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amplitude ggg(s), for /(0(sggs), is independent of /,

as is the case for scattering by a black sphere, our
assumption would be true. Perhaps the most vulnerable
among our assumptions is the one about the uni-

versality of p coupling to hadrons. It is, however,
possible to turn our argument around and use our sum
rules as a testing ground for the hypothesis of uni-
versality. In the sum rules for xZ or x scattering, one
is confronted with unknown baryon-pole contributions.
But the sum rules for xE and mE scattering, which are
free from these difhculties, yield values of gp~z and

g p++ which are in excellent agreement with the hy-

pothesis of universality. Other "experimental" checks
on the assumption of universal p-meson coupling to
hadrons consist in examining our sum rules for Ig.p
scattering (helicity nonflip) and those for the helicity-
flip amplitudes 8 in both rr/g/ and E'p scattering.
Investigations in these directions have been carried
out and the results, to be published elsewhere, justify
our assumptions.
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We point out that, under rather general assumptions (in particular, that the Pomeranchuk singularity
has either nonzero slope or intercept less than 1), unitarity guarantees that the P/D method leads to an
integral equation for partial-wave amplitudes which is of Fredholm type, and hence possesses a unique solu-
tion, regardless of the behavior of the amplitude as s goes to in6nity along the unphysical cut.
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~ ~HE so-called 1V/D equations for partial-wave
amplitudes have been one of the basic tools in the

S-matrix approach to the theory of strong interactions.
The starting point in obtaining these equations has, in

general, been a dispersion relation for the partial-wave

amplitude.
'' We deflne the amplitude Ag(s) to be

the usual invariant partial amplitude and let Bg(s)
A g (s)/ (s—sp)

' that is, Bg (s) is normalized so that, in
the case of elastic unitarity, it is given by Bg(s)
=2fs/(s ss)]'"(e—'gg sin3g)/(s —se). (We use the usual
Mandelstam variables: s, the c.m. energy squared, and

t, the negative square of the four-momentum transfer.
sp is a subtraction point. ) Then Bg(s) is taken to satisfy
the dispersion relation

Bg(s) =I.g(s)+ Ug(s), (1)

where I.g (s) and Ug(s), the dispersion integrals over the
unphysical (left-hand) cut and the physical (unitary)
cut, respectively, are given by

S—$0
D(s) =exp(—

4

3(s')ds', (4)
(s' —s) (s' —ss)

where 3(s) is the real part of the phase shift, and has a
right-hand (unitary) cut only, while 1V(s) =A. (s)D(s)
has only a left-hand cut. In the remainder of our dis-
cussion we will consider the approximation of purely
elastic unitarity, which is made in most actual calcula-
tions. To discuss the situation with inelastic effects
included, one would have to proceed in the same way
using the Frye-Warnock form of the V/D equations. '
The functions N (s) and D (s) sa, tisfy the coupled integral
equations, in the approximation of elastic unitarity,

A (sp) 1 ' f(s') D(s')
X(s) = + — ds'

s —sp gr „(s'—s)
' R. Omnes, Nuovo Cimento 8, 316 (1958);21, 524 (1961).

(Throughout the paper we a,ssume for simplicity the
kinematics corresponding to the elastic scattering of
equal-mass spinless particles; this simplification has no
effect on our arguments. We choose our units so that the
scattering particles have unit mass. ) Assuming the
validity of Eq. (1), one then carries out the usual
decomposition

$(s) =IV(s)/D(s), (3)

where we have dropped here and for the remainder of
the paper the irrelevant subscript /. In Eq. (3), D(s) is
the Omnes function'
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(S—So)
D(s) =1—— p(s') N(s')

ds - - -

)
s —sp s —s

(5b)

D(s) =1— E(s,s') f(s')D(s')ds',

which can be shown to be a Fredholm equation provided

f(s) =0((lns) ' '/s), e)0, on the negative real axis. ' '
The problem in the justification of the N/D method

occurs when f(s) fails to vanish fast enough as s-+ —~
along the negative real axis. One example of such a case
is the case that the left-hand cut is approximated by the
partial-wave projection of the force due to the exchange
of an elementary particle of spin greater than zero.
However, even in a theory where the exchanged par-
ticles are Reggeized, it is quite possible that f(s) will be
nonvanishing at s = —~ . This is particularly likely to
be true if Regge trajectories rise indefinitely, since in

this case the partial-wave amplitude cannot be expected
to be polynomial bounded in the s plane, in particular
not along the negative real axis, so that one cannot even
write a dispersion relation of the form (1) for B(s). The
possible existence of such difficulties has recently been
reemphasized by Atkinson and Calogero'; these authors
propose an alternative to the N/D method for certain
types of unbounded discontinuity functions. It is the
purpose of the present paper to argue that, under fairly
general assumptions, the validity of the N/D equations,
in the form in which they are usually used in actual
calculations, is independent of the behavior of f(s) on
the distant left-hand cut, and is guaranteed by the
restrictions imposed by unitarity on the behavior of

B(s) and U(s) on the positive real axis. There remains
the question of whether particular approximate forms
for the input of the N/D equations, used in actual
calculations, are reasonable or not; we shall make only
a few brief and rather inconclusive remarks on this very
difficult question below.

Omnes' and Squires have considered the question of

4 We use the notation f(s) =0(g(s)) in the usual way. Thus
this statement means that

~f ~
~& M

~
(lns) ' '/s

~

for some constant
M and all s less than some negative number S.' D. Atkinson and F. Calogero, Phys. Rev. 185, 1702 (1969).

6 R. Omnes, Phys. Rev. 133, B1543 (1964).
~ E. J. Squires, Nuovo Cimento 34, 1277 (1964).

where
p(s') = —,'L(s' —4)/s']' '(s' —so)

and we have introduced the abbreviation

f(s) = ImB(s) .

The occurrence of the substraction constant A (so) can
be of importance only in the 5 wave, since for higher
angular momentum one can choose the subtraction
point at threshold, and then A (so) is known to be zero.

Equations (5) were solved, in Ref. 1, by substituting
(5a) into (5b), yielding an equation of the form

the behavior of the discontinuity function f(s) on the
left-hand cut in a conventional Regge theory, and are
able to show that, because of cancellations in the
integral over the angle involved in taking the partia, l-
wave projection, f(s)=0(s '"& ') on the left-hand cut.
Squires~ points out that this proof actually requires an
additional assumption which, though plausible in the
context of conventional Regge theory, goes beyond it.
Much more serious is the fact that, if the Regge
trajectories in relativistic problems, unlike those in
potential scattering, do not return to the left half j
plane, in particular, if they continue to rise indefinitely,
then the result f(s) =0(s &"&—') is valueless as far as
establishing the convergence of dispersion integrals over
the left-hand cut, or the Fredholm character of the
integral equations resulting from the Ã~D method.

We consider the Uretsky form of the N/D equations. '
I"'or convenience, we will change to the variable v=4s—1, which is zero at threshold. Then g obeys the
integral equation

H (v) = U(v)D (v) . (10)

Clearly, since each of its factors has only right-hand
cuts, so does II(v). Since f(v) is bounded, and goes
asymptotically as v ' on the physical cut because of
unitarity, the convergence of the integral in Eq. (2b)
defining U(v) is assured and, moreover, U(v) v '
apart from logarithmic factors. In addition, if the
a,symptotic behavior of the phase shift is governed by
Levinson's theorem, '' then in a bootstrap theory in
which there are no CDD (Castillejo-Dalitz-Dyson)
poles, D(v) will be bounded by a constant at infinity.
Hence H(v) v ', and the dispersion relation which
leads directly to Eq. (9) is valid.

, Equa. tion (9) does involve a function L(v) which
depends on the unphysical discontinuity. If f(v) does
not vanish as v-+ —oo, L(v) will not, of course, be
given by Eq. (2a,) since the integral will not converge.
However, Eq. (9) follows with L(v) simply defined by
Eq. (1) in terms of B(v) and U(v). That is, we write

I (v)=—B(v)—U(v).

LIn the situation that the dispersion integral does not
converge, L, (v) is the contribution to the Cauchy-
integral formula from the integral over the left-hand cut

8 J. L. Uretsky, Phys. Rev. 123, 1459 (1961).
9N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. -Fys.

Medd. 25, No. 9 (1949).

~ (v') p(v')dv'
N(v) =L(v)+ — L(v') —L(v) — . (9)I f'r p v v —v

D(v) is again obtained simply by integrafion from
Eq (5b).

Our basic points consist of the following observations:
First, we note that Eq. (9) is derived by applying the
Cauchy integral formula to the function
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plus the integral over the path at infinity. ) Moreover,
Eq. (9) involves L(i) only on the unitary cut, v) 0. In
that region, we will show that under rather general
conditions unitarity constraints on B(v) and U(v)
enable one, through (11), to obtain a condition on L(v)
which guarantees that the integral equation (9) is of
Fredholm character and hence has a unique solution.
The required assumption is that the high-energy be-
havior of the amplitude is controlled by a moving Regge
singularity, together with weak. conditions on the tra-
jectory and residue functions, specified below. Our proof
would fail for an amplitude whose asymptotic behavior
was controlled by the exchange of a fixed Pomeranchuk
trajectory. (The proof also works for an amplitude
whose asymptotic behavior is governed by a fixed
singularity in the angular momentum plane provided it
occurs to the left of, not on, the line j= 1.) The moving
singularity could be either a Regge pole or cut.

To carry out the proof, we first show that, with the
above assumption, B(v)=0((v lnv) '—) on the positive
real axis. Second, we show that U(v) and, therefore,
L(i) are 0(ln lnv/v) on the positive real axis. Finally,
we observe that this condition on L(v) renders Eq. (9)
a Fredholm equation.

The asymptotic behavior of partial-wave amplitudes
in a Regge theory has been discussed, for example, in
Ref. 7. The pa, rtial-wave amplitude A (v) is given by

B(v)=0((v Inv) ') (16)

as v —+~ on the physical cut.
We next turn to the behavior of U(i) and L(i).

From Eqs. (2b) and (16), we have

U(v) =P
"f(v')dv'

(v' —v)
(17)

on the right-hand cut. For example, taking only the
contribution of the leading trajectory, ' if one makes the
very weak assumption, true in almost any version of
Regge theory, that n(t) =0(t '), no) 0, on the nega, tive
real axis, then, provided P(t) =0(I&), the first integral is
equal to 0(s~ ') or 0(s ' '), whichever is the weaker
condition, so that (15) would hold provided y&ns. This
would, for example, be true of the residue functions used
in phenomenological fits, which invariably decrease for
large negative t, as well as for those found in potential
scattering with Coulomb or Yukawa potentials. If ci(t),
rather than simply being bounded by t ', becomes
more and more negative at large negative t, then even
weaker conditions on P(I) are required to ensure the
validity of Eq. (15)."To continue our discussion, we
must make the assumption that the behavior of the
trajectory and residue functions is such that Eq. (15) is
valid. Hence B(|)=A (v)/i satisfies

A(v) = A(v, x)Pi(x)dx. (12)

where f(v') =0((i' in'') '). From a theorem of Frye
and %arnot' it then follows that

A(v) =2
—tp

(s—4)

—tp

2t dt
iiii)s i'&P,(1+ — . (13)

s —4 s —4

In estimating the order of magnitude of integrals in

(13), the Legendre polynomials are of no importance,
since their arguments lie in the range —1 to 1 and hence
they are of order 1. Then from the Froissart bound
cr(0)( 1 and from our assumption that n(I) is a moving
singularity, i.e., that near t=0

it easily follows that the second term in (13) is 0(1/lns).
In order to treat the first term, one must make some
assumption about the behavior of the amplitude for
t= —s. A number of plausible assumptions will lead to
the conclusion that the first term, and hence A (v), also
satisfies

A (v) =0(1/1ns) (15)

Substituting in the asymptotic form A (v,x) P(I)s~i'l (a
similar argument applies to the contribution from a I-
channel trajectory), we rewrite (12) as =0((ln 1nv)/v) .

It then follows from (11), (16) Lor the weaker unitarity

Of course, in that part of the range of integration in (12)
or (13) in which both t and zc are comparable with s, and hence
the cosine of the scattering angle in neither the t nor u
channel is large, one has no justification for representing the
amplitude by the contribution of the leading trajectory in either
the t or u channel. However, experimentally, differential cross
sections are found to fall oG extremely rapidly as one goes to
regions away from the forward of backward direction. Hence
it seems reasonable to hope that the contribution to (12) from
the amplitude in these regions is not important in any event, and
that our conclusions would not be altered if we could treat it
more correctly, rather than adopting, in our present state of
ignorance of the detailed behavior of the amplitude for t and u
both comparable to s, the procedure of assuming that the ampli-
tude is given everywhere by the sum of the contributions of the
leading trajectories in the t and u channels. It is perhaps worth
noting that in one case, that of the Coulomb amplitude, where we
have an exact expression valid at all s and s Le.g. , see S. C. Fraut-
schi, Regge Poles and 5-Matrix Theory (Benjamin, New York,
1963), p. 124$, the conclusions as to the behavior of the second
term of (13) are the same whether one uses the exact expression
or represents the amplitude throughout the range of integration
by the contribution of the leading trajectory.

"For example, it is easy to show by a straightforward ap-
plication of the Stirling approximation that Eq. (15) would
hold for the case of an amplitude given by the Veneziano repre-
sentation with a trajectory having the Pomeranchuk behavior
a(0) =1.
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bound B(v) =O(i ')), and (18) that, on the right-hand
cut, that is, in the range of integration in the integral
equation (9),

(19)L(v) =O(ln 1ni/|).

Finally, we consider the implications of (19) for the
X/D integral equation (9). The familiar Fredholm
theory of integral equations guarantees that (9) has a
unique solution provided

(2o)

where
0 0

I K(v)v')
I
'dvdv'( ~, (21)

There is clearly no problem in satisfying the condition
(20) on the square integrability of the inhomogeneous
term.

I
The usual behavior, 8i v'+'I', of the phase shift

at threshold gives ImBi v', and hence Ui(i) is finite at
the origin for l) 1, Since Bi(i ) is also finite at the origin
for l) 1, so is Li(v), and hence, of course, no problem
arises with condition (20) from the behavior at the
lower limit. ) The problem arises from the condition
(21) that the kernel be square integrable. It is well
known and easy to show that (21) will be satisfied if,
e.g. , L(v)=C/v+O((v lnv) '). On the other hand, if
I.(v) lni/v, then (9) will not in general have a unique
solution. "The result for the intermediate case which
we have here, in which L(r ) is governed by Eq. (19), is
probably less well known. However, in fact Eq. (19) is
enough to guarantee (21), and hence the existence of a
unique solution to Eq. (9); the Appendix contains a
straightforward proof of this assertion. The fact that
(19) is sufhcient to guarantee (21) is required, inde-
pendently of any problems with the convergence of the
dispersion integral over the left-hand cut, if one is to be
certain of the Fredholm character of the E/D equations
for amplitudes governed by Pomeranchuk exchange,
since Eq. (11), coupled with the preceding discussion,
suggests that any such amplitude will have the asymp-
totic behavior (19).

In summary, then, provided that the asymptotic be-
havior of the amplitude is governed by a moving
singularity in the angular momentum plane, that the
phase shift at inanity obeys I.evinson's theorem, and
that the behavior of the trajectory and residue functions
combine to ensure Eq. (15), then one may write
B=E/D, where E obeys a Fredholm integral equation
LEq. (9)j and D is given by Eq. (5b). Hence, under
these conditions, the requirements that there be no
CDD poles, together with the specification of the
function L(v) for positive i, determines the partial-wave

'~D. Atkinson and A. P. Contogouris, Nuovo Cimento 39,
1082 (1965).

amplitude uniquely, without arbitrary parameters, ex-
cept for a possible subtraction in the 5 wave. In a Regge
theory, the latter would presumably be determined by
analytic continuation in j.

There still remains the question of to what extent the
E/D equations are useful as a practical calculational
tool. This depends on the extent to which the equations
yield useful results when approximate forms are used
for the function L(v), since, of course, one does not have
available the exact L(i). The original hope, when the
theory was developed, was that L(i ) would be given by
a convergent dispersion relation of the form (2a) and,
moreover, that the dispersion integral would be domi-
nated by the "nearby" part of the left-hand cut, i.e., by
the exchange of a few low-mass particles in the crossed
channel. %hat we have here established is that one can
write the E/D equations even if the integral in (2a)
does not converge, i.e., even if L(i) on the physical cut
includes contributions from the integral over the infinite
semicircle. However, in that situation, there would
certainly be no grounds for believing that L(v) could be
well approximated by the contributions from the nearby
part of the dispersion integral. And in any event, if one
takes the nearby-singularities approach, and these
singularities are particles or resonances of spin & 1, then
one gets an approximate L which does not obey (21) and
which requires the introduction of an arbitrary cutoG
parameter. An alternative approach is to take I to be
the unphysical cut contributions to the leading Regge
trajectories, in which case our preceding discussion will
guarantee the Fredholm nature of the equation. This is
essentially the approach taken in the various calcula-
tions based on the "new form of the strip approxi-
mation. '"' In these calculations, U is taken to include
only the contribution of that portion of the physical cut
between threshold and the "strip width" s~. As in our
preceding discussion, one can then de6ne I=A —U even
if the dispersion integral over the unphysical cut fails to
converge. Actually, in this approach, there is no problem
with (21) because of the finite range of integration;
there is an artihcial logarithmic singularity introduced
by the approximation procedure, so that the equation
obtained is non-Fredholm, but it is possible to show that
the solution may still be obtained by standard nu-
merical methods. ' Squires~ has pointed out that one
cannot expect to be able to calculate the left-hand
discontinuity of the partial-wave amplitude from that
of the leading Regge trajectories, because of the cancel-
lations which occur in doing the partial-wave projection,
but this need not concern us because we do not need the
left-hand discontinuity, but rather the function L(i)
(the dispersion integral over the discontinuity if the
integral converges) in the physical region. Since A (i) is
dominated by the leading Regge contributions at large

"G.F. Chew and C. E. Jones, Phys. Rev. 135, 3208 (1964);
P. D. B. Collins and R. C. Johnson, ibid. 182, 1755 (1969), and
references therein.

'4 C. E.Jones and G. Tiktoponlos, J.Math. Phys. 7, 311 (1966).
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