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The nonrelativistic strong-coupling theory with a recoiling source presented in an earlier paper is examined
in greater detail. The self-consistent calculation is extended to include a full treatment of the bound field
problem instead of the approximation of small oscillations about a constant equilibrium value. The approxi-
mations of nonrelativistic fermion kinematics and fermion eigenstates of definite angular momentum are ex-
amined carefully and found to be inconsistent. The conclusion is that the oversimplified model discussed in
the first paper is not realistic. A program for modifying the model to include relativistic kinematics and

angular correlations is proposed.

I. INTRODUCTION

N a recent paper! we presented a first attempt at
incorporating a recoiling source into the old strong-
coupling model of the nucleon.? The basic constituents of
the model were a heavy point fermion with a spin of
1 and the neutral pseudoscalar-meson field. The only
free parameters in the system were the bare mass m,
of the fermion and the coupling constant g. The pion
mass was taken to have its experimental value.
Solutions to the above model were obtained under
the following set of assumptions.

(a) The fermion remains nonrelativistic both in the
kinematic sense and in the sense that virtual fermion
pair states can be consistently neglected.

(b) The eigenstates of the Hamiltonian can be
represented as simple products of fermion and field
states (the ‘“‘independent-particle” assumption).

(c) The strong-coupling approximations in the form
originally used by Pauli and Dancoff? are valid. This
implies that the pion field can be constructed out of
only p-wave pions and that the field strength executes
only small zero-point oscillations about some large
constant value.

In addition to the above three assumptions which
are quite important and whose consistency is essential
to the validity of our results, two additional simplifi-
cations were made to make the model more tractable
and its exposition more concise. These were as follows.

(d) Isotopic spin was neglected and the assumption
made that the basic result of Pauli and Dancoff (i.e.,
that T=7 gives the bound states) would continue
to hold.

(e) Only spherically symmetric (J=0) fermion wave
functions were considered. This was a technical problem
rather than a limitation in principle.
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2'W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942). See
Ref. 1 for other references.

It is the purpose of this paper to extend the calcu-
lations of I and examine in much greater detail the
validity of the approximations made there. We have
also made one improvement on the model presented
in I: The self-consistency calculation has been extended
to include a full solution of the field equation in the ¢
representation. We no longer have to neglect the
“rotation-vibrating coupling” as was done in I. This
was shown in I to be a questionable approximation.

A first attempt has also been made at treating core
states with />0. We use spherical averaging techniques
similar to those used in Hartree-Fock calculations but
find that this method is not internally consistent. So
the problem of higher core angular momentum remains
unsolved.

Using the full self-consistency and spherical aver-
aging, we obtain a spectrum of nucleon resonances
which depends on just the two parameters o and g.
However, the values of m, and g needed to get reason-
able values for the energies are such that assumptions
(a)-(c) are badly inconsistent. We find that g and m,
must both be rather large to get the nucleon energy
down below that of its excitations, and this leads to a
“kinetic” energy in the field Hamiltonian which is
comparable in magnitude with the field binding energy.
This makes the energy of any given state the result of
the subtraction of two large numbers of about the
same size, which is highly inaccurate and very sensitive
to small changes in the parameters.

In summary, the purpose of this paper is to demon-
strate the inconsistencies of the model introduced in I,
but in so doing to expand and clarify the technical
tools used for the model and to gain more physical
insight into the nature of the states. These tools and
insights will be valuable when we examine other formu-
lations of the model.

This paper will be organized as follows: In Sec. IT
we present the expanded self-consistency calculation
and include core states in which /520. In Sec. ITII we
give some results of this calculation and illustrate how
the spectrum is affected by changes in the parameters
g and mo. We also discuss the various contributions to
the energy and how they compare with what our
approximations would lead us to expect. In Sec. IV

2 2464
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we examine in detail our approximations and show how
and why they break down.

II. FULL SELF-CONSISTENCY

As in I, we begin with the Hamiltonian
A= / @591 ) (mo+-0%/ 2me)y(x)
1 [ x40 (— V0]
—¢ [ v @o wwem,

and we begin our variational calculation with the
“independent-particle’” trial state vector

I\I'>= lkl/nlmz>|¢j7nj> . (2)

These two statements involve several approximations,
which we now enumerate.

(a) Nonrelativistic kinematics for the fermion.

(b) Nongradient pseudoscalar coupling.

(c) One-particle fermion states.

(d) The fermion spatial wave function and the field
eigenstate (which includes the fermion spin) are un-
correlated in the sense that each is determined by
averaging the other over time and space. This is in close
analogy with ordinary Hartree-Fock methods for
atoms and nuclei.

We will reserve comment on these approximations for
Sec. V.

We now consider the set of coupled equations

1 l
— Z <'//nlmz' Hl Kbnlmt) ' ¢J'mj> =El¢hﬂj> ) (33')
2041 mi=—1

1 i
- Z <¢jm1‘l H' ¢1’7nj> l ‘/’n lmt> =E,¢nlmz> . (3b)
2541 mi—i

In both of the above we have taken spherical averages
to ensure that the field has a spherically symmetric
source [Eq. (3a)] and that the fermion moves in a
spherically symmetric potential [Eq. (3b)]. These
assumptions lead to degenerate multiplets in J=147,
and they can be checked for consistency by calculating
the splittings in perturbation theory. (See Sec. V.)

We begin with Eq. (3a). Using Eq. (1) for H and
neglecting all fermion pair states, we see that the eigen-
value problem for the field becomes

{ / Falmt+$(—Vut)s]—go- / &

X [51_1#—1 % Ynims™* (X)nim (X)]qu(X)} | Gms)

=Lyl pjm;), (4
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where we have dropped the expectation value of the
first term of H.
We define the source density for the field equation by

1
p(x)= ém g{: Ynim™ (XY nim(X) , Q)

and we see immediately that it is spherically symmetric.
We can also see from Eq. (4) what happens if we do
not make p(x) spherically symmetric. In this case the
product Yim* (X)¥im,(X) causes all even values of angular
momentum from O to 2/ to appear in p(x). When this
is multiplied by # and integrated with ¢ (x), portions of
all odd multipoles from 1 to 2/4-1 are projected out
of ¢(x).

We now follow the same derivation as in I [see Egs.
(54)-(74)7] and arrive at the separated Hamiltonian

H=3R|§(g-=)| *+L%/2Tq*+¢*/2N —ga-q
+3 / a2 (x)+¢' (%) (— V2 +u2)¢’ (x)]

—¢q@Q =) / dx ' (X)ip(x). (6)

Still following the development of I, we diagonalize
the ¢-q term and assume that we can measure the
eigenvalue of H relative to the zero value of the “free”
pion part. The last term is assumed to be small.

At this point we depart from the derivation in I,
and instead of assigning the value gi*= (glV)? to the ¢2
which appears in the centrifugal barrier term, we in-
clude this term in the eigenvalue problem as it stands.
The “radial” part of the field equation is, therefore,

e 24\ GHD? @
—3R ——+—~—)+ +—- :I
[ ’ (dq2 q dq 2Tq® 2N “ /@
=Esf(g). (7)
This can also be written as follows:
a2 24  s(6+1) q*
S
E (@2 e A L0
=E;f(9), * (8)
where
3(6+1)=(j+3)¥/RT )

forms an effective centrifugal barrier for the field
amplitude equation.

Equation (8) is solved numerically after the param-
eters R, NV, and T are calculated from the fermion source
density [see Egs. (67), (68), and (71) of I]. The
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resulting field wave function has the form?®

2j+1\12
<QIU|¢jm,->=fnqj(q)<T") Dipj1/29(aB0), (10)

™

where 7, is the radial quantum number for the field
amplitude vibrations. The other result of this calcu-
lation is, of course, the eigenvalue Eg.

This completes the solution of Eq. (3a). We now
use this solution in Eq. (3b) to derive the fermion
Schrédinger equation. Neglecting all fermion pair
states, we can reduce the fermion field equation to a
single-particle Schrodinger equation by standard tech-
niques; we get

P 1
(ot 2 g o0 ) o
2m0 2]+1 mj

=Eg(x). (11)

This time we have dropped the expectation value of the
free-pion-field Hamiltonian.

We now follow the derivation of Egs. (79)-(83) of I
except that this time the value go=g/V is replaced by
{(g), where

(9= / dq ¢ fng*(9) - (12)

So the fermion Schrodinger equation is

V2
[—- —_— @g(x)];&(x) =(Ej—moyp(x). (13)
2m° 3

Using the £(x) determined from Eq. (65) of I we solve
Eq. (13) numerically for the fermion wave functions.
These have the form

<xl‘l/nlmz>= an(f) Ylml(ﬂ) ] (14)
where the R,;(r) are the solutions of
1 a2 24 I(+1) 2{g)
—-=-== |- E | Rt
2my ar®>  rdr r? 3
= (Ef'—ﬁ’lo)RnlO’) . (15)

These fermion wave functions are then used to
determine a new set of values of R, IV, and 7" and, in
turn, these are used to get a new solution to the ¢
problem. This process is repeated until it converges.

The total energy of the product state is given by

E=(V|H|¥)
=(o¥|H|o¥).

3 As in Ref. 1, we use the notation of A. R. Edmonds, Angular
Momentum in Quantum Mechanics (Princeton U. P., Princeton,
N. J., 1957).

(16)
(17)
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From Egs. (1), (8), and (13), we know that
Ey=(¢|Hs+H:|o)

and

E;=|H+H1ly),

which gives

Est+Er= (¢ |Ho+H;+2H1|d). (18)
This means that
E=EytE;— (¥ [ Hilop), (19)
which is easily shown to be
E=Ey+E;+gg). (20)

So as a result of our fully self-consistent solution, we
have the complete wave function [Egs. (10) and (14)]
and the energy [Eq. (20)] of a state with any given
set of fermion and field quantum numbers. We now
examine some numerical results.

III. SPECTRA

In Fig. 1 we show the known spectrum of nucleon
resonances. We show only the “well established’”” ones
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Fic. 1. Known spectrum of T'=4 and T'=$ nucleon resonances.
The widths of several of the states are shown for comparison
with the level spacings.
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as of August 1969.% Referring to Table I, we see that
the known 7=} spectrum can almost entirely be
accounted for by the set of quantum numbers shown.®
The only discrepancy is the presence of a 3+ in Table I
which does not appear in the spectrum. We note that
Greenberg lists a possible $* with a large width at
1900 MeV.

The T=$ spectrum of six states is somewhat over-
described by the states listed in Table I. The spectrum
is lacking two 3+ states and a $~. Again we note that
there are candidates for all three of these listed in the
“possible” category by Greenberg.

Our assumption of spherical symmetry in the self-
consistency calculation leads to the degeneracies indi-
cated in Table I. It is amusing to compare these with
the observed spectrum. For T=1%, we predict a 3—, 5~
doublet, and there is a good candidate at (1525, 1515).
Another 3~, 3~ doublet appears at (1715, 1755). We
predict a 3+, $+ doublet and a §—, Z~ doublet, but the
spectrum lacks one member of each.

For =%, we pred1ct a3~, 3, 3 triplet for which the
last member is missing, and our quartet of 3+, §+, §+,
%+ has three of its four members observed. So there
seems to be some qualitative agreement, but, as we
will see in Sec. V, our assumption of spherical symmetry
is not at all borne out by our numerical results. We
predict multiplet splittings (for the T'=% spectrum)
which are as large as or greater than the spacings

Tasre I. Quantum-number assignments for the observed
nucleon resonances in the strong-coupling model. The quantum
numbers are defined as follows: # is the radial fermion quantum
number (i.e., number of radial nodes in fermion wave function);
1 is the fermion orbital angular momentum (determines parity of
state); j is the field angular momentum which is equal to the
isospin T of the state. The last two columns give the standard
spin-parity and partial wave assignments, and the degeneracies
have been made explicit.

n ! 7 T JP Partial wave
0o 0 3 3 3t Py

1 (U 3 3t Py

2 0 3 3 b Py

0 1 7 3 ‘lz‘_, 3 Su, Dis

1 1 1 3 S S, D13

0 2 3 3 3, 5t Pis, Fis

0 3 3 3 §, 5 Dis, Giq

0o 0 3 3 3" Pss

1 0 2 3 3+ P

o 1t 3 3 IR AL D Ss1, Dss, Dis
0 2 § 3 585853 Pa, Pu, Fus, P
0 0 3 % &+ not applicable

4The data for-Fig. 1 are taken from the rapporteur’s review
given by O. W. Greenberg, in Proceedings of the Lund Conference
on Elementary Particles, 1969, edited by G. von Dardel (Berling-
ska, Lund, Sweden, 1969)

5'We are, of course, assuming that the prediction 7'= j where j
is the field angular momentum will continue to hold. This result
emerged from the old strong-couphng theory and was a property
of the meson field solutions. We see no reason to doubt that it
will also be true in our self-consistent version.

2467
8000 1T 1T T T T T T 6000
5000 —5000 "
Mo =9k .
4000 |- —4000
3000 |- "—3000°
2000 —{2000
{
1000 ~{1ooo
T=3
o [ N FOCY MY NN B P
25 27 29 31 33 35 25 27 29 31 3335
g g

¥16. 2. Plots of the masses of some states: versus the coupling
constant g for fixed bare mass equal to nine plOIl ‘masses. The
energles are all in MeV. We have’ 1nc1uded the T'=4% state in the
T=3% column.

between multiplets, so we must conclude that the
qualitative agreement is not significant.

In Figs. 2 and 3, we show the behavior of some
representative states as the parameters m, and g are
changed. In Fig. 4 we show the spectrum for g=33
and mo=9 superimposed on ‘the observed spectrum.

In Fig. 2 we have fixed m, at nine pion masses and
varied the coupling constant from 27 to 33. The most
striking behavior is that of the ground state for each
value of 7. This falls dramatically as the ‘coupling is
increased. This drop is a result of the increasing concen-
tration of the fermion wave function near the origin
(see Fig. 5). This results in a highly concentrated
probability density which, in its role as source for the
pion field, produces a field which is very intense.in the
volume near the origin. This field is essentially the
potential in which the fermion moves, so the result is
a particle lying very low in a deep, narrow potential
well.
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F1c. 3. Plots of the masses of some states versus the fermion
bare mass m, (in pion mass units) for'a fixed coupling constant
g=31. The energies of states are in MeV.
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For the field equation [Eq. (8)], we see that the
quantity R™! acts like a mass and N~! like a spring
constant in the oscillator equation [see Fig. 5(b)]. As
the fermion wave function becomes more concentrated
at the center, all three of the parameters R, NV, and T
increase, but R (the integral of the squared probability
density of the fermion) increases most rapidly. Notice
also that as 7 increases, the centrifugal barrier is
reduced. Finally, g is being increased, so the binding
term becomes more and more negative.

The result of all this is a balancing of competing
effects, with the net tendency being to lower the field
energy. The increase in the spring constant turns out
to be a rather mild effect, so the combination of the
centrifugal and binding effects is enough to overcome
the decreasing mass (especially since it is the square
root of the mass which is relevant) and decrease the
field energy as g increases.

So we see that as g increases the total energy of the
states should decrease, and it should decrease most for
those states which allow the fermion to have a concen-
trated probability distribution. The states with />0
have an additional centrifugal barrier which forces
the wave function to be more spread out (see Fig. 6),
but there is still some lowering of the energy as g
increases. The states with #>0, however, seem to be
very insensitive to changes in g because the combined
constraints of normalization and » radial nodes always
force the higher-n wave functions to spread out con-
siderably (see Fig. 7). Finally, in Fig. 8 we show the

g=33 n=0
pix) m,=9 £=0
=
Y(x)
X q
| 1 | 1 ]
08 0.9 7 8 9
(&)

F16. 5. (a) Plots of the final self-consistent ground-state radial wave function ¥ (r), probability density p (r), and potential V (#) versus
7, where 7 is measured in pion Compton wavelengths. The energy values of V (r) are measured in pion masses. (b) Plots of the effective
potential for the field problem ¥ (g) and the final g-space wave function f(g) for the ground-state (i.e., nucleon) problem.
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F16. 6. (a) Plots of ¢ (r), p(r), and V (r) for the state with T=% and J2= (}7,37). (b) Plots of V(g) and f(g) for the same state.

results for the Ags 32 resonance. The extra centrifugal The set of solutions shown in Fig. 4 comes as close
barrier in the field Hamiltonian causes the field energy as we can reasonably get to the actual spectrum. It is
to increase, and because the effective mass in the field quite apparent that there are still serious discrepancies
equations is so small, the effect is too large, and the A between the calculated and observed spectra for this
lies much too high in energy. model. In order to get the ground state to lie below the

/v(q)

//<q>=0.63

g=33 n=|
P m=9 £:0
=% \Y/—f(q)
v 03 04 05 06 07 08 09 \ q
| et 1 ] )] AN N B NN S S N

o 02 N___—— ~ \'
. <155 / Eq=-0.06
\/_\/\vm
-27.5 (b)

(a)

F16. 7. (a) Plots of ¢/(r), p(r), and V (r) for the state with T'=3 and J?=4* which has energy equal to 2220 MeV in Fig. 4. This is
the “Roper” resonance in the strong-coupling model. (b) Plots of V(g) and f(g) for the same state,
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Fi1c. 8. (a) Plots of ¥/(r), p(r), and V(r) for the state with T'=3% and J»=3§"*, the A;; resonance.
(b) Plots of V(g) and f(g) for the same state.

excited states, ¢ must be quite large. But no matter
how large we make g, we cannot get the first radial

excitation (i.e., the Roper 1460) to lie below the rota-

tional excitations of the core fermion.

There is one possibility for fixing this, which depends
on the fact that the n=1 and »=2 radial excitations
are close together (indeed the n=2 state lies below the
n=1). Since our states are not orthogonal to each other
(in effect they are solutions to different Hamiltonians),
there will be mixing between levels with the same
angular wave functions, and they will repel each other.
This refinement is not considered in this paper since the
other difficulties in the model make it somewhat
irrelevant.

There is no reason to exclude ‘“radial” excitations
in the ¢ variable. Referring to Figs. 5(b), 6(b), etc., we
see that this would imply finding an f(g) with one radial
node. We have looked for and found such solutions,
but because of the very tight binding (in particular,
the large value of R which corresponds to a small mass
in the oscillator equation), this radially excited state
has an extremely large energy. These states are therefore
far above the region which'is depicted in Figs. 1 and 4

and not of great interest as yet. There are also reasons
to expect that these states will be very broad.!

There are more details of the spectra to be examined,
and these are treated in Sec. IV, in which we discuss
the validity of our approximations.

IV. CHECKS OF APPROXIMATIONS

In this section we examine our results of Sec. III
and discuss the degree to which they are consistent
with the approximations we have made. We will find
some rather disturbing inconsistencies which will lead
us to the conclusion that the model presented in this
paper is inadequate in its present form. We conclude
by proposing a possible alternative.

A. Nonrelativistic Kinematics

Before we do any quantitative calculations, we can
see very quickly that we are in trouble on this assump-
tion. Referring to Fig. 5(a), which gives the ground-
state wave function, and recalling that the bare mass
of the fermion in this case is nine pion masses, we note
that the binding energy is nearly eight times as large
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as the mass. The average height above the bottom of
the well is about 17 pion masses, meaning that the
average kinetic energy is roughly twice the mass.

Another relevant observation is the radius of the
probability density. In the ground state, the fermion
is confined almost completely within a region of radius
0.1 pion Compton wavelength. But this is almost
exactly the Compton wavelength of the fermion itself,
so we expect that the formation of virtual pairs will not
be negligible.

The approximation of nonrelativistic kinematics has
been checked quantitatively. We have calculated the
expectation value of the third and fourth terms in the
expansion

p2 1 P4
E=(pHm?)V2=m4— — - —+
2m 8 m?

and compared their sum to the bare mass and the
kinetic energy of the fermion. The results for four of
our states are given in Table II. One look at this table
is enough to convince us that our assumption of non-
relativistic kinematics is patently ridiculous. Even in
the best case, the Roper excitation, the fact that the
relativistic correction is possitive shows that the fourth
term of (21) is larger than the third term.

There is very little more to be said about this problem.
We must either find a formulation of the model in which
the binding need not be so strong or go to a Dirac
equation for the fermion.

B. Spherical Averaging

We have been working with states which are products
of fermion states with a given / and field states with a
given j. Since the solution of each separate eigenvalue
problem is obtained by spherically averaging over the
coordinates of the other system, the net result is an
energy which depends only on the values of / and j
and not on their vector sum. We now proceed to test
this assumption by returning to the basic Hamiltonian
of Eq. (1) and calculating the “fine structure.”

Even at the outset we should be apprehensive. We
have seen that the expectation value of the interaction
term in Eq. (1) is very large in our results. Indeed, it is
the essence of a strong-coupling approximation that
this term shall dominate the energy. But all the contri-
bution to the fine-structure splitting comes from this
term, so it seems almost @ priors inconsistent to enforce
spherical symmetry for the basic equations.

We consider the matrix element of

Hr=—¢ / @yt ()oY (x)d(x) (22)

in a state with given values of I, j, and J. We evaluate
this matrix element in the “body-fixed frame’® so that

6 C. J. Goebel, in Non-Compact Groups in Particle Physics,
edited by Y. Chow (Benjamin, New York, 1966).
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TaBLE II. Columns 1-3 give the quantum numbers of the states
in question, and columns 4-6 list, respectively, the fermion bare
mass 7, the fermion kinetic energy [i.e., the expectation value
of the second term of Eq. (21)], and the relativistic correction
to the fermion energy [the third and fourth terms of Eq. (21)].
The energies are measured in pion masses.

n 1 J Mo KE AEe Jr
0 0 E 9 17.4 308 (V)
0 0 3 9 19.3 435 3*(a)
1 0 3 9 5.1 14 3t
0 1 3 9 114 21.6 4

the transformation U [see Eqs. (24)-(27) of T] must
be applied to H; first. As we have seen in I, the effect
of this transformation is to change o to § and reduce the
two-component spinor equation to a one-component
equation. Our matrix element is now

— T / g (D0 WS Vasrar),  (23)

where?
@[ Wnirae) =Rui(r) f(q) 2 ({mjm! [14701)
XV im(Q) (= 1)™12C 0 4129(T) .
The next step is to assume that the expectation value
of ¢(x) in the state in question is given by q-7&(x).

With this assumption, the matrix element (23) breaks
up into three distinct factors:

(Wotjs| Hr| Wnijr) = —g[/fzdf Rnl2(7)5(7):]

X[/dg qsffz(‘I)]X<QljJ

where we have suppressed the obviously irrelevant
index M. The first factor in (24) is just

@7 Qz), (24)

f Pir p(r)E() =3, (25)

which can be seen by using Egs. (5) and (14) of this
paper and Eq. (62) of I. The second factor of (24) is
just {¢) [Eq. (12)], so we are left with

W ijs | Hr|¥nijr)=—3g(q)Qujr | (§-7)*|Qjs).  (26)

The problem has now reduced to the evaluation of
the angular matrix element, and this is done using
standard Wigner-Eckhart theorem techniques.® We
write

(q-7)*=5+QuRq, (27)
where
Qii=4:di— %045, (28)

and R;; is the analogous tensor made from #. Equation
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(26) becomes

W ntjr | Hr| W niir) = —g{g)—3g{q){Qujs | Qi;Rs5| Q)
=—g@)—glg)viir, (29)

where we recognize the first term as our spherically
averaged interaction energy and the second term as the
“perturbation” which will break the degeneracy. The
result is

1 [ 2j+1p
(e 2—472[ j(j—l-l)]
3X(X—1)—45(j+1)I(I+1)
(21—1)(21+3)

X=j(j+D)+I+1)—T(T+1).

It is easy to verify that when either /=0 or j=%
vi;,7=0. So we predict zero splitting for all the 7T'=3
core excitations. As we have seen in Sec. III, this is not
a bad prediction for the two complete doublets.

The only splittings occur in the 7'=$% spectrum (and
of course also when 7>$). The v;;/’s for these multi-
plets can be expressed in the form

y=1v2(16/15)%, (32)

and the o’s are given in Table III. We note that all
of the above v’s are reasonably small compared to 1,
so that the splitting is only a small fraction of the
binding energy. However, as we can see from Fig. 9,
where the splittings have been incorporated into the
T=4% spectrum, they are not small compared to the
separations between multiplets. This is because g(g)
=50.0 for the /=1 state and 28.9 for the /=2 state.
In fact it is only luck which keeps the lowest-lying
levels from having negative energy. If the coupling
were only a little stronger, this would occur.

We conclude that our procedure of calculating the
degenerate energy levels by spherically averaging the
potentials and then calculating the splittings in pertur-
bation theory is not valid. The fine structure must
somehow be incorporated into the zeroth-order solution.
At this time we have no answer to this problem.

We conclude that since each of the approximations
made in I has been shown to be invalid, the model
must be rejected. However, the model studied in these
two papers has been only the simplest possible generali-
zation of the static model. In future work we hope to
explore other versions of the model in which the
problems of relativistic kinematics and angular corre-

,» (30)

where

TasLE III. The quantity « in Eq. (32) is given for each of the
J values possible for a given set of /, j.
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F16. 9. Spectrum of T'=$ resonances. The observed states are
on the left, and on the right is the calculated spectrum in which
the fine-structure splitting has been taken into account. We note
that the vertical scale of this figure is expanded by a factor of 2
from that of Figs. 1 and 4.

lations between the fermion and field wave functions
are treated in a more realistic way.

Our proposal is to start with the relativistic Hamil-
tonian

H= / &3 (x) (e p+yomo)y(x)
+ f dx(r | V| 24-u%?)

+ig f P () vy b (@) )



2 SELF-CONSISTENT STRONG-COUPLING MODEL: - -

and project this onto the one-fermion subspace to
obtain
H=a:p+PBmotHs+igyoysp(x).

We can then proceed in one of two ways.
(a) Perform a Foldy-Wouthuysen transformation to
determine the correct nonrelativistic limit which turns
out to be (to order 1/my)
g g
H=mg+— + —0¢*x)— —0 - Vo(x)+H,.

mo  2mo 2mo

(33)

The presence of the ¢?(x) term and the gradient
coupling make this a considerably more complicated
problem than the one we have considered so far. We
also propose to take into account the strong angular
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correlations between fermion and field wave functions
implied by the interaction term.

(b) If we find again that nonrelativistic kinematics
is untenable, the final step would be to try to solve
the Dirac equation self-consistently. Whether or not
this is possible is at this time an open question.
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The scaling behavior observed in deep-inelastic electron scattering is related to the structure of the electric
current commutation function in position space. We show that scaling is assured when that object has the
following form, which is also consistent with Regge behavior :

COSwXx* p

i |Lj#(e), 3O 11 =L 0=00'] e o) [ do L, ) belo- PO Gh-p) |

1 00
+HppO—p-0@p+op)+e -] e [ o

sinwx: p
wX:p

P2+ e 0Ea0a ) |

In the above, Fr=F»—2wF1, and the F; are the conventional scaling functions of Bjorken. The f; are arbi-
trary, except that f2(0,%-p)=0. It is also demonstrated that when the combination T+ (»2/¢®) T of the
conventional forward Compton amplitudes, as well as T, are unsubtracted, a new sum rule can be derived :
. .. 7. ®  Fr(w)

PILOD,F O = 50560 [ a2

™ (] w

Finally, the consequences of the same unsubtractedness hypothesis for the electromagnetic self-mass of the
target proton are discussed. The unsubtractedness hypothesis is consistent with present experimental results.

I. INTRODUCTION

N this paper we relate the remarkable regularities
observed in deep-inelastic scattering? to the behavior

of the commutator of electromagnetic currents near
the light cone. That the light-cone commutator should
be relevant in this connection has already been noted
by several authors.? We show that the experimental

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract Nos. AT (30-1) 2098 and AT (30-1) 2076.

1 Alfred P. Sloan Fellow.

1 Also at Cambridge Electron Accelerator.

1For a summary of the experimental data, see R. E. Taylor,
SLAC Report No. SLAC-PUB-677 (unpublished). We insert
here the caveat that the experimental data are not unimpeachable
evidence for scaling. A skeptic can take refuge in the large error
bars, and other uncertainties, and insist that scaling is in fact
weakly broken, for example by logarithmic terms. We do not here
succumb to this cautionary pessimism.

2 B. L. Ioffe, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu

data place stringent, but simple, restrictions on the
commutator, and that the leading light-cone singularity

9, 163 (1969) [Soviet Phys. JETP Letters 9, 97 (1969)7; B. L.
Toffe, Phys. Letters 30B, 123 (1969); R. Brandt, Phys. Rev.
Letters 23, 1260 (1969). These authors discussed the behavior of
the light-cone commutator; see also Ref. 8. After completion of
the major portion of this investigation, we learned from D. G.
Boulware that he and L. S. Brown have also studied this problem.
Some of their results are to be found in L. S. Brown, in Lectures
in Theoretical Physics, edited by W. E. Brittin, B. W. Downs,
and J. Downs (Interscience, New York; to be published). Other
results are unpublished. L. S. Brown has derived a representation
for the product of two currents, consistent with scaling, by using
the spectral representation and some regularity assumptions
about the behavior of the spectral functions ['see Egs. (6.45)-(6.47)
of Brown’s paper]. This is equivalent to our representation for the
commutator, Egs. (2.4) and (2.7) below. Brown has also discussed
the connection between a g-number Schwinger term and the
longitudinal electroproduction cross section in the deep-inelastic
region. This discussion is equivalent to our sum rule, Eq. (2.8)
below.



