
P H YSI CAL RF VI LW D VOLUM F. 2, NUM BFR 10 15 NOVEM BE R 1970

High-Energy Delbriick Scattering Close to the Forward Direction*
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Delbruck scattering is the elastic scattering of a photon by a static Coulomb field via electron-positron
pair creation. At high energies, there are two natural scales for the momentum transfer 0, namely, m and
m'/ro, where m is the mass of the electron, and co is the photon energy. When 6 is much larger than the
smaller scale m /co, the impact factor representation holds at high energies. The impact picture is here ex-
tended to give also the high-energy behavior of the Delbriick scattering amplitude when 5 is comparable to
m /u. The result can be expressed in terms of generalized hypergeometric functions, which reproduces the
known result in the forward direction when 6 is set equal to zero, and also joins smoothly to the impact
factor representation when tt is much larger than m / zzoIn the present analysis, the fine-structure constant
a is assumed to be small, but not Zzz. In other words, all terms of the form cz(Zzz)" in the amplitude are
taken into account. It is also shown that the result for A&(m is independent of the mass of the target, and
hence is in particular applicable to Compton scattering by an electron,

]I.. INTRODUCTION

~~~UER a year ago, we presented a systematic dis-
cussion' of the high-energy behavior of all the

two-body elastic scattering amplitudes in quantum
electrodynamics. More precisely, the processes con-
sidered included (1) Coulomb scattering of an electron
to the order Z'e', (2) electron-electron scattering to the
order e', (3) electron-positron scattering to the order e4,

(4) Delbriick scattering to the order Z'es, (5) electron
Compton scattering to the order e', and (6) photon-
photon scattering to the order e'. Here, as usual, e

denotes the charge of the electron, and Ze that of the
source of the Coulomb field. Higher-order effects in Ze
were also given. ' Although the original calculation is
quite complicated, ' ' substantially simpler methods to
obtain the same answers were found later. ~'

In studying some of the processes, such as (1)—(3)
above, an artifical photon mass X is introduced to avoid
infrared divergences. For other processes, such as (4)—
(6) above, such a photon mass is in no way needed.
We emphasize that, in our consideration of the Delbriick
scattering process in Ref. 4, we carefully used massless
photons all the way through. In all cases without in-
frared divergence, it is explicitly verified that the limit-
ing processes of zero photon mass and of in6nite energy
commute. For example, consider Delbruck scattering.
I.et co be the energy of the photon in the laboratory
system, i.e., the coordinate system where the Coulomb

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT(30-1)-4101.

t Work supported in part by the National Science Foundation
under Grant No. GP 13775.

'H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969).
2 H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969).' H. Cheng and T. T. Wu, Phys. Rev. 192, 1868 (1969).
4H. Cheng and T. T. Wu, Phys. Rev. 192, 1873 (1969).
~ H. Cheng and T. T. Wu, Phys. Rev. 192, 1899 (1969).

H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 670 {1969).
7 H. Cheng and T. T. Wu, Phys. Rev. D 1, 1069 (1970).

2

field is static; then the matrix element' ' satisfies

lim lim (o 9Rp&~&
jE ~p czt ~GO

=lim lima& 'OR & 1= lim zo 'OR ' '~z, o, (1.1)
co~oo X-+p gzt ~Op

provided that the momentum transfer 6 is fixed at a
value diferent from 0.

Closely related to this condition 3&0, the results on
high-energy Delbruck scattering as given in Ref. 4
cannot be considered as complete, as already mentioned
there. In particular, there is no obvious way of connect-
ing those results to the previously known high-energy
behavior in the exactly forward direction

GO 7 2M 109 1
ORp &~& 4in'Z~ — ln—— ——in. , 1.2

m'9 m 42 2

as given by Racah, ' Jost, Luttinger, and Slotnick, s

Toll, ' and Rohrlich and Gluckstern. "More generally,
as previously discussed, 4 even though there is only one
mass, that of the electron, in the case of Delbruck
scattering, there are actually two scales for the monien-
tum transfer 6, namely, sn and zn'/zo. Indeed, the high-
energy behavior of the Delbruck scattering amplitude
as given by the impact factor representation' ' holds
for 6xed nonzero 6 independent of co, and hence does
not properly take into account the second scale for A.

It is the purpose of the present paper to study Del-
bruck scattering for small momentum transfers 6 in the
physically realistic case of massless photons. More
precisely, we show that the present case can be dealt

' G. Racah, Nuovo Cimento 13, 69 (1936).
OR. Jost, J. M. Luttinger, and M. Slotnick, Phys. Rev. 80,

189 (1950).
0 J. S. Toll, Ph. D. thesis, Princeton University, 1952 {unpub-

lished).' F. Rohrlich and R. L. Gluckstern, Phys. Rev. 86, 1 {1952).
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with by a suitable modification of the method' ~ al- representation
ready developed. &'", (l&,q.)

mate~ &-in&Z'e'(27r) ' dqi
C(q.+l &)'7C(q —l &)'7

2.1
2. QUALITATIVE CONSIDERATIONS

( )
In our previous study' ' of Delbruck scattering to the

order Z'e', the scattering amplitude at high energies provided that the momentum transfer cL isnotzero. In
was found to be expressed in terms of the impact factor (2.1), d,p(—',A,q) is the photon impact factor given by'~

6,,p'r, '+2p(1 p) (pi—pr, ),(—pi+ pr, ),
d„&(ri,q, ) = —-.'ir 'e' dp, dp

C(p. —pri)'+m'7C(p. +p»)'+m'7

—,'8, ,Cq, + (1—2p)ri7'+2p(1 —p)(p, +q,+ri —pri);(p, +pr1),
(2.2)

C(p, +q,+ri pri—)'+m'7C(p, +pri)'+m'7

This amplitude for Delbruck scattering differs from
that for photon-photon scattering' ' by the appearance
of only one photon impact factor instead of two. For
the case of photon-photon scattering to the order e',
the impact factor representation is actually valid" even
for d =0. The reason of convergence in this case with
6=0 is that, while the denominator gives a factor
(qi') ', this singularity is canceled by two factors of
q~' from the two photon impact factors. '4 For the case
of Delbriick scattering, the presence of only one photon
impact factor is insufficient to remove the singularity
at q, =0. Accordingly, a factor (qi') ' remains, and the
integral on the right-hand side of (2.1) is logarithmically
divergent when 6=0.

A comparison with (1.2) shows tha, t this logarithmic
divergence is actually lnM. More precisely, this com-
parison indicates that the factor (q&') ' should fail to
hold when tq&~ is comparable to ni '. Accordingly, qa,
although of the order of co ', cannot be neglected in the
denominator, since this factor (q, ') ' is originally
(qi'+pa') '."With this understanding it is possible to
modify the simplified derivations of (2.1) to cover the
case where 6 is of the order of magnitude m'/&u.

and

pi=Cp~, p 7,
p = L(1—P), —p —r 7,
p =L(1—P), —p.+r 7,
p4= Cp~+g3, p.+q.+»7,

ps= C(1-p)~-v, -p -q 7.

(3.1)

Pt

Since each intermediate particle is on the mass shell,
the corresponding energies are given approximately by

Ei Pni+ (p, '+m')/(2Pni),

I' -(1 p)~+C(p—.+»)'+m'7/C2(1 p)~7—
&3-(1—P)~+L(p.—»)'+m'7/L2(1 —P)~7

(3.2)
E,-Pei+q, +C(p, +q,+ri) '+m'7/(2P~),

3. FORMULATION OF PROBLEM

With this understanding of the importance of keeping
q~ even though it is of the order of co ', we can modify
our previous derivation of the impact factor representa-
tion so that the result also holds close to the forward
direction. Ke have a choice of how to proceed: We can
either use the momentum variables' or pre-Feynman
perturbation method. "In the present paper, we shall

follow the latter procedure. For this purpose, consider
the two perturbation diagrams of Fig. 1. The longi-
tudinal and transverse components of the various
momenta are

"See, for example, Eq. (4.12) of Ref. 5.
'3 H. Cheng and T. T. Wn, Phys. Rev. D 1, 3414 (1970).
I4 See Eq. (3) of Ref. 13.
'5 See especially Sec. 4 of Ref. 5.

Fxc. f. Lowest-order perturbation diagrams for
Delbriick scattering.
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and

Es-(1—P)~ —q3+ Dp.+q.)'+m']/L2(1 —P)~].
Remembering that the photon energy is

E,= (~'+ r~')'~'-~+ ',r,-'/~, (3.3)

ere 6nd that the energy denominators are

E.-E.-E.--[(p.+Pr )'+ ']/I 2P(1-P) ],
Eo—Eg —E3 —[(p,—Pr &) '+m']/[2P(1 —P)a)],
Eo E4 E—5 ——[(p~+q~+» —pr, )'+m']/[2p(1 —p)~],

Eo—E~—E~-q3 —L(1—P)p~'+P(p~+ q~)
'

-P(1-P)"'+ ']/L2P(1 —P)-] (34)

It is important to notice that in this approximation,

q3 appears only once in these four energy denominators.
It is now straightforward to write down the Delbruck

scattering amplitude at high energies as"

~Z't, '(2~') —' «q,«q, «p, «p[q, '+(q, r~—)'] '[ q +(q~+ r)'] '

(1—P)p.'+P(p.+q.)'—P(1 —P)~2+m'

2P(1 —P)cu
+is A, (p„q„rg, P), (3.5)

where A ~(p,q, r&, p) is precisely the quantity in the braces of (2.2). For rz not small, (2.1) follows immediately
from (3.5).

In order to deal with the case of small r1, it is convenient to introduce

~(p q r'P)=~( p —q q r'1 —P)

& (p.,qi, r&, p) = ~[&i(pi, q. ,»; p)+&~(p.,qi, »; p)].

(3.6)

(3.7)

It is seen from (3.5) that the three denominators explicitly given are not changed by the replacement p, ~ —p, —q,
and, simultaneously p —+ 1—p. Thus (3.5) also holds when A z is replaced by either A & or A. This quantity sl. can be
written out explicitly as

1 h;, 'prp+ 2p(1 p)(p~ pr~);—(p,+pr—g),

L(p.—pr~) '+m']L(P. +p»)'+m']

~~* [q~+(1 2p)r~]'+—2p(1 p) (pi+ qi—+r, pr, l, (p,+—pr, ),
'

[(p,+q,+r, pr, )'+m ]—[(p,ypr, )'+m ]
5,,(1—p)'ry +2p(1 p)(p&+q~+rq —pry), (p,+q& r—z+pr~), —

[(p,+q,+rp —pr&) '+m'][(p, +q,—r&+pr&) '+m']

48,,[q,—(1—2p)rq]' j2p(1 —p) (p&
—pr~), (p,+q& —rq+pr~),

L(p. pr~)'+m—'][(P.+q. »+p»)—'+m']

4p2r 2

1g

[(p.—pri)'+m'][(p. +pr~)'+m']

Lq.+(1—2p)»]'

[(p.+q.+» —

p»)'+m'][(pi+pres)'+m']

4(1 —p) 'r, ' [qi —(1—2p)rg]'

[(pl+4+Ii prl) +m ][(pL+ql rl+prl) +m ] [(pl prl) +m ][(pl+qi rl+prl) +m

(pl prl) ' (pi+ql+f1 prl) ' (pj+prl) (p'J.+qg r1+prl) '

-(pi —pre) +m Q4+qx+ra —p») +m —-(ps+pre) +m (pi+q~ —r1+p») +m

Q/hen the integration oveI qa is explicitly carried out in (3.5) with the help of the formula

7l 0,'1 (X2 Q3
«x[(x'+a@)(x'+u2') (x+np)] '=

O'lo'2O'3 ~1 O'2 O'2 O'3 O'3 O'1
(3 9)
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we get

~o' '- —li~~'e'~ '(2~) ' &q &p ~PLlq —»llq+»l(lq —»I+Iq+»l)j '

(1 P)y 2+P(p +q )2 P(1 P)r 2+m2-
x Iq.-ril+lqi+»I+i — ~(y.,q.,r; P)

2P(1 —P)~

(1—p)y, '+p(p, +q,)'—p(1 p—)r '+m'
x Iq, —r, l+i—

2P(1 —P)cu

(1—P)p.'+P(p.+q.)' —P(1 —P)r '+m'--'
x Iq.+ril+i

2P(1 P)~—

In this form, we can use the approximation

(1—P)y'+P(p+q. )'—P(1 —P) -'+ '-p. '+ ',
and hence obtain

~o' '- —li~~"'~ '(2~) ' ~q.~y. dPLlq. —»llq. +»l(lq. —»I+lq. +»l)l '

(3.10)

(3.11)

p 2+m2 ——
p 2+m2 ——1

x Iq —»I+lq+»I+i Iqi —»I+i
2P(1 —P)~- — 2P(1 —P)~-

p 2+m2 ——1

X I q,+r, l+i — -4(y„q„r„p). (3.»)
2P(1 —P)~-

In writing down (3.11) and hence (3.12), some of the terms with q, and ri have been deleted. These terms can be
seen to be unimportant for q& and ri either of order m or of order m'/~. It is important to note, however, that the
deletion of these terms would be incorrect if either A~ or A2 had been used instead of A. This is the reason for
introducing j.Equation (3.12) is the expression tha, t we shall study in the next two sections.

Equation (3.12) gives the high-energy behavior of the Delbruck scattering amplitude for all finite values of the
momentum transfer 4=2r~. This expression simplifies when r~ is assumed to be small. In particular, when r~
and q& are both small, the 2 of (3.8) is approximately

Iy —qg {2Q), (q,+ri) jp„—(p, '+m')(g, +ri);}{2ty, (q, —ri)$p„—(y,+m')(q, —r,);}
+P(1—P) —. (3.13)

(p 2+m2)2 (y 2+m2)4

Note that this expression is zero when q~= &r~.

4. SPECIAL CASE OF FORWARD SCATTERING

Before launching into the calculation for 6 of the order co ', we erst consider the special case 5=0 to see
how the known result (1.2) can be derived from the present considerations. For this special case, it, follows
from (3.8) and (3.12) that

1 —
p 2+m2

mzo 'I&=0 —4iicuz'e'~ '(2ir) ' dq dyi dpi qual
' 2l qual+i

0 — 2p(1 —p)cu

y 2+m2 ——2

Iq. l+i
2P(1 —P)cu

(P.+v.)' P.Pli (p.+pi);x ——,'&„—+P(1 P) — — ——— — —— - . (4.1)
Q, '+m'jL(p, +q, ) '+m'g pi2+m (pg+qi) +m -pi +m (pi+qi) +m2

Q
2

We carry out the integration in (4.1) by dividing the region of integration into two pieces:

ORO&~i
I q o

—4i&vZ'e'ir '(27r) '(Iio+I2O), (4.2)

where Iio and I2p a,ie given by the same integral as that of (4.1) except that the qi integration is restricted,
respectively, to lqi I

(5 and
I
q, I

)8. Here the quantity 8 is chosen to satisfy

m»8»m'/cu. (4.3)
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y, '+m' p, '+m'
dqdy «ilq. l

' 2lq I+ —
p)

~,p(, ~)
I q. l+2—

0

I10

2+m2[2(p'q. )P"—(p.'+m')~. ')[2(p. q.)P —(y +m V.q
2

(p, '+m')' (p, '+m')'
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n be carried out. Thusdifferent approximations can bFor tneseh t - ions of integration, i eren

(4.4)

2

[p,2+m') [(p,+q, ) '+m')
I20

(P.+v.)

iq~i) 6 0

(P+a) P
+~(1-~)

y '+m' (p.+q.
in 4.3). As a rst s ep,t because of the rotational in-se inte rations for a 8 satisfying ( .

hI dI b . lh tl forward direction, both 10 anvariance in the exac y

I10=~.~

and

1

dq, dp, dP~ q, ~-' 2l q,
0

p, '+m'— p, '+m' - '
lq I+i

2P (1—P)(ov)

(p,2+m2)2qi2 —4m2(p, q, )'-
X + P

4 (p, '+m')'
(4.6)

I2P =26,,
y'(y. +q.)

6 ( '+m')' 6 (y.'+m )[(y.+q J, +m4 (p, '+m')[(p +q )'+m' p
(4.7)

Considei I]p first. Let

then averaging ov
'

g over the direction of c[& yields

i 4 —
p 2+m2

d 2y+i- —y+i-
2P(1 —P)co 2P(1 — co0 0

pi +m

P)

(y, '+m') '- —2m'y, '-

( 2+m2) 4
1 —P)

4 (p42+m2)' p, m

'
n can be carried out simp y:lI'or 8»m2/co, the y integration can

(4 8)

(4.9)

pi2+m'

2P(1 —P)co8

IM 22r8;; dp, dp 21n
0

(y, '+m') ' —2m'y, '
1 —P)

4 (p 2+m2)2 p
2 4

(4.10)

which gives immediately

28 "{(7/36) [2 ln(2a&8/m2) —1—2rj)

now turned to the I20 oof,4.7 . AfterAttention is now . the ~ integrationintroaucing ad
'

Feynman parameter x, e y&

can be carried out":

For 8(gm, integrations over q& and then g give

—2 2I20~ 3' dx( —1 —x+x2) ln{m2/[x(1 —x)82)j

—3m=-'m 22r25;, [—(7/3) in(m/8) —41/18). (4.13,
'

When (4.11) is added to (4.13), the snin is

Iig I20 —2r2m 25 "{(7/9)[In(2'/m) —22i2r)

—109/54), (4.14)
dq. (q') 'I20 = ~~sr '~ dlI X

0

"Compare Eq. (3.4) of Ref. 2.

Iqg t) t}

as ex ected b does not appear. Finally,s ex ec e
'

all the sub-where as expec e all
stitution of (4.14) into 4.2 gives e
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5. BELBRUCK SCATTERING WITH SMALL
MOMENTUM TRANSFER

We are now ready to study Delbruck scattering near
the forward direction, i.e., Delbruck scattering with a
momentum transfer of the order of m2/40. More specifi-
cally, ere proceed to generalize the considerations of
Sec. 4 to this case of small but nonzero momentum
transfer.

For this purpose we return to (3.12) and write,
analogous to (4.2),

5lt2& ' 4i(vZ'e—'2—r 2(22r) '(lg+I2), (5.1)

where I1 and I2, similar to I10 and I20, are the contribu-
tions from the regions I q4 I

& 8 and
I q, I

)8, respectively.
Since

fr, f«m

and (4.3) holds, we have

I2 I20 )

(5.2)

(5.3)

which is explicitly given by (4.13). It is therefore suffi-
cient to concentrate on I1, which is the integral, from
(3.12) and (3.13),

I]—2

ling

l(5

1
y 2+m2-

dq.dp. dPLlq4 —»Ilq4+»l(lq~ —r~l+Iq. +r~l)) '
Iq4 —»I+Iq.+r2I+2

0 2p(1 —p)4d

p '+m' y, '+m' —"-1 r&2 —q42
x Iq.—»I+& Iq~+»I+i

2P(1 —P)(o 2P (1 —P) cu 4 (p, '+m') '

{2+, (y, +r~))p4; (p, '+—m')(q, +r,),) {2[p, (q& —r~))p» —(p, '+m')(q, —r2), )
+~(1—~)

(p 2+m2) 4
(5.4)

The erst step in the reduction of this complicated integral is to use

p42+m2
Llq —»Ilq. +r~f(lq —»f+lq+»I)) '

lq —»I+Iq+»I+2
2O(1-O)

p '+m' y42+m2
x Iq.—»I+2 Iq~+»I+i

2P(1 —P) — — 2P(1 —P)—
p 2+m2 ——1

y '+m'
=f(q.+r~)' —(q.—»)') '

Iq4 —»I '
Iq4 —»I+2

™—Iq4+»I ' Iq4+»I+2
™

2~(1-P) — — 2~(1-~)--

It is therefore desirable to change to the variables q~&r1. With due care in the changes of variables, we get

I2=In+Ii2)
where

dp, de{--,'~„(y,'+ ')-'+e(1-p)(y, '+ ')-'L(p. '+ ')'&', —4 'p. p.;)&

(5.5)

(5.6)

(5.7)

I12——4

In (5.8), principal values must be taken along lq&+2r& I
=

I q&l. Since

I22 ——7~2m-28, ,/18,
we concentrate on I22 of (5.8).

The integration over the angular variable of y& is the easiest one to carry out:

1 —
y 2+m2 ——1

dq4dp4 &Pl q. l

'
I q. l+2- I:(q.+2r~)' —q.') '

l~l&b 0 2P(1 —P)a&

r2' —(q.+r2) ' {2@„(q,+2r&))p„—(p42+m2)(q, +2r&),) I 2(p, q,)p„—(p,2+m2)q»]
x -b;, -+P(1 P)—

4 (p, '+m2) '
(p '+m')4

(5.8)

(5.9)

dg&dp&

(p 2+m2)4

y, '+m'
@Iq. l-' lq. l+2 L».q.+r~') '

2P(1 —W~-

q, (q,+2r&) —2'(p, ')'Lq, (q,+2r2))b;, +m'(g, +2r&),q„x ——,'~,, +P(1—P)
(p, '+m')'

(5.10)
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ntribute after i+tel

24/0

ch a term cannot co
b

we have omitted a term g '
an ular variable de6ne

I theiastnn1nerator,
I

f (4.8) together with aLet us use the variab y=
n e

le =~q, o

when r1=
I r1 I; then

dp~ y dy

q& r&=yr1 cos8,

2 m2 ——1

r '(y cos8+r1) 'd8 dP y+i r1

m os'
0 2P(1 —P)~-

—'(p ')'(y+2r1cos m8)+m4(y cos8+2r1) cos

(p 2+m2)44 (p, '+m')'
(5.11)

I»&= dp& y dy

m'
r (y cos8+r'1)d8 dP y+i r1

o — 2P(1 —P)~-
')'( +2r1 cos8)+m'y s1n1 2 r 4 jn2g—1 y+2r1 cos8 —', (p, ' y r1 ' in—+P(1—P)-

4 (y1'+m')'
(5.12)

when the photon while121& 121

lane, respectively. It
l ith th d diR

the scattering p ane, r
'Rerencesomew a al wih t simpler to deal wi

Il+=of (5.11) and (5.12). e ne

(5.13)I+= 2(I121~I12 i);

I+ =- I ++I +

~'1

2 2 2 2 —1l2dy(2r1' —y2) (r 12—y

(5.18)

I+= — dp& y y
'd

2 0

p1 +m

2P(1 —P)--0

—1( 1(y 2+m2) —2

2P(1 —P)(u
y+2

1 —)E(y.') '+m'3(y. '+m )

and

y+2r1 cos8
Xr1-' ( ——,'(p.

y cos8+r1

XL(y1')'+m'j(y '+m') ')

dp~ y y

'
d

2 & 0

wn to be zero for r1 —+ 0.
8en

' 'nte~rate over . yThe next step is to in
values, we have

p1 +m
d8 dp y 2

m2 -4m4(y cos8+r1 (5 15)X -'p(1-P)(y. '

b 1 P1+
I2+ = 22r dp1 d~ dP y+i

0

X{—-', p1 m—'( '+ ')+p(1-P)L(p. ) +2 m2 (p 2+m2) —4)

7 2%8

3636 m'

2 m 2 ——1

p

I12~I11+I2+.

%e therefore obtain the result that

(5.21)

ofb. AI+ are both independent of
ith (4.11) shows thatcon1 arison of (5.20) and (5.9 w1t

Accordingly)

I =xm4 dye

)1

y'dy(r1' y') '"—
2 ——1p12+m

2P(1 —P)~-

d8(y cos8+r1) '

2 2 —1/2 fOr y(r122r r1 —y

for y& r1.
(5.16)

d

CATTERING AMPLITUDE6. PROPERTIES OF SCAT

I + and I are functions of theIt is clear that both Iq an
variable

—-'icoZ2e'm=' 2m.

(I+WI ), (5.22)

are iven y 5.19 and (5.17), andw erhere I1+ and I are given

1 to th
plane in e

esired result.

Xr1 'P(1 —P)(p, '+m2 2 —4 (5 17) 2E.] = r1G0 m
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andn terms of ~1)ot of g all separately. In

2 —2I+= —7r m1

1

dy(2-y')(1-y') "'1

dp 'dy(1 —y )

——1pi +m
X dp y

2 (1 p)m'Ri-

Xp(1-P)(P '+-'2 -4 (6.2)

1

dy(2 —y') (1—y')

'dp& +, /I2p(1 —p)R ~)
0

,x +x-'p (1 p) (x2 2x+2)$ ~ (

(6.1O)

Then

for the time being tI et us a,ssume

R1(2

——1pi +m
(

i
(p 2+m )«y+'

m'Ri-2p(1 p)

)(( ~)2+m4$(pi~+m ) )

both I d I+ approach zerog]early) as &1~ . . ~~. In th»»m'tNext consider the limit E

(6.4)l 7r'm '/18,

icated behavior of I1 g'+ is iven by'1 the more complica ewh

4P(1 —P)m'Ri
I]+~—7l p dp 2lnpi

0

Xf —
g pi—-'( '+m') '+P(1 —P)

XL(p.')'+m'l(p '+m') '}

= 2m'm —' —(2 ln4Ri —1 —m

36

—1 —iver

(6.5)

her with (1.2

19 213170,'~' 4iu'Z'o~m —'(7/9) Lin(m/6)+19/2

of 6.4) ano . . d (6.5) into (5.22) yields,The substitution o ( . . ields,
toget

/52p„—P)R

(6.11)g (2,R,)-x-"Lp(1 —p) ~"y

f 611) into (68) g'Th ubstltutlon 0

r(in+1) Lr(n+ )j
(6 12)(2R)"

~ ) r(2 +4)n=1

u lication formula for gammathe Legendre up ica
functions is used in 6.
pressed as

1 = —(v2/64)m'm —' P (—',iRi)"

Lr(-,'n+ I)$2r (-', ~i+-,')
I' -'n —,') I'(-', n+5/4) F(-',n+7/4I' —,n

a
' '

r arts of I are, respec-Thus the rea aI and imaginary parts o
tively,

(66) Rej——, 3 —2 2—= (V2/256)m-'m 'Ri2 Q ——,Ri

(6.7)
then

'(7/9) Eln (m/~) +22/21917 11(D) 4~0, 'Z2COm011

are in comp e ee ex ressions
usl. obt i ed" fro thep o y oa reement wi

t ays of writing
know

n e uivaeny q
. j. We shall mention on y aand (6.3 . e s

x= (p, '+m')/m';

I:r(n+2) l'r(n+ l)
(6.14)

I' n —,')F(n+9/4) F(n+11/4
and

3 —2 LR 2)nIm7- = —(v2/128)~3m- R, P

Lr(n+2) j'r(n+2)
I'(n+3) F(n+7/4) I'(n+9/4

I =%2m 2

00 1

y'dy(1 —y') "' of eneralizedittenin terms o gsions can e wriThese expressio
hypergeometric functions as o

1 0

d y ix — Ri 'x 4P(1 —P) (6.8)d (y+ix/L2P(1 —P)Ri]) x — .8

"See Eqs. (4.7) aiid (4.8) of Rd. 4.

ReI =(2/525)m'm 'Ri2

(6.16)
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and"

ImI—= —(1/240)m'm 'Ei

1, 3/2) 3/2, 2)
X4F3 . (6.17)

3, 7/4, 9/4

Equations (6.16) and (6.17) hold even without the
restriction (6.10). Similar results can be written down
for Iq+.

We conclude with the following remark on the Mellin
transforms for I and I~+. Generalized hypergoemetric
functions all have simple Mellin transforms. In par-
ticular, as seen most easily through the Meijer 6 func-
tion, "the Mellin transform is a quotient of products of
gamma functions. This provides an alternative way of
deriving asymptotic behaviors (6.4) and (6.5). This
alternative method has the great advantage of giving
as many terms as one wants for the behavior of I and
I~+ when E~ is large. The details of some of the calcula-
tion along this line are to be found in Appendix A.

In Appendices 8 and C we study I&+ and I in a some-
what different way. The integral representation for I
and Ii+ as given by (6.8) and (6.9) are first reduced to
double integrals in Appendix B. Then one of the two
integrations in the double integral is carried out in
Appendix C so that both I and I~+ are expressed as
single integrals.

7'. HIGHER-ORDER CORRECTIONS

There is one important difference between Delbruck
scattering on the one hand and Compton scattering
and photon-photon scattering on the other, namely,
there are two parameters in the case of Delbruck scat-
tering. The perturbation expansion for the Delbruck
scattering amplitude is a double series in the two
variables n and Zo., where the lowest-order term ob-
tained in the three preceding sections is of the order
n(Zn)'. Physically n is quite small, but Zn need not be;
in fact, Zo, for uranium is about 3. It is therefore useful
to sum over all terms of the form n(Zn)" for Delbriick

scattering. For Compton scattering and photon-photon
scattering, no corresponding summation is physically
meaningful. It is for this reason that, for the case of
fixed 6/0, higher-order terms for Delbruck scattering
only are treated in the original paper. ' YVe extend here
that consideration to small or zero momentum transfer.

As given in Ref. 1, the inclusion of all the higher-order
terms in Zn with the restriction to lowest order in n
changes the impact factor representation only slightly.
Explicitly, (2.1) is modified to"
OR' '~icoZ'e'(21r) '

s,,'(-,'x, q,)
dq, . (7.1)

[(q.+-:~)']'-'"[(q.) --:~']""-
Let us study the difference (7.1) and (2.1), which is the
correction due to higher-order terms in Zo,

s~n(» =m(» —mr, {~)

-icoZ'e'(2~) ' dq, 8;.,&(-,'A, q,)

X{[(q +i +)2] i+iza[(q i +)2]—1—Ized

-[(q.+l~)']-'[(q.-!~)']-'} (7.2)

Note that the integrand is zero if 6 is formally set equal
to zero. Ke shall calculate the limit of 55K& & as 6 —+0.

When 6 is small, the contribution to NR& & comes
entirely from the region where q& is also small. Since, by
definition of Ai and (3.7),

d;, &(ri, q,) = ——',~ 'e' dp, dP Ai(p„q„ri, P)

= ——', ir 'e' dp, dP A(p„q„ri, P), (7.3)
0

we can use the approxima, tion (3.13) for the present
purpose. Accordingly,

lim 6OR&n& = —i2icoZ'e'~ —'(2m) —' dq, dp, dp
A, ~O

ry2 —qI~ {2[p, (q,+ri)]p„—(p, '+no')(g, +ri);}{2[y, (q, —ri)]p„—(p, '+m') (g,—ri), }
X -~„+a(1-a)

(p2+ ~2) 2 (p 2+rii2)4

X{[(qi +ri) 2]—i+'zo.[(qi ri) 2]—i—'z~ [(qi+rl) 2]—1[(qi rl)2]—i} (7 4)

In this form, the p& integration and the P integration can be easily carried out to give

lim 5OR'n&= ——,'icoZ'e'7r 'm '(2m) ' dq, [(2/9)8, ,(ri' —q, ') —(1/18)(ri;ri, —q„g„)]
b, -+0

X{[(qi+ri) 2]—i+'z [(qi ri)2]-i—'z [(qi+ri) 2]—i[(qi ri) ~]—i} (7 5)
' This ImI is actually an elliptic integral. See Appendix C.
'9Bateman Manuscript Project, Higher Transcendental Fgnctions, edited by A. Erdelyi (McGraw-Hill, New York, 1953), Vol.

I, Chaps. IV and V.
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In order to carry out the q& integration, we use a generalization of the Feynman representation

[(q +r )2]—1+iza[(q r )2]—1—iza —(~Z&)
—1 smh(~Z&) dx x ' (1—x)'~ [q,' —2(1—2x)r& q, +r&'] '. (7.6)

The substitution of (7.6) into (7.5) gives, after some rearrangement to avoid divergence,

hm 8gq~n~ = ——,'ippZ'eP~ —'m —
'(2vr) (7rZn) sjnh(prZn) dx x 'g (1—x)'

&& dq, ([q,'+4x(1 —x)r&'] ' —[q,'+r&'] '}((2/9) 8,,[4x(1—x)rP —q, ']

—(1/18) [4x(1—x)rq;rU —g&;q~,]}—(the value of this term at n =0)

~ $, jppZ2ep7r 2m —&(2~—) 2 (~Z~) & sjnh(prZ~) dx x *'

(1—x)' ( —(7pr/36) ln[4x(1 —x)]}

—(the value of this term at a =0)

= ipp5, ,Z'n'm —'(14/9) [P(1+iZn') + P (1 i Zn) +2y], — (7.7)

where f is the logarithmic derivative of the gamma
function, and y is Euler's constant, numerically 0.57722.
This is the desired result.

Since the limiting value exists as 6-+0, (7.7) is a
good approximation for all small momentum transfers.
Thus the structure of the Zn corrections to Delbruck
scattering is rather similar to the case of photon-photon

scattering close to the forward direction, "and is much
simpler than the lowest-order contribution.

8. RESULT FOR DELBRUCK SCATTERING
W'e summarize here the present result on high-energy

Delbruck scattering close to the forward direction. To
all orders in Zn but only to the lowest order in o., the
matrix element is approximately

ÃY&~&~4in'Z'(pp/m') (7/9)[l (2n/ pp) m—(109/42) ',im+y+Reg—(1—+iZn)]+4
I

dx dy(1 —y') '"

dP(y+ixm'//P(1 —P)happ]} '((2 —y')[—~px '+x 4P(1 —P)(x' —2x+2)]+y'P(1 —P)x 4}
& (8.1)

d&&m. (8.2)

The special case of 6=0 has been studied by Davies,
Bethe, and Maximon. 'o

9. COMPTON SCATTERING

In terms of the impact factor representation, ' ' the
Compton scattering amplitude at high energies is given

'H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev.
93, 788 (&954).

where the upper (lower) sign should be used when the
photon is linearly polarized perpendicular to the scat-
tering plane (in the scattering plane). Alternative forms
for the integrals in (8.1) are given in Sec. 5, and the
appendices. This result (8.1) holds when

by

BRp'e&--', ie'm —'bg, s(2~) '

s', (-:~,q.)
&( dq,— (9.1)

L(q.+l &)'][(q.—l &)']

to the order e' when the fixed momentum transfer 4
is not zero. Here, in the c.m. system, 8~2 means that the
helicity of the electron is not changed, ' ' and s is, as
usual, the square of the c.m. energy. The remarkable
similarity between (9.1) and (2.1) has previously been
noted.

The similarity between the high-energy behavior of
the amplitudes for Compton and Delbruck scattering
is actually even more striking. For this purpose, consider
(9.1) instead in the laboratory system, where the elec-
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tron is initially at rest. Let co be the energy of the in-
cident photon, then

s = (co+m) ' (v'—2nuu. (9.2)

Suppose tha, t (9.1) is expressed in terms of a& instea, d of
s; then"

Except for 8», this is exactly (2.1) with Z=1. Con-
sequently, the result (5.22) for Delbriick scattering
also hoIds for electron Compton scattering

84&A& —OEO&~&
~
g=o ——,'i(ue'z '

&& S„(2~)-'(I,++I-), (9.4)

ozo ~'~-i~e's„(2~)—'

s „(-,'4, q)
X dq, — . (93)

[(q +-:&)'3[(q.—l &)'j

in the extreme relativistic limit (cu))m), where rq is the
classical radius of the electron. Moreover (9.6) holds

independently of the mass of the target particle (of
charge e). This result contradicts that of Joseph, "who
obtained 100/9 instead of 218/27, but agrees with Suh
and Bethe"

Together with earlier worl~ on the impact factor
representation' and on photon-photon scattering close
to the forward direction, the present results complete
the description of the high-energy behaviors for a/l two-

body clastic scattering amplitudes in quantum electro-
dynamics when the momentum transfer is not large.
The application of all the considerations of the present
paper to scalar electrodynamics is completely straight-
fol wal d.
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4in'((u/m') (7/9)
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In (9.4), the integrals I~+ and I are given by (5.19)
and (5.17), and the upper and lower signs should be
used in the same way as (5.22). The result (9.4) holds
when A((m, and implies that the target mass is
irrelevant.

The result for high-energy Compton scattering is
rather confused in the literature. Equation (9.5) im-

plies, in particular, through the optical theorem, that
the total cross section for

APPENMX A

Ig+(l) =m'7r ' Ig+Eg ' rdEg (A1)

In this appendix, we study the Mellin transform of
I and l~+. Define

is approximately
y+e ~ e++2e I-O.) =m2~-2 l Rg ' &dRg.

nro'[(28/9) 1n(2co/nz) —218/27 j (9.6) then it follows from (6.8) and (6.9) that'4

Iq+(l ) = 7r(csc~—l )e 'r"—dx dy(2 —y')(1 —y') "' dP

Xy '+r[-', P
—'(1 —P)-'x]—

&[—-', x—'+x 'P(1 —P)(x' —2x+2)]

&(-'-l-) [&(1+l-)j'
x"'( csc~ -l)e '«'2&(1 —

4+2 Ol+9 'f+ 'l)

P( 0+2' )P-(4+2')
(A3)

I (l) =m(csc~l)e ' r" dx dy y'(1 —y') '" dPy '+r[-.&P '(1 —P) 'x] &x 'P(1 —P)

P(-:l-+1) [P(2+l)]'
(A4)=-'~"'(cscml)e ' r"2r

I'(-', l +-', ) P(4+2' )

It should be noted that, in general, for g of the order of m, B12 is somewhat complicated. The spin state of the Compton scat-
tered electron is, at high energies, determined completely by that of the electron before scattering. The relation, however, is par-
ticularly simple only in the c.m. system or, more generally, in a system where the electron and the photon both move rapidly in
opposite directions. When b, is much smaller than m, the recoil electron moves very slowly, and 5» has the meaning of not chang-
ing the spin state of the electron even in the laboratory system."J. Joseph, Ph.D. thesis, State University of Iowa, 1955 (unpublished). See also J. M. Jauch and I", Rohrlich, The Theory
of Photorls aced E/ectrorIs (Addison-Wesley, Reading, Mass. , 1955), p. 250.

"K.S. Suh and H. A. Bethe, Phys. Rev. 115, 672 (1959).
'4 See Eqs. (3.7) and (3.8) of Ref. 4.
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Reduction of Ii

EWE

(i) When f is near zero,

&& |-'Li(l)3-'-:&1 —,

—-' '2r 2 ln2 —25/7) j+0 1,= 7/9)i 29+i(—2i~+

I11+= dy(2 —y')(1 —y') "'

&& y i — Rij) 'x ' (84)&«r+'*/L2P(1-P)R ——
and

and

I-Q-) =i '/ig+O(1).

Ii+(i)= —i2r(1 —|) ' 11 2

(A6)

(A7)

and, for j=
1

2 —1/2 . . dP2-dr(2 y)(

X y ix/t 2P(1 —P)Rij} 'P

'i 1——i)-—'/5!+O(1) .I (t-)= --;-i 1-— (A8) then

o ors (6.4) and (6.5) follow
f i 1.Hih

Th 1 d'neart= —,—r

E1 are

I ++2I12+—2I14+ . (86)I 1 I12I1+=~ ~—
—, 1

e twis to be used for th oo vaiabe( )- Th ----"-"cases I1 ++ and I14+. e n «nte
to (82) are respective y,

and

+= —iii2r2n2 'Ri/240+0(R1'm (A9) 2 —1 —s—, 2 1/2 87)2 2 —1/2 —s—2(1drr '(2-r')(1-y' ' =s

(Aio)= —i2r22n 2R1/240+0(R12) .

t,A10) is consistent wi
b b d

h b hav«or of

I + and I are cosion for

and

'(2-r')(1-y') "'
=-',s '(2+s')(1 —s )2 1/2 (88)

Therefore

APPENDIX B 2) 1/2P2(1 P) 2p ds(i -s
&& (i+2R1Ptri le integrals (6.8)

elegant for . b t a
and

8 — 2' 1-")"'P'(1-P)+=2R dP ds(2+ ' 1 —sI14+= 3
0 0

s)(
XLi+2Rip(1 —p)s) (810)

u. Reduction of I

x= y/s;

e the variable x by

i
'

in~ to note that

Beginning with . , e e

(81)

d out because
'

n can be carne othent ey'h integration can I +2I12+—3I14 ——+—-o (811)

2 1/22 —1/2 —s—1(1y 'dr(1 —y')
8
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'
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(82)
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0
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+—I „++I~+11 15

+=I12++I12",12 17

(812)

(813)



WUCHE AN D

then
.

ble & of integII the dumwher

1

2)-&/2 d
00
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1

(1 2) 1/2

15

2) i/zp(1 —p)(1 —'pI„+=2R2 ds(1 —s

X,+2Ry(1-p)'7 ~ ln (1—P)/P7

and

X[,+.2Ry(1 —p)'7 (825)

22) i/2p(1 p) (1 pI„+=Rr ds(1 —s
0

and

1

dx dy(1 —y')-'" d

( +'/[ p(

) ( ) dbstj tutionFinally, t e s
(810) into (86) gives

1—)R27)-'p(1 —p)x
1

dP ds(1 —s ) P

X(y+zh/[2P(1—

I1+ ~l ~2' 2R1

I1s+=
1

dx dy(1 —y') "' d
(

+2P(1—P)(5— ) .—2s' ) (326)

0

' 3 1—2P) ln[(1 —P)/P7x[i+2Rzp(1 —p)s7 '{3 1—

1 —
2

— x ' (817)1 —)R27) 'P(1 —P)*

dP ds(1 —s') '/'P(1—I15+=2R1
0 0

X{y+z*/L2p

e treated in theI 2+ and I22+ can still be trea, ted rn2
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t (A9) follows read' yadil frome note thatAs a check, we
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APPENDIX C

and
&&[+2R~(1-P) 7- 318)

dix to carry ou t theof this appendix
83) nd (826 .

the purpose o
s integration in

I17+=I13+.

f variableI +, weuse ethe change of vFor I16+ and

(319)
sds(1-s' i—') "2[i+2Rzp(1 —p) s7—

x= p(1 —p)x' (820)

kes it possible to integrate overinstead of (81).This makes it posse e o

—L2 &(

xsinh '[2Rzp(1 —p) 7—2Rzp(1—

2 2 1 2 1/2R 1 —)7-'( I [1+4R22P2(1—

I16+=2 I /—2 cy(1-y) "
(C1)1+4R22P2(1 —P) '722rzI [
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and

)&(y+-', '*'/R ) 'l
——-' ' —2R&-' -R&—kzzr dp[2R2p(1 —p)7-2

*'=[p(1-p)7-', (823)

Ch x —' '"(y+-', ix'/R2) '+= Ch' x'-' dy(1 —yIzs+=
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—R 1-P) I&&sinh '[2R2P(1 —P)7—2RP(—

—-'2i2r([1+4Rpp2(1 —p) 7 — . C22 2 1/2 11) (C2
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A similar substitution of (C1) into (326) gives the other desired result:

I

I,+= r7rssrt-sg, —g,—r —sr jsrg] —s+ dz(1 —z')'t'
9 p

XL2&rP(1 —P)j '{Er '+3P(1—P)(1—2P)lng(1 —P)/Pj+10P'(1 —P)')(IL1+4ErsP'(1 —P)'j'ts

)&sinh rL2Erp(1 —p) j—2Erp(1 —p) I zi—7r{$1+4Rtsps(1 —p) sjr ts —1}) . (C3)
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Nonassociativity of the Operators in the Crossing-Symmetric
Bethe-Salpeter Equations*

RoBERT J. YAESt

Cewter for Particle Theory, Department of Physics, The Ursieersity of Texas at Agstie, Agstirt, Texas M712
(Received 15 June 1970)

We discuss the properties of the crossing-symmetric Bethe-Salpeter equations which have been proposed
by Taylor and by Haymaker and Blankenbecler. We consider various possible methods of solution and the
possibility of application to the Veneziano amplitude. We show that the operators which appear in these
equations are not mutually associative, and hence that even the linearized approximation to these equations
cannot be solved by conventional techniques.

I. INTRODUCTION

'T is generally believed that the four-point function
~ - in strong-interaction theory should have the follow-

ing properties: Lorentz invariance, analyticity, crossing
syxronetry, unitarity, and Regge asymptotic behavior.
Since Lorentz invariance and analyticity are explicitly
satished by any analytic function of the Mandelstam
variables, s, I, and I, the three key properties are
crossing symmetry, unitarity, and Regge behavior.
Until recently, we could not obtain an amplitude having
more than one of these three properties. However, we
now have the simple but elegant model of Veneziano'
which displays both crossing symmetry and Regge
behavior but, alas, not unitarity.

The problem of combining crossing symmetry and
unitarity is much more dificult. A set of equations for
an amplitude having both these properties has been
proposed by Taylor' and by Haymaker and Blanken-
becler. '4 Unfortunately, being nonlinear, these equa-
tions have the disadvantage of not being soluble.
All one can do is use the various iteration schemes

which we shall discuss and which cannot be guaranteed
to converge. In addition, since (as we shall show) the
operators which appear in these equations are not
Inutually associative, we cannot even solve a linearized
approximation to these equations by the usual tech-
niques. In this paper we discuss the properties of these
equations, the methods of obtaining iterative solutions,
and the possible application to the Veneziano amplitude.

II. EQUATIONS

%e consider the four-point function for the scattering
of identical, spinless bosons of mass nt (Fig. 1). The
crossing-symmetric generalization of the Bethe-Sal-
peter equation proposed by Taylor' and by Haymaker
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(1968).' On-shell E'-matrix equations of the same form were 6rst ob-
tained by W. Zimmermann LNuovo Cimento 21, 249 (1961)j.
They have been applied to various cases, including the Veneziano
model, by Cordes, Ravenhall, and Schult and by Humble. Fzo. 1. Our notation for the four-point function.


