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Factorization of M'~ ~ M'~ Residues within the Veneziano Model*
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The reactions M~vr ~ M~'x are analyzed for a class of mesons, M~. Imposing the Veneziano form in one
channel, the Regge residues at poles are required to satisfy factorization conditions. These conditions are
expressed in terms of the residues of the invariant amplitudes of the processes, for various hypotheses
about the spacing of contributing trajectories of opposite normality. We And that factorization in one channel

only is consistent with the coupling of the lowest-spin kinematically allowed particles in each helicity
amplitude.

I. INTRODUCTION

IXCE the introduction of the Veneziano formula'
there has been considerable effort expended to see

to what extent it can be applied to various scattering
processes as an approximation to the correct ampli-
tudes. The first discussions were mainly limited to
mal. —+xw and xx ~xco scattering, each of which has the
advantage of containing only one scattering amplitude.
The simple applications here led to predictions about
spacing and position of Regge trajectories and "decay"
of "heavy-pions" which were in fair agreement with
experiment. These successes spurred work on two-to-
two scattering with higher-spin external particles. They
have been considered mainly from two points of view:
explicitly considering such reactions as PV~PV, '
I'N~I'N, ' and NN +NN4 and—their concomitant
complications of many amplitudes, and the development
of 5-, 6-, etc. , particle (boson) Veneziano-like formulas'
which can be reduced at various energies to certain
boson+boson —+ boson+boson scattering and, thus, to
solve the problem at one fell swoop. An interesting
exception to these is the work of Goebel, Blackmon,
and Wali (GBW),s who were able to write Veneziano
forms for sr'. ~srS, where S is arbitrary (integer) spin
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V. L. Teplitz, Phys. Rev. Letters 22, 909 l1969}; A. Capella,
C. A. Savoy, and A. Villani, Nuovo Cimento Letters 2, 137
(1969); A. Capello, B. Diu, J. M. Kaplan, and D. Schi6, Nuovo
Cimento 64A, 361 (1969); E. S. Abers and V. L. Teplitz, Phys.
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3 Shan-Yuan Chu and Bipin Desai, Phys. Rev. 188, 2215
(1969);S. Fenster and K. C. Wali, Phys. Rev. D 1, 1409 (1970);
J. Namyslowski and M. Sawicki (unpublished); R. H. Graham
and J. W. Moffat (unpublished); M. L. Blackmon and K. C. Wali
(unpublished); R. F. Amann, Phys. Rev. D 2, 561 (1970); J.
Maharana and R. Ramachandran (unpublished); M. H. Vaughn
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and parity, and thus showed that the kinematics for
groups of reactions might be considered together.

One of the disadvantages of the explicit calculations
v ith just low external spins is that one is never sure that
the constraints arising from higher-spin reactions do not
restrict the choice of acceptable functions in the lower-

spin cases. In addition, the procedures for the low-

external-spin solutions do not always allow one to
deduce general properties of the arbitrary-spin calcula-
tion. The multiparticle Veneziano attempts have the
advantage of also giving results directly on production
amplitudes as well as the four-point subscattering;
however, they have the disadvantage of being presently
in a very preliminary stage and have not as yet been
able to reproduce simple reactions like PV —+PV, for
instance, in sufficient detail. On the applications of the
Veneziano formula to spinning reactions there are, in
addition to the problem of a large number of ampli-
tudes, the difficulties of imposing factorization. There
are two types of factorization constraints: factorization
of helicity residues within a given scattering reaction
and factorization of residues among various reactions.
The GBW ' problem, xm —+ m.5, is able to avoid both of
these problems by being a set of reactions which have
neither type of constraint. Nevertheless, these con-
straints are important; when factorization has been
imposed a number of interesting results have been
obtained. Using only PP ~PP, Canning7 and Wong'
derived the necessity of various group characteristics
and trajectory spacing. Canning, using factorization
for selected PP —+ PP, PP ~PV, and PV + PV
reactions and strong assumptions about the form of the
Veneziano amplitudes, obtained meson mass spectra
and assignments. In many of the other Veneziano
applications to meson reactions, factorization has also
been used in obtaining conclusions.

In another area of application, Jacobs, 4 using the
requirements of factorization in the EX—+EX reac-
tion, has shown the necessity of a large number of
Veneziano terms in that solution.

7 G. P. Canning, Nucl. Phys. B14, 437 (1969).
D. Y. Wong, Phys. Rev. 183, 1412 (1969);see also H. Harari,

Phys. Rev. Letters 20, 1395 (1968); J. L. Rosner, ibid. 21, 950
(1968); and C. B.Chiu and J. Finkelstein, Phys. Letters 278, 510
(1968).

9 G. P. Canning, Nucl. Phys. B1'7, 359 (1970).
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It is with this knowledge of the importance of the
factorization constraints within the Veneziano model
that we have decided to study the requirement of
simultaneous factorization of all s-channel residues in
reactions of the form M~~ —+ M~'x, for an infinite class
of particles, M~. This is the erst class of reactions which
have both normality contributions and in which both
types of factorization constraints can be imposed.
Hence, they are the first general class of reactions from
which we can discover if the form of residues predicted
by the Veneziano representation is compatible with
factorization and if the solutions of lower-spin reactions
are either changed or invalidated by the inclusion of
higher spin reactions. In Sec. II we reevaluate the
M~~ —+~+ problem from a point of view which is
generalizable to the other reactions of interest. The
kinematics of the M~x ~M~'x reactions are discussed
in Sec. III. We note that, to our knowledge, the
invariant amplitudes of even these simple reactions
have never been given before. "We therefore present a
method, applicable within our one-channel approach,
of selecting an acceptable set of invariant amplitudes.
The Regge residues of M~x —+ M~'~, M~m. —+ mx,
M x —+ 8~, mw —+ m.x, and bx —+ 5~, where 5 is J 0=0+'
(possibly the h(962) or s.z(1016)), are then required to
factorize. In Sec. IV we discuss the applications and
conclusions from the form of the resulting equations.

ments, restricting the amplitude to behave asymptotic-
ally as v; ", n)0 in one channel eliminates the poles
at o.=0 in both channels and the poles in n up to
n=n —1 in the i (=s, t, or I) channel. This requires

P(n) to include n(n —1).~ (n —@+1) in the i channel
and n in the other channel. If the amplitude is required
to be symmetric or antisymmetric, the poles in n up to
n=n —1 are eliminated in both channels and the
polynomials in both channels include factors of

n, n —1, . . . , (n —n+1). Nevertheless, it is still possible
(and convenient) to discuss many of the problems of
the two channels separately, and to treat these correla-
tions at a later stage. When isospin is included, the
absence of I= 2 poles in 11 —+ 1!31,or I= ~ poles in
1 rs~ 1 ~~isospin scattering (mesons) produces
restrictions on the I=0, ~~, or 1 channels. In a model in
which the pole structure of the Veneziano formula is
exact, this leads to certain exchange degeneracies. "If
duality or the Veneziano model is relaxed so that only
the leading few poles (parents and a finite number of
daughter levels) are believed, it is possible to include
ephemeral, daughterlike poles in exotic channels and
allow the I 0, ~, 1 isospins to be almost independent. "
For simplicity, therefore, we shall discuss the factoriza-
tion restrictions on the Regge residues in one channel
only, and one isospin in this channel.

In this section we discuss M~x —+ ~m. and M~x —+ 4.
reactions. We call this channel the s channel and label
the resonances that occur in it with I= 1 names. Thus,
if we choose the particles M~ to have the quantum
numbers P=(—)~+', I=1, G= —(s., At, etc.), the p
trajectory (p, As, etc.) is the dominant trajectory in the
reaction M~m. —+vr7f. . In the reaction M~x —+be, the
dominant trajectory is the B (B(1220),etc.J.These two
trajectories differ by approximately 1. Within the
Veneziano model, it is consistent to assume them to
differ by exactly 1."Thus, a single trajectory function
n is used throughout to give both the p and. 8
trajectories.

We proceed as follows: We construct the helicity
states of M~; we contract these helicity states with a
set of invariant operators; we Gnd the linear combina-
tions of the invariant amplitudes which have simple and
independent asymptotic form; writing the Veneziano
representation for these amplitudes, we obtain a form
for the Regge residues of the processes. These residues
will be required to satisfy factorization conditions in
the processes M~+ —+ M~'~ discussed in Sec. III.

The kinematics for the reactions are shown in Fig. 1,
with qt'= qss= p,', P,'= a', Pss=b'. We allow the mass
of particle b (7r or 8) to be different from p. We construct
the helicity tensor of particle u out of J spin-1 polariza-
tion vectors eqv, where X=+, 0, —and p is the Lorentz

"See C. Lovelace (Ref. 5) for references on this point; also
J. Mandula, J. Meyers, and G. Zweig, Phys. Rev. Letters 23,
266 (1969);G. P. Canning, this issue, Phys. Rev. D 2, 2426 (1970).

'~ For examples of this, see D. Y. Mong, Phys. Rev. 181, 1900
(1969);and M. A. Jacobs (Ref. 2).

'4 Of many sources assuming this, see, e.g., D.Y.Wong (Ref. 8).

II. M~m —+ ~~ AND M~m —+ S~ REACTIONS

The Veneziano formula is the representation of the
invariant amplitudes for a four-point scattering process
as a linear combination of Euler beta functions,B„"= &(m —nr) &(n —ns)/&(m+n —p —nr —ns), with
m,n) 0, min(m, n) &P&0, and nr, s linear trajectories in
two of the s, t,N channels. The linear identity 8„

m-1mB m+1, n—1+pB &™,rt rmeans that t—he
general triple sum of 8„"'scan be reduced to a sum
on only two indices, for instance, "
A —P L&m, r m r' +bm, r(Bm+1 r'— Bm+r r— )j&-

fib r 7

m&r&0, b,0=0.

The existence of both a,„and b, „coeScients in this
sum allows suKcient freedom for the residues of A at a
pole in either of its two channels to be written as
P(n)v "/n!, where n is the value of the trajectory at
the pole, v is (t—u) in the s channel or the appropriate
difference of Mandelstam variables in the other
channels, and P(n) is a polynomial in n (of finite degree
for a finite number of u's and b's). The polynomials P(n)
can be 6xed separately, along with n, in both channels
with certain restrictions. With no symmetry require-

"Invariant amplitudes for general processes have been dis-
cussed by A. C. Hearn, Nuovo Cimento 21, 333 (1961), but the
discussion there is incomplete and leads to too many amplitudes
for the processes.

M. A. Jacobs (Ref. 2); R. E. Kreps and M. S. Milgran,
Phys. Rev. D ), 2271 (1970); M. J. Whippman, ibid 701 (1970). .
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index. Our conventions for e), are that eo has a positive
component in the s direction (the direction of the
3-momentum of particle u in the s-channel c.m. system,
s) sob, ooohoqq) and o~= (Qs)(&a,+ia„) T.he scattering
occurs in the xs plane.

A state
I J,X& with spin J, helicity ), can be con-

structed from J states I1,) & by applying the helicity
lowering operator, J,~, (J—X) times to the state
I1,+;1)I1,+;2). I1,+;J) or the raising operator,
J+, , (I+X) times to I1,—;1&I1,—;2& . I1,—;J).
The result is

where K),J is a normalization constant and c is the
number of occurrences of —1 in {);).The Kq~ satisfy
X),J2"=X ),J.

The product of the normalities, n=I'( —)s, of the
external particles in M,~srq~orbprs is +1 and hence
there are an even number of ~!""!' 's occurring in the
invariant operators. A complete set of these tensor
operators with no e&"p"s is well known to be

i!(J—i)!
(c) .J

permutations
((Pl ' ' (Ps if' o-—b1' ' '—Qs) y

i=O, . . . ,J, (2)

where (P=P,—Pb and g= —q&+ps. The helicity ampli-
tudes" are then given by

J
fb, =P (o,sI J,) &I, ,

i=o

for which Ii are kinematic-structure free. The Lorentz
contractions symbolized by the bra and ket vectors are
accomplished in the following stages. The state

I1,+&" I1,+&Il,o& Il,o&ll, —& "I1,—&

with a occurrences of +1, b of 0, c of —1, in the pre-

TABLE I. Lorentz contractions used in the text.

(4'
I
a+') =+&b

((P!ao') = Ub

(iP!bg') = W U'

((P!bp') = U,

(&Ia+') =~Ub
(g!ap') = Ub X—.
(g!bp') = U, X—b

(a+'!b~') = —
p (1+s)

(a~'!4') = ——:(1—s)
(a '!bp') W=Yb

(ap'! b~') =&Y,
(aP !bo ) = LPb PoPbPb —s (s+ao —

sb ) (s+bo Po) g/4—abs

(8!a ') =y P~@bPb (1—so) "o/s'+

(8, !ap') =0

&fn =
/mmmm (& ~ ) /2~2~

U =6 04 (s—+b/o ~o)s+4Wb (s+ppbo ~o)ll4»
Xm =@atm/m
Y~ = (s+ppb' p') —(1 s')"—/2%2tgs"'

scribed order, is contracted against

P I;(e,'I
i=o

with the help of Table I.Using the symmetry in Lorentz
indices, the sum over the set of direct-product states
having the same Clebsch-Gordan coefFicients is taken.
Then the sum over these sets is taken. The calculation
is tedious but straightforward, and the result is

The multiple sum is a bit deceptive since we must also
require

a+b+c= J, a —c=X,

and hence is actually a triple sum over, say, c, i, and k.
The range of summation is simply determined by the
factorials present. The k summation has appeared
because we have incorporated the V portion of the
(QI1,0) with the V portion of ((PI1,0). The form of
Eq. (3) allows the introduction of a linear combination
of I's which will be seen to have independent asymptotic
behavior. These amplitudes are defined as

( )'+'2—'i!(J is)!—
fb=&X'

b, ,', b a!(b , k)!c!k!(i——k)!

X(~b)' '(l'b) '(X-)"I' (3)

I'IG. i. Kinematics of the reactions. ( )s—mm(

I;=Q A„,
(m i)!i!— (4a)

zf
A =Q I;.

' (i—m)!m!
(4b)

Substituting Eq. (4a) into (3), we can remove the half-
"M. J c b and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). angle factor (1—s')"I' and obtain the parity-conserving
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helicity amplitudes of Gell-Mann et al. ,
"

where Ub is Ub with the factor (1—s')'I' removed. The
notation 5+ means that a trajectory with normality ~
dominates the amplitude for s—+~ . In addition,
Gell-Mann et al." showed that a particle with spin o.

contributes to 5't,+ as s~ t~t (s-+~) if it has the domi-
nant normality. From (5) we easily see tha, t sequentially
determining Sq+, X=J,J—1,. . . ,0 to be as s ~ with
independent coefFicients requires A J,~ s ~+" also
independently. We parametrize the A & leading behavior
as

A b~(n) (t—zz) ~+"
(residue of Ab at n = integer) = —,(6)

(~—J+k)!

where A b~(cc) are finite polynomials in n. Also, we define

Fb+ - e(n, X,O)Pgs'Pttws (7)

The factor e is the coefficient of s ~ in eq„+ of Gell-
Mann et ul. , and we need note only that

e(n, X,O) e(ct.,O,p) = e(a,X,p,)e(n, 0,0) .

The Regge residues have already been written as
factorized ~m p and m M~p three-point couplings.
Equations (5)—(7) determine Pt,s'Po" straightforwardly
as

Bb~'Ptt" ——Xi~6(n, ).,0) '

2(J—k)!xp-
c.& P +c)!(J—A —2c —k)!c!(u—J+k)!

( ) c2—c(J. k)
5'b+=2&b' Q (1—s')'

c, b, c, b tzt(ft —k) tct

x(U,). b(v,)~.(x ).A, (,)

~Or 7ra~1 + ~biscay. We haVe

(p ")'=&(&,0,0) '(0.0'.0 bf b/s) "&",

where H+ =A p .
In addition, the scattering 6 ~1—+ bgr2 has

(p.-)'= ~(-,0,0) '(~-.s.~b~b/s)-IJ , -(g")
where o. is here interpreted as the negative-normality
8-particle trajectory and the bm8" vertex has been
called P instead of P. The masses a,b should also be
reinterpreted accordingly.

The above procedures can also be applied to
M~~ —& &r. In these reactions the 8 trajectory domi-
nates. The product of the normalities of the external
particles is —1 and an odd number of e&"& 's are required
in each of the invariant tensor operators. A well-known
complete set of these operators is

etc~(tct. J'—i)cc" c& z=O J—1

Ct"= 4't/2zbc"c Qi„PbcQzc,

where the operator O,s ' is as defined in Eq. (2) and
the symmetrization is to be taken over only the Lorentz
indices shown. We note (Table I) that the axial vector
O', I' cannot couple to ep& and gives the same sign contri-
bution to e~&, whereas both polar vectors contribute
oppositely to e~&. The net effect of these sign differences
is to guarantee that there will be an over-all factor X

in f&, in the equation corresponding to Eq. (3). The
combinatorial analysis is such that, besides the 'A, the
only other changes in (3) are (J—k) ~ (J—k —1) and a
factor c|4f,pbpb(1 —s') ' ' from the 6, contraction. Since
the z summation has not changed, substitution (4) is
again appropriate, although we opt to call the ampli-
tudes C to avoid confusion with our previously defined
A . In terms of the residues Cbs (Eq. (6)g, we find

y."p,"=(—2v2&y.lt.)m, t.(~ X 0)-i

2(J—k —1)!
xp

c.& (X+c)!(J—X—2c —k)!c!(n —J—k)!

(—(s+a' —zz') s v2as't2 " a' s
x/

4tzy lP s+tz& —p& (s+iz& —y&)&

a a a a b b

Sums over a and b have been carried out in evaluating
Eq. (8).We see tha, t the implied factorization is possible
since the J,X dependence involves only u, zz (not b,zb)

masses.
In principle, daughter residues could also be evalu-

ated; however, they are more complicated and are not
discussed in this paper.

6 M. GeB-Mann, M. L. Goldberger, F. E. Logy, E. Marx, and
F. Zachariasen, Phys. Rev. 133, 3145 (1964).

where pttb' is again the coupling of bzr to the particle on
the 8 trajectory of spin o..

III. M~~ —& M~'~ REACTIONS

In this section we consider the reaction M~vf- —+ M~'7r.
The first part of the section is devoted to the kinematic
difFiculties for these reactions. In Sec. II, the discussion
was facilitated by the fact that there was only one
spinning particle. I'or these reactions, simple counting
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arguments suffice to obtain the correct number of
invariant operators which are known to give the correct
analytic structure. For A&x —+ A&'~, the operators 5'6',

(Pg, g(P, gg, and g"" are known to be an acceptable set.
However, the generalization of these operators to our
more complicated problem provides far too many more
operators than there are independent amplitudes. Most
of the methods commonly available for checking sets of
test invariant operators'7 are sufIiciently complicated
to preclude their use here. However, the method used
in Sec. II for evaluating the kinematics can be applied
to our too-large set. It is then obvious that an acceptable
subset of these operators must allow, a priori, the
simultaneous independence of all couplings not related
by parity. Requiring this, we are able to determine
invariant amplitudes for the processes. The only other
complication of a second spinning particle is the fact
that both normalities of particles contribute. Ke have
pointed out that, for M~=~, Aq, etc. , the leading
trajectory is p with 8, approximately one unit below,
also contributing. If we had chosen 3f~=~, A~, etc. ,
the same. trajectories would contribute; however, the
trajectories fit into the kinematics differently depending
on whether the normality of the trajectory equals or is
opposite to the product of normalities of the incoming
(and outgoing) particles. Hence the second choice of
particles M~ effectively interchanges p and B. In order
to consider both cases, we shall retain the notation of
our original set of particles, but allow nc=nij+1 and
o p +Q ~ separately. For completeness we also
consider parity doubling, otp O,p.

The analysis proceeds much the same as in Sec. II.
A set of operators is defined (too many) which are
Lorentz contracted against e(u)&, !"!e(b)q!"!*to give
helicity amplitudes. The parity-dominated combina-
tions are taken; these amplitudes are then used to select
out the correct set of operators which give acceptable
invariant amplitudes. The hypotheses of parity doubling
or nondoubling are imposed and factorization require-
ments are solved for.

The phase conventions for e(b)b are that b(b)b has a
positive component in the s' direction, the 3-space
momentum direction of b when s& s&hggghpjg, and
b(b) ~——(g-', )(+a + i'„).Thus the same form of Eq. (1)
holds for a and b. All relevant contractions are listed
in Table I.

In the I orentz tensor 6 which we contract against

~
cb~)

~
b&, ~'), we may put (P, g, or ge" (we can, in prin-

ciple, put in an even number of eI""&"s,but these require
four P, Pb, Qi, or Q2's for each nontrivial pair included
and will disallow coupling to lowest spin, physically
accessible, intermediate states). In the rest frame of,
say, particle a the state

~
J,X) is symmetric in all of its

J 0(3) indices )the index jb=0 is eliminated by

"Various tests have been described in M. L. Goldberger,
M. T. Grisaru, S. %. MacDowell, and D. Y. Kong, Phys. Rev.
120, 2250 (j.960); A. O. Barut, Theory of the Scatter&zg Matrix
(Macmillan, Net York, 1967).

( ) j+j—m—n jn Ig I

I;, =Q — — D
.n (jn —i)!i!(n—j)!j! (12a)

D 0 —g U
e, e (i—nb)!nb!(j n) tn ~— (12b)

corresponding to a product of two substitutions (4)
yields

f„&,=X„~'Kb~

( )c+j2 —' j(J —n—)!(J'—m)!—
x

a, bc, d, ef, mg, !n(,b ,
—n)!cId!(e—nb)!f!

y(U' )J—b( Lr )
J' e(p ) b——n(p )e-m

&&(X,)"(Xb)"D „'. (13)

The je refers to M~', X to M~. Using Eq. (2.7) of Gell-

Mann et al. ,"we can construct from (13) the parity-
dominated helicity amplitudes F„),+.

For the operators in Eq. (11) with r& 0, the contrac-
tions can also be done for the highest few powers of z.
Substitutions (12a) and (12b) are also appropriate to
these amplitudes and, af ter tedious combinatorial
analysis, an expansion for f„i, can be obtained and the
highest few contributions to P„q+ can be tabulated.

In the previous calculation we were able to pick out
directly the asymptotic behavior of A &~, C&~ from the
form of Eqs. (5). Because we have superfluous ampli-
tudes we cannot, at this point. , determine the behavior

P,„b(a)&,e= 0) and traceless in any two indices using a
metric 8„„, IM,v= 1,2,3. Correspondingly, in an arbitrary
frame, the contraction of g&" with two Lorentz indices
from two

~
J,X) vanishes. G&" must therefore connect one

index of a to one of b. The symmetry in Eq. (1) means
that only the number of (P's or Q's is important in the
group of J (J') indices referring to particle M~ (M~').
Thus the most general amplitude we can construct has
r&min(J, J') g""'s, one index in M~ and one in M~',
i g's and J' i —r—(P's in M~', and j g's and J j r——
(P's in M~. When J'(J, there are ib(J'+1)(J'+2)
X (3J—J'+3) possible operators. From counting
independent helicity amplitudes, however, there are
only (2JJ'+J+J'+1) which may be independent. The
two formulas agree only for (J,J') = (J,O), (1,1) and
there are too many operators in all other cases, For the
time being we carry all of these tensor operators, dehned
as

g J'Jr (g J' rGrg J .r) —, .e. . ,y.r+—z (11)

where the symmetrization in 8~' " is over the first
J'—r Loren. tz indices, in 6~ " over the last J—r
indices, and G" is a product of r g&"'s, first index in an
available J' index, second in J.

Ke first consider 8;;~'~o. The analysis of Sec. II can
be done directly for the

~
ai, ~) state. Except for an easily

accounted for sign, the same can also be done for )
b„~').

The substitution
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—(s+a' —r ') ) —(s+b ' r') )—F„bI+)=X),jX„j'
4artb, g, 3 4bctbbg b

V2a4)c)Jr' bp b tr %2b4 cpcitbb)Jrb

x —
I

2(—)"™
s'"(s+a' p2) —ks'i (s+$ p)—

(J—22)!(J'—m)!
x p

c, m, f, n p.+c)!(J—X—2c —22)!c!(I2+f)!
4y Q 2 n 4$b2gb2 m

!(I' —r 2f n)!f!is—+a'——y, ') (s+b' r')—

(
c f)2$ ~f

g„)bt+), (14a,)
($+a2 2) 2 ($+b2 2) 2

8 S

where 'A, p&0, p =minpi, bb), and

rX
2 i ——c"""'(!— (—4)"

(J—22) (J' —m)

of D „";however, ex post facto we shall see that we
require only the highest v= t —I contributions to F+ to
determine the set of invariant amplitudes. The next to
highest contribution to 5+ will be needed for our
factorization requirements. Equation (13) and its
analog for r&0 yield for the highest powers in b (or s),

There are three things for which we must use
Eqs. (14): determining the correct set of invariant
amplitudes, finding their asymptotics, and requiring
the residues to factorize.

To accomplish the first of these, we consider a pair of
amplitudes F„),+, F„), at a value of s for which there is
a pole having highest spin j=X =max/. ,p). To allow

the coupling of this particle first with one and then the
other normality (only normality + if p =0), there
must he two (one if p =0) independent invariant
amplitudes which appear, multiplied by v from the
kinematics, in 5„),+ and P„q .Thus, in 5'„),+, for instance,
we seek a D„," with J+J' X —p —m —n —r+—p, =0
Lsee 14(c)).By angular momentum conservation, these
two amplitudes we seek cannot appear in a P„),+ with a
X

' greater than !). . Thus, from the factorials in (14a),
J—('Ap+ 1)—2c—n& 0 and J' —(bbp+ 1) 2f m—& 0—for
all c, f&0, but J Xp 2—c 22—&0,—J' pp —2f —m&—0 for
at least one c and f&0 This r. equires n =J—X, m =J' —p
and, hence, r =p Fro.m (14b) we see that this

Dz „,z &I" does not contribute to 7» . By an ana-

logous argument we 6nd Dg „,g ),™I is needed. These
latter D's are needed only for p )0, since 5„), =0 if

p, =0. Either directly counting these D's or observing
that one new D is added for each independent P shows

that we have the correct number of amplitudes.
For simplicity we introduce the notation

X„j+j' ) n m n .D—————

g b+ S)bm( 4)r)rj+j' b )b m n rD—————

1 r(J—X—2c —22)(J' —p —2f—m)
X

b (J—22) (J' —m)

(J' —p —2f—m) (J'—m —r)XE+.
(J—X—2c—22)(J—22 —r)

XS+ T
(J—2b)

(14h) ( 4)min( j—n, j'—m) v —Tl mini j—n, j'—m)~m, n Dm, n

m = 0, . . . ,J'; n = 0, . . . ,J (15a)

( 4)min( j—n, j'—m)P —Tj min( j—n, j'—m) —1
tS, A ~'IS, 7L

m= 0, . . . ,J' —1; 22= 0, . . . ,J—1. (15b)

Schematically this is shown in Fig. 2 for J=4, J'= 2.
We now consider the hypothesis n, =ns+1. The p

contributes to F„),+ proportional to s p " and to
as s p ~ '. The 8 contributes to P„~ as s & "~

= s p At Q= Gp = )E only EJ' Jl, J & can contribute
to S„q+ with a residue proportional to v . Since this

corresponds to a particle on the p-trajectory of spin )
+—+, (14c)

v2

4.V'4 bV b'
R=

$(sya2 —p2)($+f)2 p2)

ctbb2pb2($+a2 ~2)
S=

$($+f2—
) 2)

n r*o
oo!oi oa Rhs'/o4

IOr II l2 I5 mn

m=O, . . . ,J' —r, ~=O, . . . ,~—r,

X =max/. ,y).

4.V.'($+f"—)
')

)
s(s+a' —p2)

g oi oa os' oci Co''og+N g+a,
'

N'NE~%%4%

r i r

FIG. 2. Substitution (15a) and (15b) illustrated for J=4,
J'=2. Similarly shaded regions of D „" correspond either to
E „or Ii „with the same shading.
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we have

(residue of E „at n=integer)

these forms factorize. However, the phases of the three-

point vertices are already Axed by Eqs. (7) and (10).
We allow for this uncertainty in phases by putting

0 n—max(J' —m, J—n) 5:,i+~ n)„&(n & ~)ai"8 z" '"
+ . (16a)

[n —max(J' —m, J—n) ]!
&(n» ~)Pi"P~"

We must also have a p' contribution to P„i, at n = ),„+1
from both the p trajectory and 8 trajectory particles.
To allow this requires +p( 1 ) )~ JO~ J'0 zm-xm i (17)

(residue of Ii „at n= integer)

0 n—max(J' —m, J—n)—1pmn V +, (16b)
[n —max(J' —m, J'—n) —1]!

where E and F are 6nite polynomials in n. It is
easily checked that these asymptotic behaviors agree
with our requirements of n, =ning+1 at all values of n.
Ke can now postulate that the residues implied by

where g) „can be ~1. Note the contribution to W&),

from the "wrong" normality is of the same asymptotic
power as the "right" normality contribution. Using
Eqs. (8), (8'), (8"), (10), and (14)—(17), we set up the
factorization conditions for leading particles of both
normalities. In these equations the choice gi,„=(—1)™
appears to be natural and has the simplest solution.
Solving these equations and separating Emn' from Fmn',

we find

E „0II+II »&~ &~~'H++[(J n)(J' —m)/n —min(J —n, J' m—)+—1]A„~A~~'H
(18)

n![n —max(J —n, J' —m)]!

F „0II+H

4n![n —max(J —n, J' —m) —1]!

(n —J+n)!(n J'+—m)!

»~ ~ H++[(J—n)(J' —m)/n —min(J —n, J' m)]A„A—~'H

(n J+n—)!(n —J'+m)!
(19)

residue E „=
0 n—Xnz+1 E 1 a—Xnz

mn V mn V

+ +, (20a)
(n —X„)!

Equation (19) holds only for ng J, m& J'.
Let us now consider the hypothesis that there are

parity-doubled parent trajectories n=o.,=o.~. For this
to occur, 5„),+ are the same order, s " asymptotically,
even though Eqs. (14) naturally imply 5'+/P =0(z).
The depression of 5'+ is accomplished through a careful
choice of asymptotic behaviors and correlating them.
Ke determine the behavior by induction.

Let us assume that none of the amplitudes contribut-
ing to F„),~ except E,FJ „,J ), violate F„),"—+s" "".
To obtain parity-doubled particles at o.= 'A with
independent residues we must start both E and F at
n='A, and hence they behave at least like v " . Of the
two, only FJ „,J ), can contribute to F„) and hence
behaves exactly as v " . However, it then contributes
like v ~"+' to S„), , so EJ p, J ), must behave like
v ""+' to cancel it. It is easily seen in (14c) that
cancellation in F„),+ at the first occurrence of an E,F
pair continues to all "lower" %„),+'s for the highest v

power. This and the subsequent contribution of F to
"lower" 5„), 's provides our initial assumption of
"higher" E's and F's not violating "lower" asymptotic
restrictions. We have, therefore,

where 8' and Ii' are finite polynomials in n. From (14c)
we see that they are restricted by

F „0=4E ', mgJ', ngJ,
0=E ', no= J' or n= J. (21)

Corresponding to Eq. (17), we have

P „+~~„P(n y +)P JDP J'oza —x~

V&N~(n~~~lj)7& Vv'
(22)

Factorization of the residues in (22) with (8), (8'), (8"),
and (10) gives

E „0II

n![n —max(J —n, J' —m)]!

8sC„JC J'

(n J+n)!(n —J'+m)!—
n=O, . . .,

J'—1; m=O, . . . ,J' —1 (23)

P OVa—)Im P IVa Xm 1

residue F „= + +, (20b)
(n —X )! (n —X —1)!

=max(J —n, J' —m),
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(Z „'—-', [n —max(J —e, J' —m)F„„'$}H+

n t[n —max(J —n, J' —m) j!

(n —J+m)!(n —J'+m) i

+m—1,n—1 II
n![n —max(J —v+1, J' —m+1)]!

~,„'II+5'

n![n —max(J —e, J' —m+1)]!
Z „,oII+r'

n![n ma—x(J e+—1,J' —m) j!
0) ~ ~ ~ )J

R' =1/16s, S' = (s+u' —p')/4s, T' = (s+a' —p')/4&.

The equations correspond to factorizing the leading
particles of both normalities. Compare the 1/s in R',
S', and T' with the s in Eq. (23).

To consider the hypothesis o.,=n& —1 and impose
factorization simultaneously on the p and 8 trajectories
would require knowledge of the 1/v' term in (14c) as
well as the s&~ ' in (14a). Although this calculation is
possible with the above procedures, it is extremely
complex and not warranted here. The positioning of the
trajectories, however, can be accomplished by setting
A„~=A ~'=0, all N, m in Eq. (24). The factorization
conditions on F„q+, then imply restrictions on B
and Z .(».

IV. CONCLUSIONS

In the preceding sections we have presented the
s-channel requirements on Veneziano models for scat-
tering of particles M =x, A~, etc. , on pions. The
analysis is also appropriate for %~=co, A&, etc. In
either of these reactions the dominant trajectories
appear to be separated by one unit in angular momen-
tum and it is thus possible to assume that only one
trajectory function n appears in the Veneziano form.
We have obtained requirements on the residues of the
invariant amplitudes so that parental particles have
residues which factorize for the reactions considered.
(By parental particle, we have meant consistently that
particle of a particular normality and mass with highest
spin. Some authors refer to parent particle as the
highest-spin particle of either normality. ) We have
done this for a variety of hypotheses about trajectory
spacing: n, =n„+1, where c,u=+, —the product of
normalities of the incoming particles (appropriate to
M~=vr, A~, . . . and. n, =n~+1), n, =n„—1 (appropriate
to M~=co, A2, . . . and n, =ns+1), and n, =n (appro-
priate if the p trajectorv begins to be parity-doubled at
higher J).

What we can obtain from this analysis are the
restrictions implicit in Eqs. (18), (19), (23), and (24)
on the structure of H+, A ~, C ~, L& „,and I' „.Before
we do this, however, we should mention a word about
II, the residue of x5~gx5.

The 5 [or perhaps ~„(1016)$has been listed in the
Particle Data tables" for some time, although the final
word on both its existence and quantum numbers is far
from having been written. The requirement that 5 be
given equal footing with x., ~, etc., as a valid external
particle whose residues factorize is a bit questionable.
Now, the b appeared. in two types of reactions, the
M~~ —+5~ and bx —+6~. The use of the first of these
was in obtaining the lowest possible occurrence of y),~,

and the second had then to be considered to obtain Po".
These difhculties can be avoided by requiring the
factorization of the normality nonconserving couplings
ln

(M J'~ -+ M~'m) (M'm -+ M'~)
= (M~7r -+M'~) (M'vr —& M'~) .

The kinematics are considerably more complicated but
can be shown to be equivalent to calling

oooo-+H (J=J'=1)
C„~E„oo (J'= 1, J arbitrary)

in Eqs. (18), (19), (23), and (24). Thus, pragmatically,
we may as well allow the 8 to exist computationally.
DiQerences, however, may occur in "daughter"
calculations.

From the form of Eqs. (18), (19), (23), (24) we see
that the factorials are such as not to change the
"natural" starting values of the invariant amplitudes.
Lovelace" has shown some interesting results when H+,
the ~x —&em form is particularly simple [in our form
H+(n)=n] and there are reasons to believe that the
forms for A ~ and C ~ should be as simple as possible. "
With this assumption and barring accidental poly-
nomial square roots in H+, we have (a) a factor of H
in C ~, (b) a factor of H+ in A ~, (c) a factor of
[n —n(0))H n /[n —min(J —n,J' —m)] in F „, and
(d) a factor of n!/[n —min(J —n,J' —m)g in (L~'~„'
—[n —max(J —m, J' —m))F '}.With these factors as
shown, the factorization equations become considerably
simplified. It is consistent, for instance, to have the
remaining portions of H+, A ~, C ~, and E „0 con-
stants and the remainder of (E ' —[n —max(J —n,
J' —m))F „'}a polynomial of degree 2 in n. The fact
that E', Il' residues are generally of degree 2 higher
than E', Il' is entirely consistent with the Veneziano
formula. This is, then, the minimum complexity allowed

by factorization in the s channel.

"Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).' See, e.g., C. Lovelace, Phys. Letters 28B, 26S (1968); D. Y.
Wong (Ref. 8); and K. V. Vasavada, Phys. Rev. D 1, 88 (1970).

'0 Besides the aesthetic reasons for this simplicity, there is also
the point that one can be sure that sums of Veneziano terms
converge only if they are 6nite sums.
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In this analysis we have allowed the p and 8 trajec-
tories to begin at spin 0, although in reality, the p
certainly cannot begin there. The key to the resolution
of this problem lies in the remark in Sec. II that the
separate channels of a reaction were almost separable.
The elimination of the o.=0 ghost in reactions with only
one trajectory function, n, such as ours, is usually
accomplished by crossed-channel restrictions on asymp-
totic behavior. Since we restrict ourselves to a one-
channel solution only, this effect is beyond the scope of
this paper. In reactions like px —+pm where the
trajectory certainly contributes, there is also the cv

trajectory contributing. As the 7t- and co trajectories are
separated by approximately 2 of a canonical unit, there
must be (at least) two separate trajectory functions in
the s channel of that reaction. Thus, the o.=0 particle-

elimination mechanism we have mentioned should not
be thought of as precluding the ~.

We mention that implicit in the solution of the inter-
reaction factorization conditions are the simultaneous
solution of the intra-reaction conditions of factorization.
In addition, when J=J, time-reversal invariance is
satisfied in that the amplitudes E =- E„and
F =. F to whatever powers of v have been deter-
mined. From Eqs. (12) we see that this corresponds to
the correct symmetry between initial and final states
and also reduces the number of amplitudes to (/+1)',
which is the correct number.
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We discuss, in detail, the meaning of a proposed unitary transformation which exhibits an inherent
ambiguity of the broken SU(3) XSU(3) symmetry. It is suggested that invariance under this transforma-
tion be imposed upon the Hamiltonian of the hadrons. A model consistent with this requirement is proposed.
We also discuss some interesting consequences of such a model.

W = exp(i-'seri'p), (2)

H' remains of the same form, but the parameter r
becomes r, where

r = (1—2r)) (1+4r) . (3)

Since this proposal was made, considerable confusion
has arisen, especially concerning the meaning and inter-
pretation of such a transformation. We wish now to
discuss an example of symmetry breaking in a familiar

~ Supported in part by the U. S. Atomic Energy Commission.
'T. K. Kuo, Phys. Rev. D 2, 342 (1970), hereafter referred

to as I.
2 M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 17'S,

2195 (1968), hereafter referred to as GOR. See also S. Glashow
and S. Weinberg, Phys. Rev. Letters 20, 224 (1968).

I. INTRODUCTION

ECENTLY a unitary transformation in the
SU(3) &&SU(3) space was found' which renders

the breakdown of chiral symmetry nonunique. In
particular, for the GOR model, ' where

H =Hp+II',
II' =cr (srp+&2rus),

we find that, under the discrete unitary transformation

setting —that of rotational symmetry. This example.
will be designed so as to resemble, as closely as possible,
the more abstract problem considered in I. In so doing,
we hope that the ideas in I will become clear. We will
also discuss the difficulties of theories which are not
invariant under 8'.

A second motivation of this work is to generalize
the results obtained in I. We recall that in I, only the
cases when H' (3,3)+(3,3) and (1,8)+(8,1) were
treated in detail. It was pointed out, but not explicitly
proven, that we can actually extend the results so that
any transformation properties of H' are allowed. Wc
will now prove that, for a general II', the transformation
8' always leaves it invariant in form, while changing
its parameters.

Finally, we wish to propose a Hamiltonian model of
broken SU(3) &(SU(3) symmetry. By requiring explicit
invariance under 8", we shall arrive at an H' different
from the usual ones. Some interesting consequences
will be discussed.

This paper is organized as follows. In Sec. II, an
example in broken spherical symmetry is analyzed,
paving the way for an understanding of broken chiral
symmetry. This will be taken up in Sec. III, where we
o6er, in detail, the interpretation of the transformation


