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e.g., looking at the perturbation-theory results. There
is a marked difference though between the $1, 1]Pade
and the SU3 values for py,

— and p-. —. Since these are
exactly the magnetic moments which were found to be
insensitive to small changes in n, these can be looked
upon as definite predictions of our work.

Our results are inconclusive for two reasons. One is
that too little is known experimentally about the mag-
netic moments we have been able to calculate with the
$1, 1] Pade approximant. Also, the reliability of the
lowest-order Pade approximant has first to be checked.
For both of these reasons it would be very informative
as to the usefulness of our approach to calculate the
results of the L1, 2] and f2, 1] Pade approximation.
This would, apart from testing the practical conver-
gence of the method, also give the magnetic moments

of the neutral-octet baryons. The magnetic moments
of the neutron and A.' being known experimentally, one
would then have a severe check on the theory.

Though our results are not conclusive, it seems that
they are sufficiently promising to call for further work
along these lines. On the positive side, we have the
excellent agreement between the value 0.=0.725 re-
quired to reproduce the proton magnetic moment and
the experimental value 0.=0.75. Gn the other hand, the
result for Z+, p,q+=1.5, is too low compared to the
present-day experimental value p, z+ = 2.5~0.5.

Extension of this work to calculate the electromag-
netic form factors of the proton is in progress.

The calculation of the magnetic moments in the
next-order L1, 2] and L2, 1]Pade approximation might
also be undertaken in the future.
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A simple ansatz for the isovector Dirac form factor is examined. A 6t to an approximate dipole form is
achieved, and deviations from this form are also accounted for. A p' is no longer necessary; the next vector
meson used in the saturation has a mass of approximately 1.7 GeV. The 6t also gives a pe% coupling
constant which has the right value, as well as providing a good value for the necleon charge radius.

I. INTRODUCTION

1
~~NE of the major problems in electromagnetic

interactions in recent years has been to find a
theoretical explanation for the experimental features of

the pion and nucleon electromagnetic form factors. It
is dificult to understand the t dependence of the form

factors on the basis of the usual pole-dominance model,

which works at low momentum transfers and has

approximate validity in the timelike region. Far from

the vector-meson pole in the spacelike region, nucleon

form factors fall off faster than implied by the pole
dominance, and have approximately the dipole form.
The asymptotic behavior of the pion form factor is not
yet known accurately. The dipole formula, unless

accompanied by a pole, is very dificult to understand

theoretically. One idea is that the dipole form of the

nucleon form factors might be simulated by more

complicated functions obtained by saturating the form

factors by an inhnite number of poles. Away from the

pole in the spacelike region, we might try the narrow-

resonance approximation for such a string of poles.
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Physically, this would imply that the virtual photon
can change not only into a vector meson like the p
meson, but also into other vector mesons with higher
masses and the same quantum numbers as the p meson.

Such a model in which the meson spectrum includes
an infinity of vector mesons with the same quantum
numbers as the p is provided by the Veneziano' model,
devised to satisfy duality, Regge behavior in all chan-
nels, and crossing symmetry. Several authors' have
used the spectrum provided by the Veneziano model to
saturate electromagnetic form factors. To this end they
have used an ansatz for the form factors being approxi-
mated by the ratio of two gamma functions with a
proper normalization constant. Making this ansatz
for the Sachs form factors, they obtained the fo11owing
results: (1) By choosing suitable parameters thar appear
in the gamma functions, an approximate dipole form

.can be obtained at high f, although the form factor is
only saturated by single poles. (2) The deviation from

~~A
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the dipole form can also be fitted. (3) The mean-

square radius for the nucleon is obtained correctly from
the previous fit.

There are, however, two drawbacks: First, a p' meson
with mass around 1.3 GCV, a 6rst daughter of the A2,
appears in the saturation of the form factor. There is
no experimental evidence for such a meson. Second, once
the form factor is fitted, the residue of the p meson is
determined, giving the pe% coupling constant. In the
phcnomenological theories under consideration, one
6nds a pÃE coupling constant too large by almost an
order of magnitude.

To evade the first difhculty, Frampton' has tried a
form for the Sachs form. factors that does not include
first daughters, and hence the p', but then the fit
becomes worse.

In this paper we propose to use a similar Rnsatz
(Veneziano form with the omission of the 6rst daughters)
for the Dirac form factors instead of the Sachs form
factors. There is no a priori reason why the Sachs form
factors should be saturated mith poles rather than the
Dirac form factors. From one point of view, the Sachs
form fRctoI's RppcRl morc fundalTlcntal since they obey
the simple scaling laws. On the other hand, the Sachs
form factors are constrained by threshold conditions,
whereas the Dirac form factors are unconstrained and
seem more fundamental from this viewpoint. Anyway,
any ansatz is purely phenomenological, pending a
deeper understanding of the structure of the form fac-
tors. What we find is the following: (1) An approximate
fit to thc dipole form CRn still bc Rchicvcd Rnd deviRtloIls
from this form can. still be accounted for. (2) A p' is
no longer necessary, the next vector meson used in the
saturation having a mass of approximately 1.7 GeV.
Such a meson may well exist in the R region. (3) The
fit also gives a p3fE coupling constant which has the
right value, as mell as providing a good value for the
nucleon charge radius.

11. BASIC EQUATIONS

First we give the definitions and the relations between
form factors. The Dirac and Pauli form factors are
de6ned from the matrix elements of the electromagnetic
current as follows:

(p'I ~.(0) I p) = U(p')—
&O'I, vqv

X y.Fi"(&)+ Fe(&) &(P), (1)2'
wliere q= (p —p), i=q2& 3f=plotoil mass, t'=pl'oton
charge, and for the normalization we have chosen
Fi"{0)= 1.F2"(0) =p, p being the anomalous magnetic
moment of the proton. Similarly, one defines the neu-
tron form factors Fi"(t) and F2"(i) with a proper

normalization at )=0. The Sachs form factors are
defined from the Dirac and Pauli form factors in the
following way:

G~(i) =F,(t)+(t/4M')F, (i),
G (~)=F (~)+F.(i),

and are known as charge and magnetic-moment form
factors. Since recent experiments at high momentum
transfer'4 indicate no signihcant deviations from the
scaling laws, the relations

G~"(~)=G~"(i)/pa= G~"(~)/v- (3)

will be assumed in the following analysis. Mfe note
that the electric form factor of the neutron GE (l) is
not taken to be identically zero for all values of t.
It is known that for small values of

l tl, Gii"(f) is not
zero and has a nonzero slope' at 3=-0. After the assump-
tion of scaling laws, homever, the magneti. c-moment
Sachs form factor can be expressed" in term." of Fir(t),
the isovector part of the Dirac form factor, and the
neutron electric form factor Gs"(t) in the form

mhcI'c p&= thc totRl proton magnetic moment, p = thc
neutron magnetic moment, and r= i/43f'. The normali-
zation of Fi~(i) in Eq. (4) is Fi~(0)= 1.

III. RESULTS

We want the expression for F&~(&) to satisfy the
following conditions. It should (a) contain an infinite
number of poles corresponding to even-daughter (1 )
vector poles, (b) behave like a power of ltl for large

l
i l, and argi~0, and {c)have the proper normahzation.

In what follows, we make an ansatz for Fir(&) that has
these properties, and omit the first daughters, and hence
p'. %c propose

I'(k& —k&) I"(k —k~.(i))
I"(2 k&) I'(2P k~—,(&))—

for the Dirac isovector form factor, where P is a parame-
ter determined from the best fit of Eq. (5) to the data
points, and a comes from the trajectory function e,(t)
which is assumed to have the form n, (i)=e+bf The.
Dirac form factor of Eq. (5) is chosen to have the nor-
malization Fiv(0) =1.We will use the trajectory func-
tion derived by Lovelace' and used in similar analyses'

' J. Litt et a/. , Phys. Letters 3kB, 40 (I9N).
4 C. Berger et a/. , Phys. Letters 28B, 276 (1968).The deviations

are not considered to be significant for our purpose. The latest
results (Ref. 4) are compatible with scaling laws.' W. Panofsky, in Proceedzngs of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1968, edited by J.
Prentki and J. Steinberger (CERN, Geneva 1968},p. 23.' C. Lovelace, Phys. Rev. Letters 288, 265 (j.968}.
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FIG. 3. Curve shown corresponds to our parametrization of
GE"(t), and A =0.482 GeV ' is chosen to produce the slope of
G~"(t) at t=0. The experimental points are taken from Ref. S.

FIG. 1. The solid line is the plot of F1+(t) corresponding to
Kq. (8) with P=4-', . The experimental points are from Refs. 7
and 13.

before, namely,

6 - 2P —1 1~-
(8)

For the best choice of the parameter P, a 6t of Eq. (5)
to data is used which also gives a correct ht for the
Sachs form factors through Eq. (4). First let us look at
the available data for the isovector Dirac form factor.
Hughes et al.~ have combined the neutron-form-factor
measurements with the proton-form-factor data' to
obtain the experimental data of the isotopic form factors
(separated as isovector and isoscalar). We 6nd that the
best 6t to the experimental points requires P=4~e. The
result of this choice is shown in Fig. I for the isovector
Dirac form factor.

Now we can calculate the mean-square radius corre-
sponding to Eq. (5). The Dirac isovector radius is
given by

(rt')'=6LdFr'(t)/dtj =o. (7)

Employing Eqs. (5) and (6), one obtains the formula

viously determined value of the parameter P, the
numerical value reads, from Eq. (8),

(r')~ r 0 4——9&(.10 "cm'

while the experimental value"0 is

(rr'), ,tr ——0.52X10 "cm'.

The coupling constants of the 1 resonances to the
nucleon can be discussed once we have 6tted the form
factors. The residue of the p pole will give us the pÃÃ
coupling constant. The form factor containing a string
of poles is

Fr (t) =g,~~F,/(CV, ' t)—
+g.i~~F. /(~. ' «)+", (9)—

where g,~~, g»~~, . . ., are the coupling constants for
the vector part of pÃÃ and prÃ1V interactions (pr is
the next vector meson), and the constants F„F„„.. . ,
may be taken from the measurements" of the coupling
constant between the vector mesons and the photon.
If we assume for Ii, the value given by these analyses
namely, F,=0.120 GeV', then the residue of Eq. (5)
at thc p pole determines the pXE coupling constant as

gp~~'/4s = 2.84,

where lt(n) =P'(n)/Z'(n) When . we replace the pre- wh'ch can be ~~~P~~~d "o the ~~l~e of Ref 12~

g p~~'/4s. =2.86.

The second residue can determine the nucleon coupling
constant to the next vector meson if a value for Ii„, is
glvcQ. As an cstllTlatc~ wc caQ take thc value glvcQ lQ

Ref. 12 for a second vector meson in the region of
interest. Ke Qnd

g~gr/ F4=2.57,

I
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FIG. 2. Plot of the proton magnetic-moment form factor with a
zero neutron electric form factor. A nonzero neutron electric form
factor with a pararnetrization of Eq. (10) removes the small
discrepancy. The experimental points are from Ref. 13.

' E. B. Hughes et al. , Phys. Rev. 139, B458 (1965).' T. Janssens et al., Phys. Rev. 142, 922 (1966).
I M. A. B.Sing et aL, Phys. Rev. 173, 1523 (1968).

which is near the pÃE coupling constant.
%e have expressed the Sachs form factors in terms of

Frr(t) by making use of the scaling laws. Therefore, we
can now compare them with the recent data. "In Fig. 2

'0 R. Fukuda, Progr. Theoret. Phys. (Kyoto) 42, 332 (1969)."J. E. Augustin et a/. , Phys. Letters 288, 503 (1969); G.
McClellan et a/. , Phys. Rev. Letters 22, 3'l4 (1969); F. Budos
et al. , ibid. 22, 490 (1969); S. C. C. Ting, in Ref. 5, p. 43."J. G. Cordes and P. J. O'Donnell, Phys. Rev. 185, 1858
(1969);J. G. Cordes and P. J. O'Donnell, Phys. Rev. Letters 20,
1462 (1968).
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et al. , ~bid. 18, 1014 (1967);M. Goitein et al.,i'. 18, 1016 (196tt);
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Pro. 4. EAect of nonzero Gg"(t).

Af
G&"(t) = — P;(t),

1 t/4cV'— (10)

where the constant A is determined from the known
slope of Gs"(t) at the point t=0. Figure 3 shows the
corresponding neutron electric form factor plotted as a
function of t. Once we have a functional form for the
Gx"(t) term in formula (4), we can use it to remove the
discrepancy in Fig. 2. In Fig. 4 we have shown G~&(t)/p~

we plot G~&(t)/p~ as a function of t, where Gs"(t) is
taken to be zero. As expected, for small values of

~
t~

there is a small discrepancy between data points and
the curve of Eq. (4). This is due to the fact that Gs"(t)
is not zero for small ~tI. To show the effect of a nonzero
G~"(t) in the calculation of GM&(t), we will assume a
functional form for the neutron electric form factor
which is discussed in Ref. 12, namely,

I"ro. 5. G~&(t)/p, „plotted relative to the empirical dipole fit. The
experimental points are from Coward et al. (Ref. 13).

for small
~

t
~

with a nonzero neutron electric form factor.
Since a plot of Gist'(t)/p„relative to the empirical
dipole fit G~&(t)/p~=(1 —t/0. 71) 2 will clearly show
deviation of the theoretical curve from the data, such
a plot of G~&(t)/ti~ is given in Fig. 5, where the G~"(t)
term is also included. We also note that if we calculate
a mean-square ra.dius from the expression of G~&(t) and
take the slope of Gs"(t) from experiment, the measured
value of (r') is obtained. It may finally be remarked
that the choice P=5 which would give exact dipole
behavior asymptotically gives a slightly less good 6t
for low t, but is not yet excluded by experiment.
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On the basis of analyticity, crossing, and positivity of the imaginary parts of the partial-wave amplitudes,
we derive inequalities on integrals involving the low partial waves of elastic 7t- x' scattering in the physical
region. The integrals are sensitive only to the low-energy region, and can therefore be tested once a phase-
shift analysis is given. The relations can be used to discriminate between various proposed 7r'71-'phase shifts.

L INTRODUCTlON

NALYTICITY, crossing, and unitarity have long
been considered essential ingredients of strong-

interaction physics, and much eGort has been devoted
to elucidating their consequences. Apart from the im-
plications of unitarity for individual partial-wave ampli-
tudes, most tests of these general principles (such as the

~ Research LYale Report No. 2726-568$ supported by the U. S.
Atomic Energy Commission, under Contract No. AT(30-1)2726.

verification of dispersion relations, or the Froissart
bound) have involved the full amplitudes, and not
merely a f@w partial waves. Recently, however, many
diferent results on the partial-wave amplitudes of ~w
scattering below threshold have been obtained. In
particular, Common' and Vndurain' have found the
implications of the positivity of the absorptive parts for

I A. K. Common, Nuovo Cimento 63A, 863 (1969).' P. J. Yndurain, Nuovo Cimento 64A, 225 (1969).


