must be absent, one can rule
out n&1 in c~ and n&0 in c2.

The following properties are true: (1) The functions
f,(x', x p) must be integrable at x'=0. The reason for
this that the Fourier transform of e(x P) 8(x') f;(x2, x P)
is observable; therefore, it must exist (away from the
elastic point —q'= &2v). Since x'= 0 is an endpoint for
the Fourier integration, the integral must converge
there, and we conclude that f;(x', x p)=0((x') '+')
near x'=0. (2) The mass spectrum imposes the con-
dition that the Fourier transforms of f,(x', x p) and
s,'"'(x.p) in the one-dimensional variable x p have
finite support. " (3) From their definition, f,(x', x p)
and s, i"&(x p) are seen to be even in x p.

We now Fourier-transform the expression (3.1) with
respect to x. Consider first the terms involving the b

function and derivatives thereof. A typical expression is

I;&"&=—i d4x e'& ~e(x P)6&"&(x')s;&"&(x P)

dn e(n)s &" (&)ni d'x e'& *

XS(x p —) 8&"&(x'). (3.2a)

The four-dimensional x integral may be evaluated, in
the p rest frame, with the result

~m2" ' 1
d4x e"~8(x p —n)6&"&(x') =—

2"n'" lql

8 &) "( i—
q

— exp—g00, —qn
alql) 4 m

z—-v—(~.+Is.l)) P 2b)
m

Insertion of (3.2b) into (3.2a) yields the following
expression, once the symmetry properties s, i"&(n) are
taken into account:

Next a Fourier representation for s;&"&(n) is introduced:

s;~"&(n) = dp eiaes (n&. (p) (3.3)

s,&"&(p) has finite support. Our expression for I;&"& now
takes the form

1 (
dp s""'(p)

&lql&

do! zD

exp—(vo —
I ql+pm)

m2n

—«p—(co+ Iql+pm) (3 4)

When n&~ 1, the n integral becomes"

I.(0)— s, &'& —s;&'& I, (3.6a)
mlql m m

and in the desired region this approaches

I;&"~ —(2~'/v) [s,'+(&o) —s;"'(—2v/m')]. (3.6b)

For suficiently large v, s,'(—2v/m') vanishes because of
the mass spectrum limitations on its support. Therefore,
from (2.3) it follows that no 5 function contributes to
c2(x', x p), while

8

I q I
B

I ql (2e —1)!m'"—'lql

x[(qo—
I
ql+pm)'" —

'~(qo —Iql+pm)

-(~.+lql+p )'"-"(~o+lql+pm)]. (35)

We determine the asymptotic form of (3.5) as v=mqo
gets large, with ~ fixed, i.e., with Iql q, +nun. It is
easy to see that (3.5) and hence I;& &(co,v), becomes in
this limit proportional to v' '. According to (2.3),Ii" (~,v) (I2'"'(~,v)) must have a 6nite limit when
multiplied by v (v ). This is impossible for ~)~ 1, and
it must be concluded that all derivatives of 5 functions
are absent from c,(x', x.p).

For m=0, (3.4) is simply

mm2" 1 1

lql &lql&

s, &"&(n) in
X dn — exp—(Vo

—
I ql)

2n

si&'&(x P) =
SX2

QO g2COX'P

d(o Ii r, (co)
M

Sm'(o'si)o&(~) =I z,(~), (3.7a)

l'kY—exp—(co+ I ql) I (3 2c))'
» This is most easily seen from the spectral representation for

the commutator function, see L. S. Brown, Ref. 2.

cosMx'P
d(u — I r, (co) . (3.7b)

8 M. J. Lighthill, Introduction to Fourier Analysis and General-
jsed 'Functions (Cambridge U. P., Cambridge, England, 1959),
p. 43.
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t x2= 0, a,nd we obtainust be regu}ar at x =
)

'
n contributions « 3 $ areN t the step-function coni&ex,

Fourier-transformed:

I'=i d—4x e'& 'e(x p)tt(x') f,(x', x p

dn e(n)i d xed' '& *0(x')f;(x',n) 6(x p n—)

(3.8a)

F2(~) = 4—~i~

fz(0, x p) =—

dnne'" f,(0,n),

ZQ&X ~ g7

d(o Fz(co)

sin(dx ' p
de) Fz(Q)) .

(3.10b)

(3.11)

27rI (a),v) -+ —— dn

n2/m2

na
' } '

artially evaluated
'

nal x integra ls par
'

The four-dimenslona
b er orming the xo and theln e p xp

ensional integrations.

ldasymp 0ym totic formula for q ln erm
expression va ilid when v —+~:

2lim 4vCz(cu, v) =Fr, ((o)/(u,
y ~QQ

1' 2 'C ((u,v) I 2(cu)/co. —
y ~OQ

(3.12a)

(3.12b)

the derivation of the position-space
t h7 . However, we mus ex

which has been ma e.
p o (.

( )has been deman e a
to

derivation it
ts since, accordingroach finite lml s si

e
' '

ual to the finite quant&ties(23), these limits are equa to e

P P—cos —n+ —Qx+mcogx (3.8b)
5$2 m

rom the last cosinethe contribution rom
f id osclllatlons of the

' '
1 because o ra,pi

' ' t e
bile the first cosine erm

) . Th fo, fo lreglOn ~ S—n/m —(mn/v n er.
(3.8b) is equal to

2'' 2MQ

, .)P p

dc ccc ———v'c —ccctv'c)
m2 nS

27ri
3 c'-J;(, ) . (3.3c)

to FI. of thise that the contribution toFrom (2.3) we see t a e
term is

2M&

ego,'Ae (3.9)

F2((v) = lim 4izru)—
y —&00

2GOQ

(3.10a)

this limit does exist, (x', x.p)Since by hypothesis t is im

can be no more singsin ular than (x') '+'

p
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ez(0)(~)—
871 GO

sz&"(x p) =
8x2

(n3)+zz 6&'&(co)

(3.13)
Qco

e'"' vFr, (~)+n—, znzx p. —
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~ ~
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~ ~
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We remark that the same form for the commutator
function (2.7) may be also derived with the help of the
conventional spectral representation which is satisfied
by that amplitude: Jost, Lehmann, and Dyson" or
Deser, Gilbert, and Sudarshan. 'o We do not present
such a derivation here, since it makes use of techniques
already developed by Brown, 2 who applied them to a
study of the product (rather than commutator) of two
currents.

To see that (2.7) is consistent with (3.14), one merely
needs to Fourier-transform co(x', x p). A formula like
(3.8b) is again obtained, except that the independent
variables are now q2 and v. Explicitly, we find

2'
Io'(q', v)

cr2/m2
CLddf, —x—x, )m2

v v 8$$
X cox ———4x+ 4x)m' m

v v /Ãg'—cos n+ —gx ——g—x . (3.15a)
pE ss 2p

Destructive interference eliminates the contribution of
the second cosine term, while the argument of the first
emphasizes gx u/m. Therefore,

2r
I,'(q', v) ~ —— da f,(0,u)

a2/m2 P V 5$g
dx cox ———v'x+ —v'x)

ss 8$2p
2m.i

B. Regge Limit

We demonstrate that the representa, tion (2.7) is
consistent with the conventional ideas about Regge
behavior, i.e., fixed q' and large v behavior. "The calcu-
lation is performed for F2., completely analogous con-
siderations apply to FL, and to F~.

According to the usual lore, F2 should behave as
' in the Regge limit. Assuming n= 1, due to Pomer-

anchuk exchange, one is lead to the conclusion that I'2
is independent of v for large v. This may be combined
with the deep-inelastic limit, with the result that F2 is
also independent of q2 in the Regge region, i.e. ,

lim Fo(a&, v) =Fo(0,~) =Fo(0) . (3.14)
v~oot Q2 fixe/

According to (3.10b), this is equal to

I '(q', v) ~ —(1/q'v)F (—q'/2v) . (3.15c)

Finally, from (2.3b), we get

Po(q', v) ~ Fo(0), (3.15d)

which verifies (3.14). An analogous calculation for
Fz,(q', v) shows that

Fz(q', v) —+ Fz(0). (3.16)

It should be remarked that at a time when Fo(u&)

seemed constant at small ~, the above Regge argument
indicated that the Pomeranchuk did couple in the
relevant channel, with a strength given by the constant
value of Fo(~). However, further experimental study
has indicated a decreasing behavior for Fo(pp) at small

~,' and at the present time one has no way of determin-
ing Fo(0) from the data. Indeed a possibility exists
that Fo(0)= 0. Also the preliminary experimental results
are consistent with Fz.(cu) = Fz, (0)= 0. Thus the Pomer-
anchuk pole may be decoupling from the amplitude Ii z, .
Furthermore, if it does couple to F2, the intercept may
be less than 1.

IV. DERIVATION OF SUM RULE

Several derivations of the sum rule (2.8) are given.

The first proceeds directly from (2.7), evaluated at equal
times. Next, the deep-inelastic limit of Bjorken is also

shown to yield our formula. This section is then con-

cluded with a demonstration that a no-substraction

hypothesis, about the dispersive representation of a
portion of the forward Compton amplitude, is necessary.

for the validity of the sum rule.

A. First Method

From (2.4) it follows that

~:(P I
Li'(x), i'(o)]P) = —~'~'«(x', x P)

+I PpP'P —P g(goP'+ pI'Pp)]co(x' x P). (4.1)

Since the c, are odd in xo, only the odd part of the di8er-
ential operators survives at equal times:

dddd ne 'o'"t '"f (0n)— (3.15b)
(PILi (o,x),i'(0)]lp)=»m L~~'~" (x' x P)2 —oo

'9R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (1957);
F. J. Dyson, Phys. Rev. 111, 1717 (1958).

'0 S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev.
115, 731 (1959).

» There are many discussions which combine the Regge limit
with the deep-inelastic limit; see D. H. I. Abarbanel, M. Gold-
berger, and S. Treiman, Phys. Rev. Letters 22, 500 (1969); H.
Harari, ibad. 22, 1078 (1969); R. Brandt, ~bid. 22, 1149 (1969).

+~(p'P'+a"Pp')~ ~'~ ( o',x* P)] (42)

An expression of the form e(x') &(x p) f(x', x p) has the

property that it vanishes upon differentiation by xo,

when xp is set to zero. Therefore, according to (2.'7), we
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are left with

(p I Lj'(0») j'(0)j I p&

cosorx' p
dor Fz(or)

z
= —hm 8'8' d(xlO)

2~ xp~p

cosors ' p
dor Ez(or)

= —cI' b(x)
2m

coscoX p
dor Fz(or)

hm 8'8' c(x p)b(x')
4~2 xp~p

except that one considers the ij components of C&",

and integrates AC'& over co.

C. Relation to Compton Amplitude

In order to gain some understanding about the con-
ditions under which the sum rule (2.8) is valid, that is,
about the conditions which permit the manipulations
employed in the previous derivations, we now show that
(2.8) follows if there are no subtractions in the disper-
sive representation of a certain portion of the forward

(4 3) Compton amplitude. The amplitude in question is

In the last equation above, use has been made of the
fact that the causal zero-mass function, d(xl0), vanishes
at xp= 0, while its time derivative is a three-dimensional
8 function at that point. %hen the integral

'

cos+x-p
dor — -Fz, (or)

is convergent, in the usual sense, (4.3) verifies (2.8).

B. Second Method

Our second method ior deriving (2.8) makes use of
the new 8jorken high-energy limit. Ke take the Oi com-
ponents of (2.1), form the limit pq~~ at

fixed

, in the
frame p=q pl/lpl, subject to the constraints p'=m',
i.e., pq Ip, and or constant, i.e., qq

—2pqor —lql. It
then follows that

2poC"(q, p) ~ 2q'F~(~)/~'.

Also Cq'(q, P) may be written in this limit as

(4.4)

Coa(n *)~ d4~ e—»vo~*oe—~'Iql*oe—~q *
%q)t

&&&pILj'(*),j'(0)jlp& (45)

An integration over or of (4.5) produces a 5 function in
2poxq, which then evaluates the xq integral at equal
times:

T""(q,p) =~ d'*e"*(pl T*j"(*)j"(0)
I p&

2'i(q', v) =T,(q')+-
(-a'/2) '

8'i(q', v')
dv" -, (4.8)

1 " 8'2(q', v')
T,(q', v) = — dv"

21r ( q~r2) ' (v v )
(4.9)

In the above, the Wi are related simply to our I', :
Wy=E~, vW2=—F2. We have allowed for one subtraction
in (4.8) while no subtractions are present in (4.9). This
reQects the usual Regge ideas: W~ —+ v, W2 —+ v

ot.'= 1. If one forms the combination

Tz(q', v) =—Ti(q', v)+ (v'/q') T2(q', v), (4.10)

one may verify that the absorptive part of Tr, (q', v) is
essentially El,. Therefore, to the extent that one may
extrapolate the present electroproduction data to the
conclusion that the Pomeranchuk pole decouples from
this amplitude, it is plausible to assume that Tr,(q,v) is
unsubtracted " '4

When the fixed-q' unsubtracted dispersion relation
for Tz, is written in terms of the variable or'= —q'/2v',
one arrives at the formula

= —4""—q"q"/q') Ti(q', )

+(p"—q"q. p/q')(p" —q"q p/q') T2(q', ) (4 7)

The T; satisfy 6xed-q' dispersion relations in v.

lim d~ 2poc"(q p)

I'z(or)
de)

=2qr d'x e '«'*(p ILj'(O,x),j'(0)jl p& (46)

This is the desired result. A cautionary reminder must
be inserted concerning the validity of an interchange of
limit and integral.

It is easy to show that the Callan-Gross" sum rule
may be derived by the same techniques presented here,

"d(o' Fz(or', q')
Tz(q' )=-

27l p CO GO CO

(4.11)

"Of course a subtraction in a dispersion relation is not necessi-
tated only by divergences in the dispersive integral. A term
without an absorptive part may be present in the scattering
amplitude —we must assume that this does not occur for TJ..
Furthermore, it is clear that subdominant Regge behavior must
be consistent with our unsubtractedness hypothesis.

~'Such an assumption necessitates a subtraction in TI(q~,v).
For if TJ.(q', v) and TI(q', v) are unsubtracted, it follows from
(4.11) that v'T2(q', v) is unsubtracted. But according to (4.10b),
T~(q', v) is also unsubtracted. Hence a superconvergence relation
holds; J'dv'8'&(q', v) =0. This violates the positivity of TV&.

~4 In a diBerent context, some of the consequences of a no-
subtraction hypothesis for combinations of TI with v'T2 have
been explored by D. J. Gross and Heinz Pagels, Phys. Rev. 172,
1391 (1968).
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t-~0(0 x),J'(0)jIP(4„) l;m qoT"(qP)=

eo~~~

2 ~ F2(&iq)
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2 M

= llm q*TI«'")
gp~soQ

(4 14c)
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llm T2(q, v, =2

v~ = lllTl
gQ~ goQ

(4.13a)da)'F2(&u') =0,

dc'—Fl, ((u')hrn Tl, (q', v) = ——
op

p 2

11111
' p ( "&+—T h', ))gQ~soQ
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= lim Tl(q', v).
gp~soQ

(4.13b)
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g
f T"")" hence the g
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gp ~&oQ

= llm q*TI(q', v)
Qp~goQ

V. SELF-MASS DIVERGENCE

dq2
ds(1 s q

2 I/2 2T(q2 ~v)

o
2

(5.1)

nsubtractedness ofe sho%' how the ullsu
h h lf-conclusion t a

is ex ress-
L

asura e q
ma ebula15 for the se]f mass yThe Cottingham formula or

expr esse d in the form

de /

-Fr, (co') . (4.13c)
0 CO
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' '
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1 Fl, (&o',q2)
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The analog of (4.13b) now becomes

lim Tl, (q', v)=TI, —1111 I, , = —~, 0)

do)(F2(u))+2(oF I((u)) (5.2)

90~&oQ

= lirn T,(q', p).
gp~soQ

is the subtraction constant in the dlsper-

on-Low" theoremn a
' '

of Bjorken-Johnson- owAn application o j

R ac iw, . s. 314, 269 (l969).' '"' ' ""'""
6 'K J.h-.-.-dh s. Rev. 148, 1467 (1966); . o

Th t. Phy . (Ky to) S pp~L37-38,I'. E.Low, Progr. Theoret. ys.

eental data
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f th bt tdpresent developm ent is the use o

dispersion relation for Tl.. Prom
follows that

Ti(q', v) =—
2

d«p Fr, (Q) )q )

CO CO g'p CO

Og
llln P =

)
OT q fixed

(5.8)

0 ~ —&~ thereforeAs v~

(5.4)

act that o-T —+used the experimenta ac
5.8) b d d ist as s ~~. If relation . can

the deep inelastic region, nam

Note that as q2 ~ —~,

7i p 01.
lim v— =0,

&T co fixed

then it is easy to show t at at M=O.

(5.9)

Fr, («p', q') — Fp(p)', q')
7l p

2m2
des'F p(p)') q')

to avoid quadratically diverging self-
there must be no q-num er c

that (5.4) impliesTo proceed, we note t at

VI. MODEL CALCULATIONS

model calculations relevant to oui
hf h dfree-field calculation oresults. First the ree-

'f the present con-ions is seen to veri y
t d th t i th or ofclusions. Then iit is demonstrate a

h utral vector meson,
1 1 iol h

tin through a neu r
r erturbative ca cu a io

h ol tio d scuss d.sum rule. The reasons for the vio a ion

A. Free, Charged Bosons

2m2
IIX(q')——

g 7l

dp)'Fp(«p')q') .

Here M(q') & 0 since

4m'"
Fr, (p) )q

Hence 2'
3II— dp)'F p(p) ) )q'Ti(q')

om ton amplitude T&" for free,
charged bosons is given d' s o
fi d in the notation (4.7) andll ) in

(6.1a,Ti(q', v) =- —2,

p q = ' ' —4v' (6.1b)Tp(q', v) = —8q'/(q' —v

z q, v = ' ' —4v' . (6.1c)Tz(q', v) = —2q'/(q' —v

i requires a subtra, ction, 2 ano g

to th folio(5 6) ta ort function C&" leads to t e o o

where
3I= lim —q'cV(q') ~& 0.—

Q ~GO

5.2 and using F2= 2u)FiInsertingt this formula, into (5. ) an
gives

/

(5 7)
2

dM

7l p

~mdiv =

1&ely

divergent self-masseseen uadratically iv
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cited in Ref. 16.
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Ci(p), v) = 2m. «(pp+ qp) q '+2q p)
—2%«(pp —qp)5 q

(6.2a)=(-/)L~(1- )+|(1+ )0,

+ (8)r/q') «(pp —
qp) b(q' —2q.

(6.2b)= (2-/")L~(1 —)—~(1+ )l,
=F (~) =4~P(1 —~)yc(1+~)). (6.3)Fr, (p) = Fp p) = pl' — 1 p)

allan-e e
'

d Fp is a verification of the Ca an-The equality of Fr, and Fp is a veri
6 "sum rule for this theory.Gross sum

It now follows that

de= —2IcV e
—*"«(pp+qp)ci(x', x p) = —2I

&&&(q'+2q p) (6.4a)
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(a) (b)
FIG. 2. Forward Compton amplitude with first-order "strong"-

interaction correction (dashed line). It is understood that vertex
and self-energy insertions need to be included.

Fro. i. Forward Cornpton amplitude in Born approximation.
(a) and (b) pole terins; (c) seagull term.

Fz(a)) =0,
F-'(oi) =4rrP(1 cv)+~(1+(a)]

(6.9a)

(6.9b)

cs(x', x p) = —4lcV
d'q

— —e "*e(po+qo)
(2ir)'

0&8(q'+2q p) . (6.4b)

The integrals are evaluated in the Appendix. The result
is

ci(x', x.p) = (1/ir)e(x p)5(x') cosx p
+e(x p)0(x') f,(x& x p) (6.5a)

cs(x', x.p)= (1/ir)e(x p)e(x')(sinx p)/x p
+ e(x p) 0(x') fs(x', x.p), (6.5b)

fs(0, x p)=0.
On the other hand, inserting (6.3) directly into (2.7)
also yields (6.5), thus verifying the position-space
representation.

To check the sum rule, we note that from canonical
commutators it follows that

C. Interacting, Charged Fermions

In the theory of charged fermions interacting with
a massive vector particle, the forward Compton ampli-
tude, to lowest order in these interactions, is given by
Fig. 2. To this order it is known that the Schwinger
term is a c number, ' i.e.,

lim q&Ts'(q, p) =0,
@0~$00

(6.10)

The vanishing of Fz, is a consequence of the Callan-
Gross" sum rule for this model.

Since Cs(co, v) of (6.8b) and Fs(oi) of (6.9b) coincide
with the corresponding functions calculated for the
boson case, we conclude that the representation (2.7)
is valid here also. The sum rule is trivially valid. There
is no q-number Schwinger term in the free-field theory,
and Fg does vanish.

(P ILi'(0 x),i'(0)1IP) = »~'~(x)(p I ~*(0)v (o) IP)
= 2icj'b(x) . (6.6)

but that Fr, (o&) does not vanish":

Fz, (ce) ~ 0(1—oi')co' (6.11)

This same expression is arrived at by a direct evaluation
of the sum rule (2.8) with Fi,(co) as given by (6.3).

and that Fs(o&) does not exist":

Fs(oi v) (6.12)

B. Free, Charged Fermions

The spin-averaged forward, Compton amplitude for
free, charged fermions is again given by the diagrams of
Fig. 1, except that there is no seagull. The conclusion
of a straightforward calculation is

Clearly our representation is not satisfied —hypotheses
(I) and (II) are not valid. Also the sum rule is violated
since F()

CM No ~

Ti(q', v) = 8v-'/(q' —4v'),

Ts(q', v) = 8q'/(q' 4v'), — —

Tr.(q', v) =0.

Again T~ needs a subtraction, while T2 and T~ do not.
The commutator function is described by the invariants lirn Ts(q', v) =0,

aO~&e

0 07

(6.7a)
Note that the violation occurs even though everything
is finite.

(6.7c) The failure of the sum rule is rather subtle. The
essential steps for its derivations are (4.11)—(4.13), i.e.,

Ci(M V) = 0

Cs(~;) = ( 8~/q') s(po+qo) ~(q'+—2q. P)
+(8 /q') (Po —qo)~(q' —2q P)

= (2ir/v') L5(1—a)) —b(1+(u)],

(6.8a) ceo
lim Tr, (q', v) = —— Fr, (cv). —

g tl ~$00 2'r 0 Go

29The relevant calculation has been performed by Adler and
(6.8b) Tung, Ref. 13.
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From the explicitly calculated fact that limqo i„qoT '
= 0,"it follows that lim«, .„T;(q'p) = 0, i = 1, 2. There-
fore the culprit is Tr, (q', v), while T2(q', v) does go to zero
in this limit, even though our method of proving this
result is invalid in the present example, since P2 does
not exist. The failure of the sum rule occurs because
Tr, (q', v) does not satisfy an unsubtracted dispersion
relation. "Evidently in our second derivation the inter-
change of limit and integral is not allowed in the present
instance. We have not been able to explicate the precise
reasons which prevent the first derivation from being
valid. This point is being studied further. Its resolution
must await the explicit calculation of the position-space
representation for this model. We suspect that the
position-space representation will have additional terms
arising from a 5(&o) contribution to Fr, (sr)/aP, as a con.—

sequence of the subtraction in the dispersion relation

for Tr, (q', v).ao An intriguing question is whether or not
the present violation is related to the violation of the
Callan-Gross sum rule, which also occurs in this ex-
ample. " In any case, it should be remembered that
this model has none of the experimentally desirable
features. Therefore it may not be a serious counter-
example to our results.
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APPENDIX

Here we evaluate the integrals given in (6.4). The expression for (6.4a) is easy:

cg(x', x p) = —2IM
d4q

c ""(po+qo)~(LV+p j' m')—
(2m)'

d'q
2IMe'&'~ —c *& *e(qo) b(q' —m')

(2m)'

=2IMie'* &d(x~ m')

2I~(Q(m'x'))= —e(x.p)b(x') cosx.p ——e(x.p)e(x')-
4' Q(m'x')

=(1/x)e(x. p)b(x') cosx p+e(x p)8(x') fg(x', x p).

This verifies (6.5a). We have introduced the causal function d(x~ m ) with mass m.
The second integral is more recondite:

c,(x' x p) = —4IcV

= —4I3fei
d'q e(qp) 8(q' —m. ')

~
—iq z

(2m-) '
q p —m'

W(q+p)' — ')
e-"*e(p,+q, )-

(2x)' q p

(A2)

It is easy to verify that the integrand does not have a singularity at q p= m'. Hence we may, for convenience,
treat that point by the principal-value convention. By the convolution theorem, (A2) is recast into

d4q
c,(x' x p) =4REe" &d y d(y~m )'

(2~)' q'p —m

The q integral may be evaluated in the p rest frame:

(A3)

d q
— ~ ( —)

(27r) 4 m(qp m)—
&im (yp—x p)

= b(x —y)
dqp

g qp(sp p)

= 8(x y)(e'"'"' —"/ )-,'mic(y 'xOo) .
3 Explicit calculation verifying this statement has been performed by Dr. Anthony Zee (private communication).
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Therefore, we arrive at the following expression'.

2
co(x', x p) = IM—

m
dype' & d(y p, x I

m') p(xo —yp) . (AS)

The free-6eld commutator function is decomposed,

d(x I
m') = (1/2s) p(xo) b(x')+2~&(xo) 8(g') g, (g' x')

and the contribution from each of the two terms in (A6) is evaluated separately. First we consider

p(yp) 1
dyoe'""op(xp —yo) 8(yo' —x') =I&- —Le'"~*~o(xo —

I xl )—e-'"~*~p(xp+
I x I)j

2~mlxl

sinmlxl
I:&(xo—Ixl)+p(go+ Ix f)g

2zmlx I

(A6)

sinmlx
f

si (I (x p)' —m'*'j"')
p(gp) 8(x') = —p(xo) 8(x') — . (A7a)

~mfxf L(x.p) 2 moxoj 1/2

The last equation in (A7a) is the frame-independent version of the previous expression, for timelike p. Next, we have

4x—IM dype' "'o(xo—yo)p(yo)8(yo' —x')gr(m', yp' —x')

m 0

dyp sinmypI p(xo —yo)+o(xo+yp) j8(yop —x') g~(m', yo' —x')

2Ã 00

o(xp)8(x') dyp sinmyp8(xp' —yp')8(yp —x )oi&(m', yp' —x')
m 0

2'= —p(xp) 8(x')
jx)

dyo sinmyo gi(m', yo' —x') (A7b)

Combining (A7a) with (A7b), we conclude that

cp(x x'p) = (1/x') o(x'p) 8(x ) (sing p)/x'p+c(x p)8(x )fp(g x'p)

fp(0, x.p) =0.
This verifies (6.Sb).


