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Pro. 4. EAect of nonzero Gg"(t).

Af
G&"(t) = — P;(t),

1 t/4cV'— (10)

where the constant A is determined from the known
slope of Gs"(t) at the point t=0. Figure 3 shows the
corresponding neutron electric form factor plotted as a
function of t. Once we have a functional form for the
Gx"(t) term in formula (4), we can use it to remove the
discrepancy in Fig. 2. In Fig. 4 we have shown G~&(t)/p~

we plot G~&(t)/p~ as a function of t, where Gs"(t) is
taken to be zero. As expected, for small values of

~
t~

there is a small discrepancy between data points and
the curve of Eq. (4). This is due to the fact that Gs"(t)
is not zero for small ~tI. To show the effect of a nonzero
G~"(t) in the calculation of GM&(t), we will assume a
functional form for the neutron electric form factor
which is discussed in Ref. 12, namely,

I"ro. 5. G~&(t)/p, „plotted relative to the empirical dipole fit. The
experimental points are from Coward et al. (Ref. 13).

for small
~

t
~

with a nonzero neutron electric form factor.
Since a plot of Gist'(t)/p„relative to the empirical
dipole fit G~&(t)/p~=(1 —t/0. 71) 2 will clearly show
deviation of the theoretical curve from the data, such
a plot of G~&(t)/ti~ is given in Fig. 5, where the G~"(t)
term is also included. We also note that if we calculate
a mean-square ra.dius from the expression of G~&(t) and
take the slope of Gs"(t) from experiment, the measured
value of (r') is obtained. It may finally be remarked
that the choice P=5 which would give exact dipole
behavior asymptotically gives a slightly less good 6t
for low t, but is not yet excluded by experiment.
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On the basis of analyticity, crossing, and positivity of the imaginary parts of the partial-wave amplitudes,
we derive inequalities on integrals involving the low partial waves of elastic 7t- x' scattering in the physical
region. The integrals are sensitive only to the low-energy region, and can therefore be tested once a phase-
shift analysis is given. The relations can be used to discriminate between various proposed 7r'71-'phase shifts.

L INTRODUCTlON

NALYTICITY, crossing, and unitarity have long
been considered essential ingredients of strong-

interaction physics, and much eGort has been devoted
to elucidating their consequences. Apart from the im-
plications of unitarity for individual partial-wave ampli-
tudes, most tests of these general principles (such as the

~ Research LYale Report No. 2726-568$ supported by the U. S.
Atomic Energy Commission, under Contract No. AT(30-1)2726.

verification of dispersion relations, or the Froissart
bound) have involved the full amplitudes, and not
merely a f@w partial waves. Recently, however, many
diferent results on the partial-wave amplitudes of ~w
scattering below threshold have been obtained. In
particular, Common' and Vndurain' have found the
implications of the positivity of the absorptive parts for

I A. K. Common, Nuovo Cimento 63A, 863 (1969).' P. J. Yndurain, Nuovo Cimento 64A, 225 (1969).
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these waves; Roskies' has found the necessary and
sufficient conditions on these waves imposed by crossing
symmetry; and Martin' has combined crossing, analy-
ticity, and positivity to derive inequalities on these
partial waves. While these results can be useful for
parametrizing the partial-wave amplitudes even above
threshold, they cannot really be tested directly, since
they refer to the amplitudes in an unphysical region.

In this paper, we find constraints on the elastic x'z'
partial-wave amplitudes in the physical region; these
constraints follow from crossing, analyticity, and the
positivity of the imaginary part of the elastic partial-
wave amplitudes. They take the form of inequalities
involving integrals over the imaginary part of a few
partial waves. Moreover, the integrals are sensitive only
to the low-energy region. As a result, the constraints can
be tested once a low-energy phase-shift analysis is
available. Conversely, one can assume the constraints
to reduce the ambiguities of possible phase-shif t
analyses, just as dispersion relations were used to
discriminate between the Fermi and Pang x-Ã phase
shifts. '

After completing this work, I realized that most of
the results presented here had been anticipated by
Wanders. This paper differs from his in emphasizing
the applications to low-energy phase-shift analyses, in
generalizing his sum rules away from 1=0, and in the
content of Appendix B. (A numerical error in his paper
is also corrected. )

The paper is organized as follows: In Sec. II, for
simplicity we develop the constraints with the un-
realistic assumption that the fixed-t dispersion relations
for z'vr' scattering are unsubtracted. It is shown that
none of the proposed phase shifts of Malamud and
Schlein~ is consistent with the constraints. Besides
indicating the anticipated necessity for a subtraction in
m'~ scattering, this also shows that the constraints are
not trivial.

In Sec. III, we indicate how the analysis must be
altered in the presence of subtractions. One unfortunate
consequence of the alteration is that there are no longer
any constraints on the imaginary part of the 5 wave. In
this case the simplest constraint involves 3= 2 and I= 4.
Because no phase shifts have yet been proposed for these
angular momenta, the constraint is not yet testable. In
the narrow-resonance approximation, one obtains the
result that

Imf)'(s) =-Imf)(s), t~& 2

Im f,'(s) arbitrary. (1 2)

II. NO SUBTRACTIONS

Suppose the Axed-3 dispersion relation for the elastic
7r'7r' scattering amplitude were unsubtracted. Then we
would have

ds' A(s', t) - —+, (2.1)
s —s s —s

where A(s', t) denotes the absorptive part for physical
s', and we have used the s+-& I crossing properties of
the amplitude. In the region —4p'& t(4p', the absorp-
tive part can be expanded' as

2t
A(s', t) =Q (2t+1) Imf((s')J'( 1+, (2.2)

s' —4&2

Im f((s') ~& 0, s'&&4@'. (2.3)

While (2.1) already reflects the s, st symmetry of F(s,t),
we must still impose the I, n symmetry. This is most
easily done by introducing the variable

where F4, m4 are the width and mass of the lowest l=4
resonance with zero isospin, and F~„m~, refer to the
same parameters ot the fe resonance. If the first /=4
resonance occurs in the S, T, U meson region around
2 BeV, the inequality restricts F4 to be less than a
width of the order of F~,.

In Sec. IV, an alternative derivation of the results
is given, followed by the conclusions in Sec. V. In
Appendix A we prove some required results on Legendre
polynomials. In Appendix B, we prove the following
theorem already mentioned in Sec. III:
Given Imf&(s), all t, s&4p', consistent with crossing,
analyticity, and the constraints Imf&(s) &~0, then, if
the fixed-t dispersion relations are subtracted, there
exists a set of amplitudes Imf~'(s) consistent with cross-
ing and analyticity, where

I4 1 Ffo

m4' 36 mg, '
s'= 1+i/2k'= —1—u/2k',

s =4(k'+ ps)

(2.4)(1.1)
where

(2 5)' R. Roskies, Nuovo Cimento 6SA, 467 {1970).
4 A, Martin, Nuovo Cimento SSA, 303 (1968);63A, 167 {1969);

G. Auberson et ot. CERN Report No. TH-1032, 1969 lun-
published); or Ref. , p. 715.

s W. C. Davidon and M. L. Goldberger, Phys. Rev. 104, 1119
(1956).

' G. Wanders, Nuovo Cimento 63A, 108 (1969).
7 E. Malamud and P. Schlein, in Proceedings of the Argonne

Conference on xx and Ex Interactions, 1969, p. 93 (unpublished).

and insisting that E(s,t) be an even function of s.
Eliminating t and st in favor of s by (2.4), using the
expansion (2.2) in (2.1), and expanding the result as a

power series in s, we impose the requirement that the

8 A. Martin, Nuovo Cimento 42A, 930 (1966).
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coe%cients of s'"+' vanish. This gives

OQ
0Q

—P (2l+1) ds' Imf)(s')

for

s'& 4p' 1& 4 —4p'[(8/3)'" —1]~& s &~ 4p'.

Using the positivity of Imf)(s'), we obtain

-P (244+1)(1 4k2/(s4 4p2)) 4k2 2n+1 1

(222+1)! s —4p2 s —s 4p

ds' Imfp(s')gp(s', s) &&ds' Imfp(s')g2(s', s), (2.16)
4 2

+ 4' &'(4 —44'f(s' —44'))( —2(s'4-24'))"

r=o rf s' —4p, '

202 2"+1

X — — - =0, (2 6)
s'+2k' s'+2k'

that is,

Im fp(s')
ds ~~ 5

(s'+2k') '
Im f2(s')

ds
4p2 (s' —4p2) 2(s'+ 2k 2) 2

X[48k'+24k'(s' —4p')+11s"—16s'p' —16p4$ (2.17)

where P)(")(s) denotes dP (1s) /ds". The expansions are fol

valid provided p2(8/3) 1/2 (k 2 (0

1.e.,

—4@2(t(4p2,

—4p'( 2k'(s —1)(4p'

(2.7)

(2.8)

and so, near s= 0, we must have

1.e.,

—4@2(—242(4p'

—4@2(s( Sp,'.
(2.9)

(2.10)

In order not to have any singularity in the physical s'

region, we shall restrict s to satisfy

—4@2(s(4@2. (2.11)

ds' Irn f,(s') gp(s', s)

with

l=2
l even

We thus have a series of sum rules, labeled by a discrete
index n and a continuous index O2. But they involve all
partial waves. Now using (2.3) we show that they can
be rewritten as inequalities involving only low partial
waves.

Consider n=0, for example. We obtain

This is a typical example of the constraints one can
obtain in this formalism.

We have tested the constraint at k2=0 for the pro-
posed S-wave phase shifts of Malamud and Schlein'
which range from 420 Mev to 1 BeV in gs. We assumed
for simplicity that both sides of the equation were
dominated by their I=0 terms, because the I= 2 terms
are small in any model. Because the weight functions
fall like 1/s" for large s', the higher-energy behavior of
Imfp(s') and Imf2(s') is unimportant. One cain put an
upper bound on the error involved in cutting off the
S-wave integration above 1 BeV by saturating the
unitary bound

4s'
Imf, (s )4 ( )' (2.18)

in this region. In the energy region below 420 MeV, we
assumed the 6t

(2.19)

with u chosen to reproduce the phase shift at 420 MeV.
We saturated Imfp(s') by the fp resonance, and it did
not matter very much whether we used the narrow-
resonance approximation or a Breit-Wigner distribution
with the correct threshold, i.e.,

g)(s', s) = (21+1)
P1((s' s)/(" 4p') )— — —

(s'+2k')'

2P1'((s' —s)/(s' —4p') )+
s' —4p2

where

mg, l g,
(2.20)

s —sp+2mf, I'fp(k'/kp)'

= 1/(s'+2k')' 1=0.

In Appendix A, we show that

(2.15)g1(s',s) & 0

~

~ ~

~

~

~ ~

~

~

s'=4k"+4p' sp= (mf )'=4kp2+4p'. (2.21)
X +, I&~2 (2.13)

s'+2k2 s' —s For the "up-up" solution, the left-hand side of Kq.
(2.17) was (0.5&0.1)/4p2, whereas the right-hand side
exceeded 1.25/4p'. Thus the sum rule is unambiguously
violated. The situation is similar for the "up-down"
solution and even worse for the "down-up" solution.

The failure of this sum rule is not surprising„ It arises
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because the no subtraction assumption is unwarranted.
It does, however, demonstrate that these sum rules are
nontrivial, and that with suitable modifications in the
presence of subtractions they may be useful in discrimi-
nating between diferent proposed phase shifts. It is also
interesting that one can establish the necessity for a
subtraction of the fixed-$ ~'x dispersion relation, by
looking at the Low-energy S and D waves only. Wanders'

also noticed that the low-energy data implied the
necessity for subtractions.

III. SUBTRACTIONS

In the presence of subtractions, the vr'x' elastic ampli-
tude can still be written in terms of its absorptive part
up to an arbitrary constant. The correct expression is'

F(s,t) =C+—
1 1

ds' A(s', t) +
s' —s s' —u s' t s' ——4p'+2t~

ds' dt' A (s', t') —,(3.1)
p (s' —t') ' (s' —4t('+2t') '

where C is an arbitrary real constant. The s-u symmetry is manifest, and we must again impose the t-u symmetry.
As in (2.4), we introduce the variable s and insist that F(s,t) be an even function of s. Following the same technique
as in Sec. II, we find the following sum rules:

(4k')'"+' Q (2t+1)
» P('"'(1—4k'/(s' —4t(')) (—1)"+'

ds' Im f((s')
r=l (r —1)!(s(—4+P)r (s& s)Pn+P —r

» P(("~(1 4k'/(s' —4t((P)) $2rt—+2 r+( 1)"—(r —2n—)g
+2 Q =0. (3.2)

(2s~ 4@2/s) 2n+2—t

Since the sums start with r = 1, we see that the term with n= 0 vanishes identically. We also see that the S wave
never contributes in the sum rule since Pp("'(x) =0 for r&0. This is a consequence of the result that in the presence
of subtractions, crossing and analyticity do not restrict the imaginary part of the S waves if the imaginary part
of the higher partial waves are specified. This is proved in detail in Appendix B.The simplest nontrivial sum rule
in the case of subtractions is for n= 1. The result is (canceling an over-all factor 3s—1),

Z (2t+1)
Imf((s') s+4p' —4s' s' —s

(s' —4I ')(s' —s)'(2s' —4p'+s)' s' —4l ' s' —4l,')
(4t(') P+3s'+12s'P —6s'(s+4(((P) s' —s

=0 (3 3)
(s' —s) (2s' —4p, '+s) s' —4t('

As in Sec. II, we show in Appendix A that the coeKcient of Imf((s) is negative for all t)4
4t('(1 —2/W3) (s&4p', so that we obtain the inequality

Imfp(s') 3 " Imf4(s') 1

(s' —4t(')'(2s' —4t('+s)' 4 4„~ (s' —4t(')' (2s' —4t('+s)'

XL48s"—54s'(4t(')+42ss' —21s'+13(4t( ) ] (3 4)

I'r,/(mr, )') 361'4/(m4)'.

A. Martin, Nuovo Cimento 4'7A, 265 (1967).

(3 3)

We see that the convergence of the integrals is very
rapid, and, consequently, such a relation can be well

tested once a low-energy phase shift is given. However,
such ~x phase shifts have not yet been proposed.

In the narrow-resonance approximation, saturating
the t= 2 term with the fp meson, and the /= 4 term with
an I=O resonance of mass m4 and width I'4, we find

(for masses ))4p')

t It is reasonable to include only one resonance in each
partial wave, since for large s' the coefncient of Imf((s')
falls like 1/s".] If m4 2 BeV, the region of the S, T, U
mesons, we have the result'

"There is a numerical error in Ref. 6, which claims r4(60
MeV, whereas that calculation should give 1"4&600 MeV. For
Wanders's choice m4 ——1.97 BeV, mfp 1.26 BeV, and I'fp ——145
MeV, we would obtain F4 (230 MeV. The di6erence arises because
Wanders gives only a rough estimate of the coeKcient of Imi'4 in
(3.4).
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= —Q (2l+1) ds' Imfi(s')
8$@ x 4~%

with

2 (2l+1)
l=2

ds' Imfi(s')H)(s') =0, (3 9)
2l ) 1

X 2'i 1+-

Hi(s') = P ds h) ~"&(s',s)p&"&(s) . (3.10)

ds', Imf2(s') H2(s') &0, (3.11)

nontrivia cons r
' '
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then write

(s'+s+l —4p')'-s' —4p'

2$

( s' —4g' (s'+s+I 4p')'—~ (4 1)

Now introducing the varia les

4 2X=$3@
4
3P

(4.2)

(4.3)

8—
s' —4p, 2

(4.4)

Rs R owcl scllcs ln g and y~and expanding everything as a po
we obtain

P ) ir+i) (s) -2y

s p

'c w
'

e uating the coeKcien s owhich we can obtain by equatingt be s mmetric in x andy, w ic w
each n and. p. The resu ting sum

2l 1)

= —Q (2l+1)
8$8$ x'

E( +
T' I

+1 I—p+1

4 1968); F. Ka,gner, Nuovo Cimento 63A, 393, Ph s. Letters 288, 264 ('~ C. LoveIa, ce, P ys.
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and

n=2, 3, 4, . . . ; P=O, 1, 2 [-,'n ——,'],

G(x,y) =F(s,~) . (4.8)

A term of given n corresponds to extracting from
B'G/BxBy the homogeneous polynomial of degree n in
x and y. This arises from the term. of d.egree n+2 in

G(x,y), which can be written as

and z is given by (4.4). Here [m] denotes the largest
integer & m.

The simple form of these sum rules is a consequence
of the choice of variables x and y, which are a convenient
set of variables because s=t=u=~3IJ, ' is the symmetry
point of the amplitude.

For a given n, not all the relations corresponding to
a given value of p are independent. This can be traced to
the original symmetry of F(s,t) under s, u interchanges.
To count the number of independent constraints for a
given n, define

One can apply our techniques to other processes
besides x'x'. Since the signs of the imaginary parts of
the partial waves play a crucial role in deriving the
inequalities, the techniques are applicable only to
processes which are elastic in each channel, i.e.,

A+A —+ A+A or 2+3 ~2+3.
xw elastic scattering with isospin can be treated very
much along the lines of the present paper. Many features
in a narrow-resonance approximation have already been
discussed by Wanders. ' Ela,stic nucleon-nucleon scatter-
ing would be most interesting to study. The chief
problem is the existence of the unphysical cut in the
partial waves of $Ã~ÃX. But the sign of the
imaginary parts of the partial wave in this region is
known. " Whether one can then salvage any useful
results remains to be seen.
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with n+3 independent coefficients n . But the s, I
symmetry of F(s,t) implies that APPENDIX A

G.+p(x,y) = G„+,(—x—y, y), (4.10) (a) We wish to show that

so that G +&(x,y) has really only [-',n]+2 independent
coefficients and B'G„+2/BxBy has only [—',n]+1. After
symmetrization of B'G +2/'BxBy in x and y, G +2 will be
totally symmetric under interchange of x, y, —(x+y).
There are then" [—',I]+1 [an+—', ) inde-pendent coeK-
cients in G„+2(x,y) and also in B'/BxByG +2(x,y). Thus
the number of independent coefficients has been reduced
from [2n]+1 to [2n]+1—[-,'n+ —',], which means that
there are [i3n+3] additional constraints. Thus as p
varies from 0 to [—',n ——',] only [3n+—',] of the sum rules

(4.6) for a given n are independent.

V. CONCLUSIONS

fol

1 1
X —+—&~0 (A1)

s'+2k' s' —s

s'~& 4p', 4y'[1 —(8/3) '"]& s & 4p', l &~4.

Defining the variables

~ = (s' —s)/(s' —4~'),

w= s'/4p',

(A2)

(A3)

—P i(1—4k'/(s' —4p') ) 2P i'(1 —4k'/(s' —4p') )+
(s'+2/ ~) 2 s' —4p'

On the basis of crossing, positivity of the absorptive
parts of the partial-wave amplitudes, and analyticity,
we have derived inequalities involving only the imagi-
nary parts of the low partial wave of m'x' scattering at
low energies. These may be used to discriminate between
proposed low-energy phase shifts in x'x' scattering. In
the realistic case where the fixed-t dispersion relation is
subtracted, we have shown that no constraints can be
derived on the absorptive part of the 5 wave. The
ambiguity in this wave can be reduced if one uses the
nonlinear form of unitarity Imfi(s) ~& p(s)

~
fi(s) ~', but

this appears very difficult.

"Techniques for calculating the number of independent co-
eKcients can be found in R. Roskies, J. Math. Phys. 11, 482
(1970).

we must show that

P i(v)
(A4)

w+ (8/3) 'i' —11&v&- &~~ 1.
vv —1

(AS)

The left-hand side of (A4) is a, decreasing function of
ze for fixed v, so it is sufficient to verify the relation at
the largest value of nr consistent with (A5). The right-
hand side of the equation is a decreasing function of /,

"S.MacDowell, Phys. Rev. D (to be published); G. Mahoux,
Saclay Report, 1969 (unpublished).
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so that it suffices to choose /=4. The result is then
immediate.

(b) We wish to show that

s+4p' —4s' s' —s )P,(2)—
s' —4p, ' s' —4p'&

(4p')'+3s'+12s" —6s'(s+4p') s —s

/(s' —s) (2s' —4p'+s) s —4p

Proof: I et

fi'(~) =f3(~)+-
ir(s —4p')

2$
4s' 4(s')(),(3+ —, )& 3 (83)

s —4p, '
oo

fo'(s) =fo(s)+ — ds' g(s')
71 4p~

(A6)
for

s'& 4p' 4p'(1 —2/V3) ~& s~& 4p', l ~& 4.

With the variables v and m, it is equivalent to showing
that

Pi(2) (v) +3-
P 4(') (v)

&~ 0 (A7)
1 —v'L(w —1)/(3w —1)]'

(85)

(86)w+2/V3 —1
1(v( R'~~ 1.

1 t4 2$
x + Qo( 1+

-4(s' —s) s —44' ( s —44, ')

——', — ',e.(",-), (-)
with g(s) real and otherwise arbitrary as long as the
integrals converge. Then

Imfi'(s)=lmfi(s), s&~4p', l~&2

Imfo'(s) = Imfo(s)+g(s), s&~ 4p'.

(A8) If Imfo, Imfo' both satisfy (81), then

he left-hand side of (A7) is again a decreasing
i '

f d an increasing function of l. It therefore
r estsuffices to verify the relation for /=4 and m the larges

value consistent with (A8). The result then follows
immediately.

APPENDIX B

s for elastic x'm'Given partial-wave amplitudes fi(s) for elastic 3r 3r

scattering consistent with crossing, a y
'

y,nal ticit and the
constraints

(
1/2

&&Im fi(s) &~0, s~&4p'
s —4p'

(81)

we shall show that if the fixed-3 dispersion relation for

4'(s) satisfying the same properties but for which

Imf4'(s) = Imfi(s) 3
l &&2, s&&4p' (B2)

and Imfo'(s) is consistent with (81) but otherwise
arbitrary.

4s
lg(~) I

&2—
s —4p'

(87)

so that all the integrals do converge. Using the relation

F'(s, t) =F(s,t)+ — ds' g(s')

X — + +
s' —s s' —t s' —I

1 2 1 2s'
+ — ds' g(s') ———Q() —1 . (810)

s' p' 4p'

Thus F'(s, t) is crossing symmetric if F(s,t) is, and its
fixed-t dispersion relation requires no moreore subtractions
than F(s,t) does, provided F(s,t) needs at least one.

Z (»+1)P(s)Q(")=-, +, I, (Bg)
l even

we can perform the partial-wave sum

F'(~ t) =Z(2l+ 1)fi'(~)Pi(s. )
to obtain


