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Delbriick scattering is the elastic scattering of a photon by a static Coulomb field via electron-positron
pair creation. At high energies, there are two natural scales for the momentum transfer A, namely, m and
m?/w, where m is the mass of the electron, and w is the photon energy. When A is much larger than the
smaller scale m?/w, the impact factor representation holds at high energies. The impact picture is here ex-
tended to give also the high-energy behavior of the Delbriick scattering amplitude when A is comparable to
m?/w. The result can be expressed in terms of generalized hypergeometric functions, which reproduces the
known result in the forward direction when A is set equal to zero, and also joins smoothly to the impact
factor representation when A is much larger than m?/w. In the present analysis, the fine-structure constant
« is assumed to be small, but not Za. In other words, all terms of the form «(Za)” in the amplitude are
taken into account. It is also shown that the result for A< is independent of the mass of the target, and
hence is in particular applicable to Compton scattering by an electron.

1. INTRODUCTION

VER a year ago, we presented a systematic dis-
cussion® of the high-energy behavior of all the
two-body elastic scattering amplitudes in quantum
electrodynamics. More precisely, the processes con-
sidered included (1) Coulomb scattering of an electron
to the order Z%*, (2) electron-electron scattering to the
order e%, (3) electron-positron scattering to the order e,
(4) Delbriick scattering to the order Z%?, (5) electron
Compton scattering to the order ¢% and (6) photon-
photon scattering to the order e5. Here, as usual, e
denotes the charge of the electron, and Ze that of the
source of the Coulomb field. Higher-order effects in Ze
were also given.! Although the original calculation is
quite complicated,*™* substantially simpler methods to
obtain the same answers were found later.57
In studying some of the processes, such as (1)-(3)
above, an artifical photon mass A is introduced to avoid
infrared divergences. For other processes, such as (4)-
(6) above, such a photon mass is in no way needed.
We emphasize that, in our consideration of the Delbriick
scattering process in Ref. 4, we carefully used massless
photons all the way through. In all cases without in-
frared divergence, it is explicitly verified that the limit-
ing processes of zero photon mass and of infinite energy
commute. For example, consider Delbriick scattering.
Let w be the energy of the photon in the laboratory
system, i.e., the coordinate system where the Coulomb
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field is static; then the matrix element!:? satisfies

lim lim w™197¢P)

A0 w->x

= lim lim & 197 = lim =91 [5eg,  (1.1)
w—>%0

w->0 A\=>0

provided that the momentum transfer A is fixed at a
value different from 0.

Closely related to this condition A0, the results on
high-energy Delbriick scattering as given in Ref. 4
cannot be considered as complete, as already mentioned
there. In particular, there is no obvious way of connect-
ing those results to the previously known high-energy
behavior in the exactly forward direction

w7 2w 109 1
3R0<D)~4ia3Z2——<ln— _ mr>, (1.2)
m29 m 42 2

as given by Racah,® Jost, Luttinger, and Slotnick,®
Toll,® and Rohrlich and Gluckstern.!* More generally,
as previously discussed,* even though there is only one
mass, that of the electron, in the case of Delbriick
scattering, there are actually two scales for the momen-
tum transfer A, namely, m and m?%/w. Indeed, the high-
energy behavior of the Delbriick scattering amplitude
as given by the impact factor representation'™® holds
for fixed nonzero A independent of w, and hence does
not properly take into account the second scale for A.
It is the purpose of the present paper to study Del-
briick scattering for small momentum transfers A in the
physically realistic case of massless photons. More
precisely, we show that the present case can be dealt

8 G. Racah, Nuovo Cimento 13, 69 (1936).
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with by a suitable modification of the method®7 al-
ready developed.

2. QUALITATIVE CONSIDERATIONS

In our previous study!—2 of Delbriick scattering to the
order Z%°® the scattering amplitude at high energies
was found to be expressed in terms of the impact factor

2445

representation
'gif’y(%qul)
[(q:+34)2][(q.—34)7]
(2.1)

E)Tlo(mwin%?(Zr)_Z/dql

provided that the momentum transfer A is not zero. In
(2.1), 9;7(3A,q) is the photon impact factor given by*?

1 8:i8%12+28(1—B) (pL.—Br1)i(p.+Br1);
9.,;7(r,q1) = —%T*364/dp1/ dﬂ{
Jo L(p.—Bry)*+m* ][ (p.+Br1)*+m*]

This amplitude for Delbriick scattering differs from
that for photon-photon scattering®:? by the appearance
of only one photon impact factor instead of two. For
the case of photon-photon scattering to the order e?,

%&‘j[%‘f* (1 - 25)1'1]2“1‘ 2:3(1 —'3) (PH‘QH-M *ﬁ'ﬁ)i(ﬁl‘f‘ﬁ”l)]‘

2.2)
L.+ qutri—Fr)*+m? L (put£r1)*+m?]

P1= [ﬂw)plj ’

p2= [(1 ”:8)‘07 _pl_rlj )

ps=[(1—B)w, —pitr1], 3.1)

the impact factor representation is actually valid*? even
for A=0. The reason of convergence in this case with
A=0 is that, while the denominator gives a factor
(q.»)72, this singularity is canceled by two factors of
q.? from the two photon impact factors.'* For the case
of Delbriick scattering, the presence of only one photon
impact factor is insufficient to remove the singularity
at q,=0. Accordingly, a factor (q,%)~! remains, and the
integral on the right-hand side of (2.1) is logarithmically
divergent when A=0.

A comparison with (1.2) shows that this logarithmic
divergence is actually Inw. More precisely, this com-
parison indicates that the factor (q.?)~! should fail to
hold when |q.| is comparable to w™. Accordingly, ¢s,
although of the order of w™, cannot be neglected in the
denominator, since this factor (g.?)~' is originally
(q.2+¢5»)~1.1% With this understanding it is possible to
modify the simplified derivations of (2.1) to cover the
case where A is of the order of magnitude m?/w.

3. FORMULATION OF PROBLEM

With this understanding of the importance of keeping
gs even though it is of the order of w™!, we can modify
our previous derivation of the impact factor representa-
tion so that the result also holds close to the forward
direction. We have a choice of how to proceed: We can
either use the momentum variables® or pre-Feynman
perturbation method.®7 In the present paper, we shall
follow the latter procedure. For this purpose, consider
the two perturbation diagrams of Fig. 1. The longi-
tudinal and transverse components of the wvarious
momenta are’

12 See, for example, Eq. (4.12) of Ref. 5.

8 H. Cheng and T. T. Wu, Phys. Rev. D 1, 3414 (1970).
14 See Eq. (3) of Ref. 13.

15 See especially Sec. 4 of Ref. 5.

ps=[Bw+gs, pr+qutri],

and
ps=[(1—B)w—gs, —p1—q.].

Since each intermediate particle is on the mass shell,
the corresponding energies are given approximately by

Ey~Bwt(p+m?)/(28w)
Ey~(1=Bw+[(putr1)2+m*]/[2(1—B)w],
Es~(1—B)o+[(pi—11)2+m*]/[2(1—B)w],

3.2)
Ei~Bo~+gs+[ (pr+qu+r1)2+m?]/(20w),

Py

(b)

F16. 1. Lowest-order perturbation diagrams for
Delbriick scattering.
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and and
Es~(1—B)w—gs+[(pi+q.)*+m*]/[2(1-B)w].

Remembering that the photon energy is Bo—f—Ey~gs—=L(1=F)p*+A(prq)?

Eo= (0?10 2~ 2120 (3.3) =B =B +m*/[28(1—-B)w]. (3.4)

we find that the energy denominators are It is important to notice that in this approximation,
— Fy— Ea~ —[ (p14Br1)2+m*] /[ 26(1 —B)w ], ¢s appears only once in these four energy denominators.
Ey—E;—Es~—[(p.—Br)*+m*]/[26(1—B)w], It is now straightforward to write down the Delbriick

Ey—Es— Es~ —[(pi+qi+11—Br1)*+m*]/[28(1—B)w], scattering amplitude at high energies as!s

1
Mo P~ wZ2%8(2m?) > / dq.dgsdp, / dBLgs*+(qu—11)*T'[gs*+(qu+r1)2] !

0

1—B)p2+BP.i+91)2—B(1 —B)r 2+m? Tt )
X[““ +ze] A:(puur1;8), (3.5)

28(1—B)w
where A1(p,q,r1; 8) is precisely the quantity in the braces of (2.2). For r; not small, (2.1) follows immediately
from (3.5). 7
In order to deal with the case of small ry, it is convenient to introduce
4519115 8) = A1(—=Pr —qu, Q, 113 1-6), (3.0)
and _
APs,qr1; 8)=3[A1(P1,q1,1; B)+ A2(p,qu,115 8) . (3.7

It is seen from (3.5) that the three denominators explicitly given are not changed by the replacement p, — —p.—q
and, simultaneously 8 — 1—@. Thus (3.5) also holds when 4 is replaced by either 4, or A. This quantity A can be

written out explicitly as
e £{65f62r12+218(1 —B)(p1—Br1)i(pr+Br1);
[(p.—Br1)*+m* [ (ps+Br1)*+m?]
10l @t (1 =28)r:1 P+28(1—B8) (putqutri—Br1)i(pr+Br1);
L@utqutri—pr)*+m? JL(pi+Br1)*+m?]
8i;(1 =B)r*+28(1—B) (putqutr1—Br1) i(putg—ri+pri);
L@u+autri—Bry)*+m? [ (p.+q.—11+0r1) 2 +m? ]
10l u— (1 =28)r1 P+28(1 =B) (pa—Br1)i(p1+gi—r1-+HBr1),
LP.—Bry)*+m* [ (pi+qu—11+0r1)2+m?] }

s { 48, [q.+(1—28)r: ]
o Cp—Bry)>+m? [ (ABry)*+m?]  [(pr4qu+r1—5r1)>+m? ][ (pi+Br1) 2+ m?]
N 4(1—B)r? [q.—(1—=28)r, ] ]
[t —Br) 2 +m? L@+ qu—114-6r)2+m?]  [(pr—Bry)2+m2 [ (pi+q.—11+6r1)2+m?]
(pr—Br1): (ﬁi‘f"{]ri—h_ﬁh)i (PH‘,BH)]' (pstqi—r1+Br1);
+6(1 —ﬂ)[ - J[ - ] (3.8)
P—Br1)*+m?  (Pr+qutri—pry)2+m? L (p+Br)*+m?  (pi+q.—ri+8r1)+m?
When the integration over g is explicitly carried out in (3.5) with the help of the formula
e m(artastas)
/ da (22 +an?) (w2 4-as?) (x+as?) 1= , 3.9)
— a1asas(ont-as) (ee+-as) (as+a1)
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we get

1
E)’rlo(D)N—%z’wzﬁeﬁr‘3(27r)_2/dqldp1/ a8 |qu—r1[qutr1] ([ qu—r1] +[qutr:[) ]
0

_(1 —B)p 24814902 —B(1 —B)r1*Hm? _
X| |qu—r1| +]|quFr:| +4 }A(PL;QL,I'UA@)

28(1—B)w
‘(1 —B)pAHB@1+q.)*—B(1 —B)ri2+m* !
XI:I ql_rll + :I
28(1—B)w
(A—=B)p*+B(p1+q0)* =1 —B)r*+m* T
x[l Q1|+ ] . (3.10)
268(1—B)w
In this form, we can use the approximation

(1=B)p2+B(p:+9.)*—B(1 —B)ri*+m*~p.>+m?, (3.11)

and hence obtain

1
M PI~ —%inzeG"f_3(27)“2/@@1)1/ dB[ | qu—r1/|qu+r1| (| qu—r11| +] @t ) I
0

x[{ gt puttm? ][l L ]-1
1—r LT ————— 1—T ———————
T el T T s —p)e

p 2+m2
X lackn]+i
26(1—8)a

In writing down (3.11) and hence (3.12), some of the terms with q, and r; have been deleted. These terms can be
seen to be unimportant for q, and r; either of order m or of order m?/w. It is important to note, however, that the
deletion of these terms would be incorrect if either 43 or 4, had been used instead of A. This is the reason for
introducing A. Equation (3.12) is the expression that we shall study in the next two sections.

Equation (3.12) gives the high-energy behavior of the Delbriick scattering amplitude for all finite values of the
momentum transfer A=2r;. This expression simplifies when r; is assumed to be small. In particular, when r;
and q, are both small, the 4 of (3.8) is approximately

_ ri¥—q,’ {2[p:- (qutrs) Jpri— @ 2Hm*) (qutr1):} {2[Dr- (Qu—11) Jp1i— @1+m?) (g1 —71) 5}
A~ ——— +B(1=h)
(pl2+m2>2 (pl2+m2)4

Note that this expression is zero when qu===r;.

—1
] A(pn,qur;8). (3.12)

. (3.13)

4. SPECIAL CASE OF FORWARD SCATTERING

Before launching into the calculation for A of the order ™, we first consider the special case A=0 to see
how the known result (1.2) can be derived from the present considerations. For this special case, it follows
from (3.8) and (3.12) that

1 pl2+m2 pl2+m2 —2
Eﬂzo D) lA:O’\’ -—%inzeGﬂ'_s‘(Zr)“z/dqldpl/ (iﬂ; q;_ f _&I:ZI q_{.[ +Z “:I[, qll +Z‘*’_“]
0

28(1—B)w 268(1—B)w
q.? Pui (Pi"‘Qi)i Puj (prtqu);
x| -1, - L~ |y ] IR
(2 +m? JL(Pi4-q0)*+m?] pitm? () +m’llpl+m®  (pi+qu)*+m?

We carry out the integration in (4.1) by dividing the region of integration into two pieces:
M@ smo~ —bicwZ20(2m)*(I1ot Io) (4.2)

where 10 and I are given by the same integral as that of (4.1) except that the q. integration is restricted,
respectively, to |q.| <& and |q.| > 6. Here the quantity & is chosen to satisfy

m>ESmE/w. (4.3)
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For these two regions of integration, different approximations can be carried out. Thus

1 2+ p12+m2 —2
L= / dqudp. [ (zmqm{zm i ][iq I+ }
leg1<é 0 28(1—B)w 2:3(1 _ﬁ)w

q.’ [2(ps- Q) pri— (Pu>+m)qu [2(Pr- 1) pri— (Pi2H+m2) gy, ]|
x| =toy - +a(1-p) 22
(pu*+m?)? (p2+m*)* J
and
1 q.2
Io0=2 d(hdpi/ dﬂ(qﬁ)_?[—i U
* /;qll>6 0 [:pl2+m2][(P1+QL)2+m2]
Pui (I)L‘f‘gi)i 2% (p1+q4);
a-p) L - |2 - I} @
pl+m®  (putq)’+m’dlp i +mt (pi+qu)i+m?

We proceed to carry out these integrations for a 8 satisfying (4.3). As a first step, because of the rotational in-
variance in the exactly forward direction, both I3 and I3 must be proportional to §;;:

1 p12+m2 pl2+m2 —2
110=5u'/ dqﬂiPL/ dﬁl(hl‘S[Zqu “H*‘“:”:f Q.|+ -”—“:I
1qu1<8 0 28(1 —B)w 28(1—B)w

1 q.® (P2 4m?)?q. 2 —4m*(p,- q.)?
- +18(1-9) | @
4 (pl2+m2)2 (p12+m2)4
and
q 2 1 12 1 . +
Too=26i; / dqudp.(q?)- [ - L. P .+ ] @.7)
1q11>8 4 <P12+m2)[(P1+QL)2+m2] 6 (P l2+m?)? 6 (pl+m?)[(pitqu)Hm?]
Consider 7 first. Let
=|qul; (4.8)
then averaging over the direction of q, yields
/ 2 + 2+m2 pl.2+m2 —2
Iy=2mb;; | dp / (135/ (iyl: y :”iy—i—i%]
B ' 2801 —Bell” " 28(1—B)
1 1 (pu2+m?)?—2m*p,*
[— - +B(1—p) } (4.9)
4 (pl2+m2)2 (pl2+m2)4

For 6>>m?/w, the y integration can be carried out simply:

' 28(1—B)wd 11 (Pa2+m2)?—2m?p,?
T1o~ 2wy / dp, / d@[z In——-—— —-1—1rz]|:— -— +36(1-8) } (4.10)
0 p. 4 (p2+m?)* (P2+m?)*

which gives immediately For §<m, integrations over q, and then x give

1o~ —272m28:;{ (7/36)[ 2 In(2wd/m?*) — 1 —mi] 1
—43/36). (4.11) Izow%m‘%rzéﬁf dx(—1—x+2?) In{m?/[x(1—x)62]}

Attention is now turned to the I of (4.7). After

introducing a Feynman parameter «, the p, integration =3m w3, —(7/3) In(m/8) —41/18]. (4.13,
b ied out!®:
can be carred ot When (4.11) is added to (4.13), the sum is
1
o=1rdy; / i / dq(q2)! Lo To~ —2m=235{ (7/9)[In(2e/m) — ki ]
THES —100/54}, (4.14)

—_1— 2 — 2 2 1
X(=1—atale(t =g +m T (412) where as expected & does not appear. Finally, the sub-
16 Compare Eq. (3.4) of Ref. 2. stitution of (4.14) into (4.2) gives the known result (1.2).
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5. DELBRUCK SCATTERING WITH SMALL
MOMENTUM TRANSFER

We are now ready to study Delbriick scattering near
the forward direction, i.e., Delbriick scattering with a
momentum transfer of the order of m?/w. More specifi-
cally, we proceed to generalize the considerations of
Sec. 4 to this case of small but nonzero momentum
transfer.

For this purpose we return to (3.12) and write,
analogous to (4.2),

MO(D)’\’ —iinZe‘fr_:‘(Zvr)_z(ll—{—Ig) , (51)

11=2f d(hdpl/ dﬂ[[‘ll'ﬂ'l“‘lff‘rll(l‘h-rlf+IQL+1'1()]"1[“11*1'11+,‘li+f1f+i b
1q1<é

pl2+m2 — 1, pl2+m2 —1 1
X[]ql—rll—l-i } [Iqr!-rlt-f—i——:l [6

0

28(1—B)w

2449

where 7; and 7,, similar to Iy and /5, are the contribu-
tions from the regions | q:| < dand | q.| > §, respectively.
Since

]r1]<<m (5.2)

and (4.3) holds, we have

12=120, (5'3>

which is explicitly given by (4.13). It is therefore suffi-
cient to concentrate on 7/, which is the integral, from
(3.12) and (3.13),

22
28(1 ——ﬁ)w]
r’—q,’

281 —B)ad L4 (p2tm?)?

2 ° + 1 J.2+ 2 l+ 7 2 L* - L 1.2 2 1= J
180 _B){ [p.- (Put11) Jpri— (@2 4m*) (471} {2[p1- (Qu—11) Jps;— (Pu2+m*) (g1 —71) }]. (5.4)
(pl2+m2)4
The first step in the reduction of this complicated integral is to use
pufm?
Clac—nlactnl (el +actnD 1| [u-nl +Hactnl 4+ |
28(1—B)w
p.l.2+m2 —1 pl2+m2 —1
X[I q—1] -H'——} [| Q1] +iw—:|
28(1—B)w 28(1—B)w

=[<ql+r1>2—<ql—r1>2j-l{ iql—rli—{iql—n; +

) P12+m2 —1 . ) p.l.2+m2 —1 o
126(1 —3)00:' [ Qi1 [[qﬁ-rll—i—zﬁ] } (5.5)

26(1—B)w

It is therefore desirable to change to the variables q,=4-r;. With due care in the changes of variables, we get

Iy=1Iu+11,

where

1
In=—m / dp. / dB{ —38:5(p.>+m*) P +B(1—B) (P> +m?) [ (ps>+m*)*6;;—4m*prip.; ]}
0

and

pu2+m?

(5.6)

(3.7

1 —1
[12=4/ d‘thJ./ dﬂl ql!—l[l ‘hl +i‘f—“‘—‘—j| [(q.+2ry)*—q. 2]
1q11<8 0 25(1 —,3)03

+B8(1-8)

[15 r?—(q.+r)?
4 (p.2+m?)?

\{ZEPL' (Qut2r1) Jp1i— .24+m) (qu+2r1) } [2(p1- Qu) prs— (pu>+F 7”2)41;']} B
. (5.8)

(P12+’m2)4

In (5.8), principal values must be taken along |q.+2r;|=|q.|. Since

[11= 71r2m_26i]-/18 ’

we concentrate on [1s of (5.8).

(5.9)

The integration over the angular variable of p, is the easiest one to carry out:

P12+m2

1 —1
112=/ d‘thL/ dﬁl q. ‘ _1[I ‘hl +l——~*] [r1-qur]?
1q 1< 0 2:3(1 —B)w

Q- (qu+2ry)
e

+6(1-4)

3(0.2)qu- (qut2r1) 16:+m*(gu+271)iqu;
(p12+m2)4

}. (5.10)
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In the last numerator, we have omitted a term gu,#1;—71:Qyj, because such a term cannot contribute after integration.
Let us use the variable y=|q.| of (4.8) together with an angular variable defined by

q.-X1=7yry cosb,

when 7= |r;]; then

2+m2

—1
I12n—/dp1/ ydy/ dG/ dﬁ[ﬁ% :l 71~y cosf+ry)~!
—m 2,3(1 B)w

1 y4-2r1 cosf

[~ o
o

2[3(1 —B)w

Ilm—/dpl/ ydy/ dB/ dﬁ[

[ 1 y+21'1 cosf
4 (pl2+m2)2

where I12;; and 712; are the values of 715 when the photon
is linearly polarized in the scattering plane and per-
pendicular to the scattering plane, respectively. It is
somewhat simpler to deal with the sum and difference
of (5.11) and (5.12). Define

IE=%(I1outT1on);

fd/ Z/d&/ [+ ””"QT
BT T =)

% ly-f—Zrl cosf
r{l—_—

(5.13)
then

—4 (2 +m?)+B(1—)
y cosf—+71

X[ +m* J(pi+m*) ="},

/\ p12+m2 —1
dp. | vy / 10 / dﬂl:y-l— ]

P / ( 28(1—B)w
><71*1ﬁ(1 —B)(P2+m2)~*m*(y cosf+r1)~L.  (5.15)

Note that 7~ is known to be zero for #; — 0.
The next step is to integrate over 6. By using principal
values, we have

(5.14)

/ df(y cosf+ry)?

2 (ri2—y2)~ 12 for y<r
={7T(7'1 »?) UANS! (5.16)
0 for y>r;.
Accmdinvlv
p— / dp. / yrdy(re®—yH) 12
2+m2 —1
X/ /3[3’-!- *#——:'
0 25(1 _ﬁ)‘*’
XriB(1=B)(p.>+m*)~*, (5.17)

1(pu2)2(y+2r1 cosd) +mA(y cosh+271) cosd
) ] (5.11)

’ (pl2+m2)4

~1
:l 711y cosf—471)"!

L(p.2)2(y+2r1 cosd) +mty sin2
Rt 2 P 12
(P12+m2>4

while

It=I I, (5.18)

where

+= —r/(ipl/ dy(2r?—y*)(ri®—y?)~12

[ 2 Ty
/ —— | ri{—a(pS+m?)”
/; Y 12,6’(1-;8)03 Gl S

+B(1 =)L (02 Hm* J(pP4m?) ™},

esfon o o
Jo @ T 0=
X{—3P24m*)+B8(1—B)[(0.2)*+m>](p.2+m*)~*}

7/ 2w 43
~ —ZWZM_ZI}~<2 In— ——7ri>— ﬁ]. (5.20)
36\ m? 36

ond (5.19)

Note that 7= and I;* are both independent of §. A
comparison of (5.20) and (5.9) with (4.11) shows that

Io~Tn+15t. (5.21)
We therefore obtain the result that
mo(D) —IMNe @) l A=0"Y “%in2667T_3(21r)_2
XIFI7), (5.22)

where 71+ and I~ are given by (5.19) and (5.17), and
the upper (lower) sign should be used when the photon
is linearly polarized perpendicular to the scattering
plane (in the scattering plane). Equation (5.22) is the
desired result.

6. PROPERTIES OF SCATTERING AMPLITUDE

It is clear that both I;+
variable

and /I~ are functions of the

Ri=rw/m?, 6.1)
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not of 7; and w separately. In terms of Ry,

1
I‘=1rm‘/dp1/ y2dy(1 —y?)~1/2
0
1

p12+m2 —1
X/ dﬁ[y—i-i— _—:I
0 213(1 —ﬂ)m2R1

XB(1—B)(@2+m»)~*, (6.2)
and
It=—x / dp. / dy(2=y)(1=y") "
X/Aldﬂl: + p12+m2 }—1 1(p2+ Z)HZ
e —2(p2+m
' g 26(1—B)m*Ry ¢
+8(1—B)[(P.H)*+m*J(p.>+m*)~*}. (6.3)

Clearly, as Ry — 0, both 7~ and I;+ approach zero.

Next consider the limit R; —oo. In this limit
I~~m2m2/18, (6.4)

while the more complicated behavior of 7;+ is given by

1 48(1 —B)m*R,
It~ —W/dpl/ dB[Z In —1—i1r1
0 p.2+m?

X{ =3 +m)+B(1-6)
X[ (p.2)*+m* J(p 2 4-m*)~*}

7 43
= 27r2m_2l:‘(2 IndRy—1—mi)— ——:I . (6.3)
36 36

The substitution of (6.4) and (6.5) into (5.22) yields,
together with (1.2),

Mo P ~dicdZ2%om=(7/9)[In(m/A)+19/21]
(6.6)

and
Mo PV~ dia?Z%wm=2(7/9)[In(m/A)+-22/21]

for m>A>>m?/w. These expressions are in complete
agreement with those previously obtained!” from the
impact factor representation. Therefore (5.22) indeed
joins correctly the impact factor result (2.21) to the
known expression (1.2) for the exactly forward direction.

There are many equivalent ways of writing (6.2)
and (6.3). We shall mention only a few. Let

x= (pi*+m?)/m?; (6.7)

then

0 1
I‘=7r2m‘2/ dx/ y2dy(1—y?)~1/2
1 0

X / A8 (y+in/[28(1—B) Ry~ 8(1—6) (6.8)

17 See Egs. (4.7) and (4.8) of Ref. 4.
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and
o0 1
Itt= —rzm‘Z/ dx/ dy(2—y?) (1 —y?)~12
1 0
1
X [ dsty-+in/ L2601 -8 R
0
X[ =3 2424681 —B) (x2—2x+2)]. (6.9)
Let us assume for the time being that
Ri<2. (6.10)
Then
{y+iz/[26(1—B)R ]}
=—2 (2R "[BA—B) Iyt (6.11)
n=1
The substitution of (6.11) into (6.8) gives
w TGn+1)[T(n+2) ]
I—=—in"m2 3 (ZiRl)"—(—zﬁ———)[ (n+2)] . (6.12)
= T @nts) Tt

When the Legendre duplication formula for gamma
functions is used in (6.12), I~ can be alternatively ex-
pressed as

I-=—(VZ2/64)mm Y (3iRy)"

" [T(Gn+1)PrGn+3)
TGnA-3)TGn+5/4HTGn+7/4)

(6.13)

Thus the real and imaginary parts of /= are, respec-
tively,

Rel~=(V2/256)mm*Ry> Y (—1R:H)"

[T(n+2) T (e+3)
L(n+3)T(n+9/4)T (n+11/4)

(6.14)

and

Imi~=—(V2/128)r*m~Ry 5. (—Re?)"

[T(n+3) T (n+2)
T(n+3)T(n+7/4)T(n+9/4)

(6.15)
These expressions can be written in terms of generalized
hypergeometric functions as follows:

Rel~=(2/525)nm 2R

17 2) 27
><4F3[
7/2, 9/4, 11/4
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and!8
Im/—=—(1/240)m*m 3R,

1, 3/2, 3/2, 2; —1Rp
><4F3|: ! IJ. (6.17)
3, 7/4, 9/4

Equations (6.16) and (6.17) hold even without the
restriction (6.10). Similar results can be written down
for I+,

We conclude with the following remark on the Mellin
transforms for 7= and 7;+. Generalized hypergoemetric
functions all have simple Mellin transforms. In par-
ticular, as seen most easily through the Meijer G func-
tion, the Mellin transform is a quotient of products of
gamma functions. This provides an alternative way of
deriving asymptotic behaviors (6.4) and (6.5). This
alternative method has the great advantage of giving
as many terms as one wants for the behavior of 7~ and
I+ when R; is large. The details of some of the calcula-
tion along this line are to be found in Appendix A.

In Appendices B and C we study /;+ and /= in a some-
what different way. The integral representation for 7~
and I;* as given by (6.8) and (6.9) are first reduced to
double integrals in Appendix B. Then one of the two
integrations in the double integral is carried out in
Appendix C so that both /= and I;+ are expressed as
single integrals.

7. HIGHER-ORDER CORRECTIONS

There is one important difference between Delbriick
scattering on the one hand and Compton scattering
and photon-photon scattering on the other, namely,
there are two parameters in the case of Delbriick scat-
tering. The perturbation expansion for the Delbriick
scattering amplitude is a double series in the two
variables @ and Za, where the lowest-order term ob-
tained in the three preceding sections is of the order
a(Za)?. Physically « is quite small, but Za need not be;
in fact, Za for uranium is about Z. It is therefore useful
to sum over all terms of the form a(Za)” for Delbriick

A0

1
lim 89 = —kiwZ%en—(2m) / dq.dp, / dp
0

CHENG AND T. T.

WU 2

scattering. For Compton scattering and photon-photon
scattering, no corresponding summation is physically
meaningful. It is for this reason that, for the case of
fixed A>#0, higher-order terms for Delbriick scattering
only are treated in the original paper.! We extend here
that consideration to small or zero momentum transfer.

As given in Ref. 1, the inclusion of all the higher-order
terms in Za with the restriction to lowest order in a
changes the impact factor representation only slightly.
Explicitly, (2.1) is modified to!-?

M)~ a7 % (2) 2

ﬁi1'7(%A’ql)
X | dqy ; U
[(@F34) T (@) —F AT+

Let us study the difference (7.1) and (2.1), which is the
correction due to higher-order terms in Za,

(7.1)

ML) =P —9, P
f\/in282(2w)“2/dQL5if7(%A;ql)

XA[(Qu+3A) T 7o (q,~}A) ]2
~[(a+34) T [(@.~34)"T)

Note that the integrand is zero if A is formally set equal
to zero. We shall calculate the limit of §9T®) as A — 0.

When A is small, the contribution to §9®? comes
entirely from the region where q, is also small. Since, by
definition of 47 and (3.7),

(1.2)

1
957 (r1,q0) = —%7"_3@4/01'})1/ dB A1(p1,qu,11; 8)
0

1
- / " / 08 A@uaurss ), (7.3)
0

we can use the approximation (3.13) for the present
purpose. Accordingly,

[}5 ) 1'12*(1_11 a0 ﬂ\{zl:pl' (Qutr) Jpi— @2+m) (1) {2001 (Qu—11) Jpui— (P2 +m?) (Ql_"l)j}jl
4 " (prtm)? / (pL2+m2)s
X{[(qu +r)? FHe(qu—r)* 7= [(qutr)* (-1} (74)
In this form, the p; integration and the 8 integration can be easily carried out to give
lAiIIé NP = —%inQer*Qmﬂ(21r)—2/dq1[(2/9)61-]-(r12—qlz) —(1/18) (r1471;— q1iq1s) ]
X{L(qutry I H#e[(qu—ry)* % = [(qutr)* P {(qu—1)* 1"} . (7.5)

18 This Im/~ is actually an elliptic integral. See Appendix C.

9 Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill, New York, 1953), Vol.

I, Chaps. IV and V.
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In order to carry out the g, integration, we use a generalization of the Feynman representation

1
[(qutry)? ]2 (qu—r1) 2] 2= (rZa) ! sinh(qua)/ dx = %1 —x)%e[q,2—2(1 —2x)1;- qu+1:2] 2. (7.6)
0

The substitution of (7.6) into (7.5) gives, after some rearrangement to avoid divergence,

1
lAim M) = —%in2eG7r_2m'2(27r)”2[(7rZa)_1 Sinh(rZa)/ dx x7%(1 —x)i%e
-0
0

% / d0{[a el —)r? T — [T ((2/9)5, el —)r—q.7]

—(1/18)[4x(1 —x)71:71;—qu:qu, ]} — (the value of this term at a=0)]

= —%nginzeGr_zm”z(Zw)_{(rZa)_l Sinh(rZa)/ dx x~%2(1 —x)%¢{ — (Tm/36) In[4x(1 —x) ]}

=iwb,; 2% (14/9) [y (1+iZa) +¥ (1 —iZa) +2v],

where ¢ is the logarithmic derivative of the gamma
function, and v is Euler’s constant, numerically 0.57722.
This is the desired result.

Since the limiting value exists as A— 0, (7.7) is a
good approximation for all small momentum transfers.
Thus the structure of the Za corrections to Delbriick
scattering is rather similar to the case of photon-photon

— (the value of this term at a=0):|

(7.7)

scattering close to the forward direction,*® and is much
simpler than the lowest-order contribution.

8. RESULT FOR DELBRUCK SCATTERING

We summarize here the present result on high-energy
Delbriick scattering close to the forward direction. To
all orders in Za but only to the lowest order in «, the
matrix element is approximately

E)TZ<D)~4ia3Z2(w/m2)|:(7/9)[ln(Zw/m)—(109/42)——%ir—i—y—l—Reg[x(l—!—iZa):]—l*él / dx / dy(1—y?)=112

X/ dB{y+iam?*/[B(1 =)A= H{(2—y*)[ 52 2 1B8(1—B) (x*—2x+2) IFy*(1 —6)x“‘}} (8.1)

where the upper (lower) sign should be used when the
photon is linearly polarized perpendicular to the scat-
tering plane (in the scattering plane). Alternative forms
for the integrals in (8.1) are given in Sec. 5, and the
appendices. This result (8.1) holds when

ALm. (8.2)

The special case of A=0 has been studied by Davies,
Bethe, and Maximon.20

9. COMPTON SCATTERING

In terms of the impact factor representation,? the
Compton scattering amplitude at high energies is given

2 H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev.
93, 788 (1954).

by

N ~Lie2m16105(2m) 2

9:7(3A,q,)
X /d(h 9.1)
(@ +34)2][(q:—34)]

to the order e¢* when the fixed momentum transfer A
is not zero. Here, in the c.m. system, 812 means that the
helicity of the electron is not changed,’? and s is, as
usual, the square of the c.m. energy. The remarkable
similarity between (9.1) and (2.1) has previously been
noted.

The similarity between the high-energy behavior of
the amplitudes for Compton and Delbriick scattering
is actually even more striking. For this purpose, consider
(9.1) instead in the laboratory system, where the elec-
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tron is initially at rest. Let w be the energy of the in-
cident photon, then

(9.2)

Suppose that (9.1) is expressed in terms of w instead of
s; then?!

s= (wtm)2—w?~2mw.

f)TZo<C)~iw62612(21r)*2

9:7(34,9)
X | dqy T .
[(q:+34)][(q.—34)%]

(9.3)

Except for 815, this is exactly (2.1) with Z=1. Con-
sequently, the result (5.22) for Delbriick scattering
also holds for electron Compton scattering

mo ©) —SRO(O) l A=Y —%iw66#~3
X 612(2m)2(I 1), (9.4)

with

M@ | a—g~Aiad(w/m?)(7/9)
X [In(2ew/m) —109/42 —Lir J612.  (9.5)

In (9.4), the integrals I;+ and I~ are given by (5.19)
and (5.17), and the upper and lower signs should be
used in the same way as (5.22). The result (9.4) holds
when A<&m, and implies that the target mass is
irrelevant.

The result for high-energy Compton scattering is
rather confused in the literature. Equation (9.5) im-
plies, in particular, through the optical theorem, that
the total cross section for

y+e— et4-2e
is approximately

ar’[ (28/9) In(20/m) —218/27] (9.6)

H. CHENG AND T. T. WU 2

in the extreme relativistic limit (w>>m), where 7, is the
classical radius of the electron. Moreover (9.6) holds
independently of the mass of the target particle (of
charge e). This result contradicts that of Joseph,?* who
obtained 100/9 instead of 218/27, but agrees with Suh
and Bethe.?

Together with earlier work on the impact factor
representation! and on photon-photon scattering close
to the forward direction, the present results complete
the description of the high-energy behaviors for all two-
body elastic scattering amplitudes in quantum electro-
dynamics when the momentum transfer is not large.
The application of all the considerations of the present
paper to scalar electrodynamics is completely straight-
forward.

ACKNOWLEDGMENTS

We are greatly indebted to Professor C. N. Yang for
numerous discussions on high-energy processes in
general. One of us (T.T.W.) would also like to thank
Professor J. K. Walker for helpful discussions.

APPENDIX A

In this appendix, we study the Mellin transform of
I~ and Iy*. Define

TiH(e) = —m(csct)e-irt 2 / dx / dy(2— 3 (L —y?) 12 / a8
1 0 0

= L1r32(csend)e 71228 (144200 +-9¢24-¢%)

and

f*(g“)=7r(cscrg“)e“”m/ dx/ dy »*(1 —yﬁ)ﬂ”/ dBy 31 (1 —B) " ™ B(1—R)
1 0

NG+ [T+

I+ () =mr / IPR4dR, (A1)
0
and
() =m2r / I~R%dRy; (A2)
0
then it follows from (6.8) and (6.9) that?
Xy A1 8 T — b 91 =) (e 242)]
LG [TA+H7P
, (A3)
rGe+3) I+20)
0
(A4)

=173/2(csemr()eimE 1228

IGi+3) TE+2%)

21 It should be noted that, in general, for A of the order of m, 812 is somewhat complicated. The spin state of the Compton scat-
tered electron is, at high energies, determined completely by that of the electron before scattering. The relation, however, is par-
ticularly simple only in the c.m. system or, more generally, in a system where the electron and the photon both move rapidly in
opposite directions. When A is much smaller than s, the recoil electron moves very slowly, and 812 has the meaning of not chang-
ing the spin state of the electron even in the laboratory system.

2], Joseph, Ph.D. thesis, State University of Iowa, 1955 (unpublished). See also J. M. Jauch and ¥, Rohrlich, The Theory
of Photons and Electrons (Addison-Wesley, Reading, Mass., 1955), p. 250.

2 K. S. Suh and H. A. Bethe, Phys. Rev. 115, 672 (1959).

2 See I£gs. (3.7) and (3.8) of Ref. 4.
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Tt is seen that the Mellin transforms are of quite simple
forms.

_ We list the simplest of the behaviors of I () and
I=(¢) near their singularities.

(i) When ¢ is near zero,

It () =3(/m)s (1 —%irg) (14§ In2) (14+20¢)
X2 r@) I {1+ 30y (D —¢(3)

=4 (4 13+0(1)
= (7/9)¢ 1+ (—%ir+2 1In2—25/7)14+-0(1),

(AS)

and
I=(5)=¢"1/18+0(1). (A6)

(ii) When ¢ is near 1,

I ()= —ir(1=5)"Y(11/2)/540(1), (A7)

and
()= —§ir(1—)7Y/514-0(1). (A8)

The asymptotic behaviors (6.4) and (6.5) follow
immediately from (A6) and (AS), respectively. Higher-
order terms for these asymptotic expansion can be ob-
tained directly from the behaviors of I1+(¢) and 1=(¢)

near {=—1, —2, —3, etc. The leading terms for small
R1 are
Itt= —11iw3m—2R /2404 O(R:?) (A9)
and
I~= —iw®m2R1/240+O(R:?) . (A10)

It is seen that (A10) is consistent with (6.15). Higher-
order terms in (A9) can be obtained either from (6.9)
directly or from the behavior of I+(¢) near {=2, 3, 4,
etc. Unlike their behavior for large R;, the series expan-
sion for I;+ and I~ are convergent power series.

APPENDIX B

In this appendix, we reduce the triple integrals (6.8)
and (6.9) to double integrals. The reduction is quite
elegant for (6.8) but rather messy for (6.9).

a. Reduction of I~
Beginning with (6.8), we change the variable x by

x=y/z; (B1)

then the v integration can be carried out because
1
[ rsa—ynera—ye @)
We therefore get immediately the desired result
1 1
I“=27r2m‘2R1/ dB/ z2dz(1—22)1282(1—pB)?
0 0

X[E+2RB(1—B)z]t. (B3)
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b. Reduction of Iv+

We believe that the case of I;* is intrinsically much
more complicated. It is necessary to split the right-hand
side of (6.9) into a number of separate terms and treat
them differently. The following procedure may not be
the best one. Define

00 1 . 1
Iyt= / dx / dy(2—y?)(1—y?)20 / a8
1 0 0

x{ y-l—zx/ [28(1 -—B)Rl]}_lx“z (B4)
and, for j=2, 3, 4, ’

0 1 1
1= [ s [ aya—yna—yre [ as
1 0 0

X {y+i/[26(1 R 81 —B)x—3;  (BS)
then ’j
11+ = Wzm—z(%111+—112++ 2[13+ "2114+) . (Bé)

The change of variable (B1) is to be used for the two
cases I15+ and I14™. The necessary integrals analogous
to (B2) are, respectively,

[ wrria=ma—yrmsa—sye, @

and

1
/ dy y 2 —y?) (1 =y

=3273242%)(1—2%)Y2. (B8)
Therefore
1 1 )
113+=2R1/ dﬁ/ dz(1—22)1%6%(1—B)*
v X[i+2R8(1—B)z1  (BY)
and
1 1 .
net=iks | ds [ as4e - oy
o 0 0
X[i+2RB(1—B)s1 . (B10)
It is interesting to note that ,
I—+2113+—3114+:O. (Bll)

For I+ and I.*, this change of variable (B1) fails
to work because the corresponding y integral is trans-
cendental. This makes it impossible to carry out the
z integration as desired in Appendix C. To avoid this
problem, we write /y;+ and I35+ as the sums

Igt=Ii5t 416t (B12)
and

Tt=I7"4 115", (B13)
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where

o0 1 1
Il5+=/ dx/ dy(1 —yZ)—”z/ ag
1 0 0

X{y+ix/[28(1—B)R. ]} a2, (B14)
® 1 1
I =f dx/ dy(l—yz)”zf ag
1 0 0
X{y+ix/[286(1—B)R: ]} *a2, (B1S)
Il-f*'='/‘uo dx/ dy(l —yz)—I/Z/ dﬁ
1 0 0
X{y+ix/[28(1—F)R:]}B(1—B)x~%, (B16)
and
Lst= f C i f dy(1—y?)1e / i
1 0 0
X{y+ix/[286(1—B)R. J}*B(1—B)x~2. (B17)

The two terms I15t and I:7+ can still be treated in the
same way as before. By (B1) and (B2) we get

1 1
List=2R, f B / dz(1—3")"18(1—B)
0 0

X[+2RB(1—-B)z]* (B18)
and

I17+=113+. (Blg)

For I,6* and I;5*, we use the change of variable
x=B(1—g)x'

instead of (B1). This makes it possible to integrate over

B:

(B20)

Im+=2/ dx’ x’_2f dy(1—y»)1/2
4 0
V2 (2 —4)12

1.7 -1ln—
X (y+3%ix’/Ry) lnx’1/2—(x'—4)”2 (B21)
and
Igt= [ dx’ &'~ / dy(1—y»)'2(y+3ix’/R1)~
4 0
X[ —4)/2' 2. (B22)

We are unable to avoid the appearance of a logarithmic
factor in (B21), and there is some evidence that it is
impossible to avoid such a factor.

It remains to put (B21) and (B22) in a form more
similar to those of the other integrals. For this purpose,

let
«'=[B(1-p1, (B23)

H. CHENG AND T. T. WU 2

and call the dummy variable y of integration z; then
1 1
Iit= 2R1/ d,B/ dz(1—22)128(1—B)(1—28)
0 0

X[i+2Rp(1—-p)z] " In[(1-6)/8] (B24)

and
1 1

Ilg+=R1/ dﬁ/ dz(1—2)128(1—B)(1—28)2
0 0

X[+2RB(1—B)z]".

Finally, the substitution of (B13)-(B19), (B9), and
(B10) into (B6) gives

(B25)

1 1
I =3rmR, / s f dz(1—2%)'%6(1—p)
0 0

X[i+2R:B(1—B)z]{3(1—28) In[(1—6)/8]
+28(1—B)(5—22%}. (B26)

As a check, we note that (A9) follows readily from
(B26).

APPENDIX C

It is the purpose of this appendix to carry out the
z integration in (B3) and (B26). The basic integral is

/ da(1—22) Ve[i+2RB(1 —B)s T

0

=[2R:8(1—B) I*{{[1+4R%6*(1—B)*]**

Xsinh=[2R:8(1 —B) ]—2R:8(1—p)}

—3mi{[1+4R%32(1—p)* ]2 =11}, (C1)
Note that the imaginary part is much simpler than the
real part. The substitution of (C1) into (B4) gives
1 1
=t R Retir [ srersa-pr
0

xX{ {{(144R:282(1—pB)2] /2
Xsinh~1[2R;8(1—8)]—2R:8(1—8)}

——%ir{[1+4R1262(1—5)2]”2—1}}1 ©2)

Note that the first term of (C2) is just that of (6.4).
The imaginary part of the right-hand side of (C2) is
expressible in terms of an elliptic integral of the third
kind.
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A similar substitution of (C1) into (B26) gives the other desired result:

1 1
Il+=%1r2m‘2R1[5R1‘1—%i7rR1‘2+ / da(1—z2)12
0

X[2RB(1 =) JHRi*4-38(1—6) (1 —26)In[(1—B)/81+1068>(1 —B)*}{ { [1+4R.*6*(1 —8)* ]'/*

Xsinh~'[2R,8(1—8)]—

PHYSICAL REVIEW D VOLUME 2,

2R15(1—ﬂ)}—%iW{[1+4R12182(1—ﬁ)zj”z—l}}:l- (©3)

NUMBER 10 15 NOVEMBER 1970

Nonassociativity of the Operators in the Crossing-Symmetric
Bethe-Salpeter Equations*

RoBErT J. YaAES}
Center for Particle Theory, Department of Physics, The University of Texas at Austin, Austin, Texas 78712
(Received 15 June 1970)

We discuss the properties of the crossing-symmetric Bethe-Salpeter equations which have been proposed
by Taylor and by Haymaker and Blankenbecler. We consider various possible methods of solution and the
possibility of application to the Veneziano amplitude. We show that the operators which appear in these
equations are not mutually associative, and hence that even the linearized approximation to these equations

cannot be solved by conventional techniques.

I. INTRODUCTION

T is generally believed that the four-point function
in strong-interaction theory should have the follow-
ing properties: Lorentz invariance, analyticity, crossing
symmetry, unitarity, and Regge asymptotic behavior.
Since Lorentz invariance and analyticity are explicitly
satisfied by any analytic function of the Mandelstam
variables, s, #, and #, the three key properties are
crossing symmetry, unitarity, and Regge behavior.
Until recently, we could not obtain an amplitude having
more than one of these three properties. However, we
now have the simple but elegant model of Venezianot
which displays both crossing symmetry and Regge
behavior but, alas, not unitarity.

The problem of combining crossing symmetry and
unitarity is much more difficult. A set of equations for
an amplitude having both these properties has been
proposed by Taylor? and by Haymaker and Blanken-
becler.®# Unfortunately, being nonlinear, these equa-
tions have the disadvantage of not being soluble.
All one can do is use the various iteration schemes
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which we shall discuss and which cannot be guaranteed
to converge. In addition, since (as we shall show) the
operators which appear in these equations are not
mutually associative, we cannot even solve a linearized
approximation to these equations by the usual tech-
niques. In this paper we discuss the properties of these
equations, the methods of obtaining iterative solutions,
and the possible application to the Veneziano amplitude.

II. EQUATIONS

We consider the four-point function for the scattering
of identical, spinless bosons of mass m (Fig. 1). The
crossing-symmetric . generalization of the Bethe-Sal-
peter equation proposed by Taylor? and by Haymaker

F16. 1. Our notation for the four-point function.



