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A similar substitution of (C1) into (B26) gives the other desired result:
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We discuss the properties of the crossing-symmetric Bethe-Salpeter equations which have been proposed
by Taylor and by Haymaker and Blankenbecler. We consider various possible methods of solution and the
possibility of application to the Veneziano amplitude. We show that the operators which appear in these
equations are not mutually associative, and hence that even the linearized approximation to these equations

cannot be solved by conventional techniques.

I. INTRODUCTION

T is generally believed that the four-point function
in strong-interaction theory should have the follow-
ing properties: Lorentz invariance, analyticity, crossing
symmetry, unitarity, and Regge asymptotic behavior.
Since Lorentz invariance and analyticity are explicitly
satisfied by any analytic function of the Mandelstam
variables, s, #, and #, the three key properties are
crossing symmetry, unitarity, and Regge behavior.
Until recently, we could not obtain an amplitude having
more than one of these three properties. However, we
now have the simple but elegant model of Venezianot
which displays both crossing symmetry and Regge
behavior but, alas, not unitarity.

The problem of combining crossing symmetry and
unitarity is much more difficult. A set of equations for
an amplitude having both these properties has been
proposed by Taylor? and by Haymaker and Blanken-
becler.®# Unfortunately, being nonlinear, these equa-
tions have the disadvantage of not being soluble.
All one can do is use the various iteration schemes
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4 On-shell K-matrix equations of the same form were first ob-
tained by W. Zimmermann [Nuovo Cimento 21, 249 (1961)].
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which we shall discuss and which cannot be guaranteed
to converge. In addition, since (as we shall show) the
operators which appear in these equations are not
mutually associative, we cannot even solve a linearized
approximation to these equations by the usual tech-
niques. In this paper we discuss the properties of these
equations, the methods of obtaining iterative solutions,
and the possible application to the Veneziano amplitude.

II. EQUATIONS

We consider the four-point function for the scattering
of identical, spinless bosons of mass m (Fig. 1). The
crossing-symmetric . generalization of the Bethe-Sal-
peter equation proposed by Taylor? and by Haymaker

F16. 1. Our notation for the four-point function.
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F16. 2. Two possible choices for V: (a) a point interaction and
(b) a three-pole interaction.

and Blankenbecler? for this amplitude can be written

T=K~+KGT, 1)
K:=V+Y K,G,T. (2)
7

It follows immediately from Egs. (1) and (2) that

T=4(Z Ki—V). @

The index i specifies the s, ¢, or # channel. Equation (1)
is thus the familiar Bethe-Salpeter equation in the sth
channel. The two-body irreducible kernel in the sth
channel, K;, satisfies Eq. (2). T is the 7 matrix.
V is an arbitrary, two-body irreducible, crossing-
symmetric input, examples of which are a point inter-
action V(s,t,u)=\ [Fig. 2(a)] and a sum of three
identical poles, one in each channel [Fig. 2(b)],

V(stu) =N[1/(s—M*)+1/(t—M*)+1/(u—M?)].

All our dynamical assumptions are contained in our
choice of V.

We can easily eliminate 7" from the equations by sub-
stituting Eq. (4) into Eq. (2), giving us an equation
for K iy

Ki=V—} L KGV+3 L KGKi. )

i J#i,1

Since 7 is easily determined from Eq. (4) when the K;
are known, and since K, K, and K, are simply related
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by crossing symmetry, it is Eq. (5), the quadratic in-
tegral equation for the K function, that must be solved
in order to solve the problem. As we shall see below,
this is essentially impossible to do (except by iteration)
not only because the equation is nonlinear but also
because the operators in this equation is not mutually
associative.

T, V, and K, are four-point functions which can be
taken as functions of the four four-momenta pi, p,,
q1, g2, or as functions of the usual Mandelstam variables

s=(p1Fp2)?=(q1+¢2)?,
t= (p1—q0)?= (p2—gq2)?, (6)
u= (p1—q2)*= (p2—q1)?

and the external mass variables p+%, p2?, ps% and pi
The G; are bilateral operators which operate on two
four-point functions to give us a third four-point
function. Since these operators can be expressed most
simply in terms of integrals over the intermediate-
momentum variables, and since we need the off-shell
amplitudes, in discussing the properties of these oper-
ators it will be advantageous to take the four-point
functions to be functions of the momenta. On the mass
shell, p;2=m? and the amplitudes are functions only of
s, t, and u.
From Bose statistics, we immediately have

T(s,t,u)=T(sut). (7
Crossing symmetry is then expressed by
T(stw) =T (ts,u) =T (u,s). ©)

Combining Egs. (7) and (8), we see that the 7" matrix
is invariant under any permutation of the Mandelstam
variables. The same relations, of course, hold for V.
On the other hand, for the irreducible kernel, if we take

Kot =K (s =K (s,), ©
we have
Kl(satyu) =K(tys7u) =K(t,M,S) ’
Ku(s)t:u) =K(urg)t) =K(%,t,$) )
but now K (s,t,u) =K (¢,5,4) %= K (u,s,t) because the ker-
nels cannot be two-body irreducible in two channels
simultaneously.

Now taking the amplitudes to be functions of the
four-momenta, we can rewrite Eq. (7) as

(pup2| T qr,q2) = (p1,p2| T | g2,q1)

(10)

11
= (po,p1| T q1,q2) = (p2, 01| T | 42,91, (1)
and Eq. (8) becomes
(prp2| T | q1g2) = (p1, —q1| T'| — pags)
={py, =@\ T|qs, —p2).  (12)

Since these equations are assumed to be valid whether
or not p;2=m?, they express crossing symmetry for the
off-shell amplitudes.



2 NONASSOCIATIVITY OF THE OPERATORS IN THE: - -

Equation (11) states that the amplitudes do not
change when the initial or final momenta, respectively,
are permuted among themselves. If both Egs. (11) and
(12) hold, the amplitude is invariant under any permu-
tation of the four-momenta (provided, of course, that
we change the signs when we interchange an incoming
momentum with an outgoing momentum). We can
thus think of crossing symmetry as a kind of generalized
Bose statistics. (If the particles have spin or other
internal quantum numbers, there are several invariant
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amplitudes and the crossing relations will be more
complicated.)

The irreducible kernel satisfies Eq. (9) and thus will
also satisfy Eq. (11). However, from Eq. (10), we have,
instead of Eq. (12),

(p1p2| Kol grgo) = (p1, —q1| K| = p2, ¢2),
(pr,p2| Kulquge) = (p1, —q2| K| g1, —p2).

Equation (3) can now be written explicitly in terms of
the momentum variables [Fig. 3(a)]°

(13)

(Pu02] T g1,92) = (p1, 2| V| g1,00)+ 2 (Pl,P2lKs]kl,k2>6(k1k2)<k1,kzlT|91,42>+Zk (p1, —k1| Ko| g1,k0)G (Rrks)
kik2 kik2

X ks, po| T| —ks, o)+ 30 (p1, —ko| Kol kaga)Glrka) (kape] Tl g1, —k2).  (14)

kiks

Using Egs. (12) and (13), we can eliminate K, and K, and rewrite (14) with only K, as [Fig. 3(b)]®

(P1p2] T q1g2) = (pr,p2| VIgrgo)+ 2 (prpe] Ko kaks)G (ksks) (kiks| T| quge)+ 3 (p1, —q1] Kol kaka)G(kikes)
kike kikz

X (kike| T| —ps, 92>+ka: (b1, —q2| Ks| kako)G(Riko) (kike| T| g1, —p2). (15)

The equation for the irreducible kernel [Eq. (2)] with =5 becomes

(b1,2| K| g1,g2) = (p1, 2] V|91q2>+,§ (b1, —qu| K| krka)G(Rrks) (kr,kz| T'| — p2, g2)

+ X (b1, — 2| Kol kika)G(k,ko) (ksyko| T | g1, — po) -

(16)

k1ke

We could also use Eq. (13) to rewrite Eq. (5); setting ¢=s, we have

(b1,02| Ks|g1,q2) = (p1,02| V] qr,q2) —% g (p1, —q1] Kol kayka)G Ry o) (feryfes| V| — pa, g2)

=3 2 {1, —q2| K| koko)G(kr ko) (kryks | V]gr, —po)+3 3 (p1, —qul Kol kika)G(Riko) (s, po| K| —k2, g2)
kike

kiks

+% Z (Pl, “{]1[Ks|k1k2>G(k1k2)<kx,k2]Ks| — P2, 92>+% Z (Pl, '—qllelk1k2>G(k1k2)<k1, —Q2[Ks[ —kz, P2>
kike

kik2

+3 2 b1, — ol Kol kiko)G(Riks,) (s, po| Kol g1, —ko)+3 3 (b1, —go| K| bryks)G (ko)
kiks

kike

X k1, —q1| K| —ps, —ko)+3 § (P1, —q2| K| kr,ko)G(kayks) sk | K s| g1, —p2).  (17)
kik2

Of course, similar equations hold for K, and K,,.

The Green’s function is the product of the two single-
particle propagators. If # is the physical, renormalized
mass of the particles, we can take these to be the usual
Feynman propagators,

G(kks) = (k2 —m24-ie) (k2 —mi+ie L.  (18)

The sum over intermediate states represents the
usual integral over the intermediate four-momenta with
the appropriate & functions for energy-momentum con-
servation. With the usual normalization, thefirstintegral

term of Eq. (15) can be written

—(2n)4 / A frd*fea(p1p2| K s | kiks) ki | T| gags)
X (k2—mP+ie) (ke —m2—+ie) !
. X84 (p1tpe—ki—k2)8t (kythe—q1—g2) .

5 Since we must choose a consistent notation and stick to it,
we take the s channel to go from right to left and the ¢ channel from
top to bottom. Bras and kets represent initial and final stages in
the s channel.

6 With an appropriate change of variables, Eqs. (1) and (15)
above correspond to Egs. (1) and (2), respectively, of Ref. 2.
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F1c. 3. Schematic diagrams (a) for Eq. (14) and (b) for Eq. (15).

III. NONASSOCIATIVITY OF OPERATORS

It is now easy to show that the operators which
appear in these equations are not mutually associative.
This is true particularly of the operators Gs, G;, and G.
which appear in Egs. (1)-(5). We shall show this
specifically for the operators G, and G, but it is equally
valid for any other pair of these operators. We con-
sider four arbitrary four-point functions 4, B, C, and D
and, comparing Egs. (3) and (14), we have

(p1,p2] AGsB| k1, kz)

- zzz: (pr,p2| A lila)G(lle) (lale| B kiks), (19a)
(kiks| CG.D| gag2)
=3 (b1, 1| Clul)G(lla){lsks| D] ~lags).  (19b)

uls
By substituting Eq. (19a) into Eq. (19b) and vice versa,
(p192| AG:(BG/C) | gag2)
= X (p1p2| Al kika)G(kaks) k1, —11| B qula)

kik2;l1le

XG(lllz) (llkz l C[ —lzq2> (20)

=k kz:l l {p1—Fk1| 4| ll)G(lils) (lils| B qik2)
X G(kiks)(k1p2| C| —kaga). (21)

The significance of Egs. (20) and (21) can be seen from
Figs. 4(a) and 4(b), respectively. It should be obvious
that AG;(BG) and (AG,B)G,C are not equivalent.
In the first case, 4, being the last function operated on,
has two external lines while B and C have one each.
In the second case, C is the last function operated on
and it has two external lines while 4 and B have one
each. If A =B=C, then Figs. 4(a) and 4(b) are related
by s<> ¢ crossing. If 4, B, and C are not equal, then
there is no such relation between Figs. 4(a) and 4(b).

In the same way, it can also easily be seen that
(AG:B)G.LC#ZAG:(BG.C), (AGB)G.C#ZAG(BG.C),
etc. We should emphasize the fact that the problem of
nonassociativity does not occur in the single-channel
case. It is only when we try to unitarize in two channels
simultaneously that we run into this problem.

If the nonlinearity of the equations were the only
major difficulty, we would expect that we would be able
to obtain a tractable equation by making a linearized
approximation to Egs. (1)-(4) which maintains as many
desirable properties of these equations as possible. The
most obvious way to do this is to drop the integral
term in Eq. (2) and make the approximation K,=K,
=K,=V. [Since V is crossing-symmetric, this is con-
sistent with Egs. (9) and (10).] Substituting this into
Eq. (3), we obtain an equation of the form which we
have previously discussed in the context of the quasi-
potential equation,’

T=V4+VGTH+VGTH+VG.T. (22)

Equation (22) is linear and explicitly crossing sym-
metric. It is also clear that the solution of Eq. (22) will
have V as its Born approximation and will have the
unitarity cuts in the right place in all three channels
but not necessarily with the right discontinuity.

At first glance, we might think that it is possible, at
least formally, to obtain a solution of Eq. (22) by the
usual techniques. We can formally define the linear
operator O by

AOB=AG:B+AG,B+AG,B. (23)
Then Eq. (22) can be written
T=V4+Vvor (24)
or
(1-vo)r=v.

Then if there exists an inverse operator (1—VO)™
and if the operator algebra is associative, we can

7]. A. Campbell and R. J. Yaes, Australian J. Phys. 22, 655
(1969).
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multiply on the right by (1—VO)™ to obtain the
formal solution

T=(1-V0)V. (25)

However, it is precisely at this point that the argu-
ment breaks down. Because the operator O is defined in
terms of the nonassociative operators Gs, Gy, and G, it
does not necessarily follow that

(1=VO)"[(1—-V0)T]
=[1-VO)'(1—VO)]T=T. (26)

It is interesting to note that the proof of unitarity
for Eq. (24) will break down for the same reason. To
see this, we recall the proof of unitarity for the single-
channel equation,®

T.=V+VG.T, (27)
which has the solution
Ts=(1-VG,)'V. (28)

(We use the subscript s to distinguish T's from the fully
crossing-symmetric 7" matrix 7.) Since any singularities
of V in the physical region (which, in any event, could
only be poles) will not contribute to the elastic cut, we
shall ignore them and take ¥V to be real in the physical
region. Then the adjoint of Eq. (27) can be written

TS=V4+TIGTV=V+VG' T, . (29)

If we subtract Eq. (29) from Eq. (28) and define
AT, and AG; by

ATS=T3—'T3T, AGS':GS—GST; (30)
we have
AT, =VG T, —VGS T =VGAT;—VAGTT (31)
or
(1=VG)AT,=VAG,T.'; (32)

hence, multiplying by (1—VGs)™* and using Eq. (28),
AT, =TAGTs'. (33)

This is just the elastic unitarity relation

(prp2| AT | qrg2) = (2m)~% / Ae1d%ho(prps| Ts| baks)

X 0(k1%) (k12— m?)0(ks®) 6(ko? —m?) (krks| T | g1g2)
X4 (p1tpe—ki—ke) 64 (krt-ke—q1—q2) -

Equation (34) is nonvanishing only when all the 6
functions and & functions are satisfied, so we have
s=(pr1+p2)2=(k1t+ks)?=k2+k>+2 (k1% —ki - Ko)

= 2m2+-2[ (2 +m2) 2 (ko2 m?) 12—y - Ko > 4m?. (35)

Since the external lines are on the mass shell, it is easy
to see that we must also satisfy the inequalities

(34)

8 See, e.g., V. A. Alessandrini and R. L. Omnes, Phys. Rev. 136,
B472 (1964).
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Fi16. 4. Schematic representations (a) for AG.(BG.C) and
(b) for (AGsB)G:C.

—(s—4m?) <t<0, (—s—4m?)<u<0. These three in-
equalities define the s-channel physical region.

Terms like 7AG, T, should not vanish only in the
{-channel physical region and terms like T,AG.T.'
vanish everywhere but in the #-channel physical regions.
Since the physical regions cannot overlap, if T has the
elastic unitarity cuts in all three channels, we would
have

AT=TAG,T'+TAG,T'+TAG,T?
=TAOT. (36)

However, Eq. (36) does not follow from Eq. (24) for
the same reason that Eq. (25) does not. We should point
out, however, that the solution of the original non-
linear set of equations [Egs. (1)-(4)] will satisfy Eq.
(36) below the inealstic thresholds. Above the inelastic
thresholds, we will get additional contributions from the
multiparticle cuts in the K;. It seems as though it is
impossible to satisfy both elastic unitarity and crossing
symmetry simultaneously everywhere.

IV. METHODS OF SOLUTION

One method of approach is the variational principle
proposed by Haymaker and Blankenbecler, which is,
however, rather complicated. In addition, in order to
apply it, not only must one know the kernel K; and the
functional form for 7 but one must also have the four-
body T matrix T4 To our knowledge this variational
principle has not yet been applied to any concrete cases
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>°| : N N To second order, the kernel is
7 T

{ ! K=V+VGV+VG.V (38)
i : etc. This procedure of adding more terms to the
1 I irreducible kernel can also be accomplished without
: : reference to these equations. It suffers from the dis-
I I advantage that at each stage we must solve a Bethe-

> 1 > l > Salpeter equation with a quite complicated kernel.
P k 9 If for some reason Eq. (37) is a good approximation,
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/7 7 7
P> k, 9

F16. 5. Two diagrams which appear when Egs. (15) and (16)
are iterated once with V given by Fig. 2(b).

either by the above-mentioned authors or by any-
one else.

A more obvious approach is straightforward iteration
in powers of V. Exact crossing symmetry is maintained
and unitarity is satisfied to the order to which we
iterate. This just gives us the Feynnan diagrams to a
given order which we could obtain easily enough without
reference to our equations. However, the equations
serve as a convenient mnemonic device for making
certain that we have included all relevant diagrams.

As an example, we consider the case where V is given
by Fig. 2(b), Since V is a sum of three terms and since
there are three terms in the equation, a single iteration
will give us 27 diagrams to second order in V. Diagrams
where the internal lines are interchanged both appear.
For example, both the graphs in Figs. 5(a) and 5(b)
appear in the sum. Hence, only the bubble graphs
appear only once. We thus have three bubble graphs
[Fig. 6(a)], one in each channel, 12 vertex-correction
graphs, two each of Figs. 6(b) and 6(c), in each channel,
and 12 box and annihilation graphs of the type of
Figs. 6(d) and 6(e).

Another approach is to maintain unitarity exactly
and crossing symmetry only to a given order in V.
This merely involves iterating the equations for K; to
a given order in V and then solving Eq. (1) with this
K. Thus, for example, to first order, K;=V and Eq. (1)
becomes

T'=V+VGT. 37
(If V had only the {-channel pole, this would be the
Bethe-Salpeter equation in the ladder approximation.)

we can treat the higher-order terms in the kernel as
perturbations and we can use the perturbation theory
which we have previously developed® for the Faddeev
equations. We define

K.=K¢+éK,, Ko¢=V
To=V4VGT,, (39)
T=K+KGT=T,+oT.
Then to first order in 6K,
8T = (14-TG:)6K(14+G,Tv), (40)

and so on. If there are bound-state poles, we can also
obtain the shift in binding energies and form factors
by this method.

V. DISCUSSION

Two important questions that remain are whether we
can simplify the equations by replacing the product of
Feynman propagators [Eq. (18)] by a quasipotential
propagator’® and whether we can apply the equations

—

(d) (e)

T16. 6. Types of diagrams which appear when Egs. (15) and (16)
are iterated once with ¥ given by Fig. 2(b).

*R. J. Yaes, Phys. Rev. 170, 1236 (1968); Nucl. Phys. A131,
623 (1969).

10 A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento 29,
380 (1963) ; R. Blankenbecler and R. Sugar, Phys Rev. 142, 1051
(1966); V. G. Kadyshevsky, Nucl. Phys. B6 125 (1968); F. Gross
Phys. Rev. 186, 1448 (1969).
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to the Veneziano amplitude (i.e., set ¥V =Veneziano)
and obtain meaningful results. After expending much
time and effort on these questions,!! we have come to
the conclusion that the answer to both is probably no.

The quasipotential kernel has spurious left-hand
cuts.”? Hence, if we inserted the quasipotential propa-
gators in Eq. (3), the t- and #-channel terms would have
spurious right-hand cuts in the s-channel physical
region. We have been unable to find a method of
avoiding this difficulty. If we try to remedy the situa-
tion by multiplying the propagators by the appropriate
6 functions to remove the spurious cuts, we would
destroy the analyticity of the amplitude.

It would seem as though the first iteration scheme
would be applicable to the Veneziano amplitude. The
Veneziano amplitude has an infinite number of poles
in each of the three channels and hence can be con-
sidered to be an infinite sum of graphs of the type in
Fig. 2(b). Thus, if we take V equal to the Veneziano
amplitude and apply the iteration scheme, we would
obtain an infinite set of graphs of the type seen in
Fig. 6, as well as higher-order graphs. These will have
the appropriate cut structure.

The major difficulty in applying this method to the
Veneziano model is the fact that we must know V with
all four lines off the mass shell. If we just use the on-
shell Veneziano amplitude, the integrals will be very
badly divergent since the integrands will behave like
T functions of the integration variables. To correct this,

17J. A. Campbell and R. J. Yaes (unpublished). Preliminary
numerical calculations using the equations and off-shell continua-
tion of Ref. 7 indicate that the change in the amplitude at thresh-
old due to unitarization will be negligible. The equation for the
7% amplitude using the parameters of C. Lovelace [Phys.
Letters 28B, 264 (1968)7] was iterated once. It was found that at
threshold, on the mass shell, (VG,VA4-VG.V+VG.V)/V <0.002,
independent of the choice of the parameter ¢ in the off-shell con-
tinuations. Because of the conceptual difficulties inherent in this
model, some of which are described above, further numerical cal-
culations were not carried out.

2 M. K. Polivanov and S. S. Khoruzhi, Zh. Eksperim. i Teor.
Fiz. 46, 339 (1963) [Soviet Phys. JETP 19, 232 (1964)].
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it is necessary to assume that V goes to zero at least as
fast as an inverse I' function in the off-shell variables.
Since the off-shell continuation otherwise is arbitrary,
it is questionable whether numerical results obtained
by this method would have any significance.

We have thus seen that the problem of obtaining
amplitudes which are simultaneously unitary and
crossing symmetric is even more difficult than we first
imagined. Not only are the equations which we must
use nonlinear, but the operators which appear in these
equations are not mutually associative. Hence, even
the linearized approximation to these equations cannot
be solved by conventional techniques and we must fall
back on the usual perturbative methods of field theory.
Thus, since we have no satisfactory method of approach-
ing the problem when the input consists of a point inter-
action or a sum of three poles, we certainly cannot deal
with the case where the input is the Veneziano ampli-
tude which is an infinite sum of poles.® It would thus
seem that the solution of the problem of obtaining a
unitarized Veneziano amplitude (that is, a unitary,
crossing-symmetric, Regge-behaved, dual amplitude)
will not be obtained until we are able to obtain ampli-
tudes satisfying both unitarity and crossing symmetry
with simple inputs.
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13 In setting ¥ equal to the Veneziano amplitude in Egs. (1)-(4),
we would be taking the position that all of the poles in the Venezi-
ano amplitude are “‘elementary” particles. It is also possible that
we would have to put in only a finite number of poles and the
other resonance poles would appear as composite states; that is,
the Born series would diverge at the resonant energies. In order to
see which is actually the case, we would have to have a method of
obtaining solutions of the equatlons This is precisely what we do
not have.



