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For rank one, we obtain

(y J)'=(g,J)' I —Q dvt, ~gsJ~2E2. (BS)

J—(g~J)T(I C J)—1/2D ($ C J)—1C eJj—1

)((I C J)—1/2g, J
(g'J)T(I Cr~ J CEJ)g J'

The proof is simple. Plugging (B7) into (B5) and noting
that C~ and Cqo~ commute, we 6nd

which is (B3) as desired. Since C~J=(C~J)r* has no
right-hand s cuts, p, ~ —+ p;~* as s becomes physical.
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Regge Slopes and Residues for a Spin-1+Spin-0 System in the Content
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The Bethe-Salpeter equation for a spin-1 + spin-0 system at vanishing total 4-momentum E is separated
by means of the O(4) vector spherical harmonics, which are defmed and discussed briefly. Perturbation
expressions for the M=1 residues near If=0 are derived and then examined near J=O, where it is found
that only the nonsense part of the 0 (3) content of the Jr = 1 residues survives. Perturbation expressions are
given also for the slopes of Regge trajectories at s= —E'=0, the signs of the slopes are investigated for
certain classes of potentials, and a sum rule satisned by slopes of contiguous daughters is derived.

I. INTRODUCTION

~CONSIDERABLE progress has been achieved in~ understanding the 0(4) properties of scattering
amplitudes since it was 6rst discovered that these
amplitudes acquire 0(4) symmetry at vanishing total
4-momentum E of the interacting particles (E2= —s =0
in the s channel corresponds to forward scattering in the
t channel for processes with pairwise-equal masses). ' '
The Bethe-Salpeter (BS) model, 4 which exhibits this

type of symmetry, has been popular because of its
mathematical tractability. Thus, many attempts have
been made to study the 0(4) properties of scattering
amplitudes in the context of the BS model and several
methods have been proposed for the expansion of these
amplitudes. "

This work is devoted to investigating the residues
near J=O at small values of E and the signs of the
slopes of Regge trajectories at s= —E'=0 for a spin-1
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+spin-0 system in the context of the BS model. We
start off in Sec. II by separating the BS equation using
the 0(4) vector spherical harmonics (USH), which are
de6ned and discussed briefly in the Appendix. The
deinition of these functions is motivated by the four-
dimensional vector character of the BS wave function
and the analogy with 0(3) USH.2'

Assuming nondegenerate perturbation theory to hold
near E=O, we derive, in Sec. III, expressions for the
3f=1 residues at small values of E and investigate the
behavior of these residues near J=O. The assumption
that nondegenerate perturbation theory holds near
E=O is consistent with an M =0 classi6cation of the
pion since the J=O, 3f=1 residue chooses nonsense at
E=O and continues to choose nonsense near E=O.'
The possibility of an M=1 classi6cation of the pion
which attracted interest for some time" could be
realized if nondegenerate perturbation theory failed
near E=O and the pion residue were allowed to recieve
a considerable contribution from the 3f=1 states. "
The realization of this situation in the context of the
BS model did not produce satisfactory results.

In Sec. IV we study in some detail the signs of the
slopes of Regge trajectories at s=O. Our tool is again
Dondegenerate perturbation theory, which we apply to
the BS equation after putting it in a simpler form by
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means of a trick. Finally, we conclude our work by
commenting on the unequal-mass problem with arbi-
trary spin.

II. SOLUTIONS OF BS EQUATION AT K=O

The BS equation for a bound state of two particles
with spins 0 and 1 and a total 4-momentum E is

compact dyadic and three-dimensional vector notations.
We have used sans serif for dyadics and denoted four-
dimensional vectors with boldfaced letters which are
conventionally used for three-dimensional vectors.
However, this will not result in any confusion since we
will be dealing with four-dimensional vectors only.

At E=O the BS equation acquires 0(4) symmetry
In this special case (2.6) and (2.7a) go into

Dye FK (21)&2) ~ d&3d&4 I pr (2 ly ~ ~ ~ )&4)+K (&3)24) y

D„„-'=—( 12+m12) where

q(k) =XDp(k) Vp(k, k') q(k')dk', (2.8)

xt( 2+m2')g„—&2,~2,], (2.1) q2(k) =—e (K=0, k), Vp(k, k') =—V(K =0, k, k'),
where

= ~y4)" =g~~~yl)~ y

I+kk/m22
Dp(k) =

($2gm12) (732+m22)
(2.9)

Following Wick, "we rotate the time direction from the
real xo axis to the imaginary x4 axis. As a result of this
rotation the time component Ao of any 4-vector A goes
into iA4 and we end up with vectors obeying the
Euclidean metric. Then D„„'goes into

where k stands for the length of the 4-vector k. Lengths
of 4-vectors will be consistently represented by the
corresponding lightfaced italic letters.

The most general form of Vo is

D„„'=(— 1+ml') f(— 2+m2') b„„4)2„4—)2 ],
=4)„4)„, @=1,. . . , 4. (2.2)

Vp(k, k') =Q F;(k,k, 'k k') E;, (2.10)

where E; (i=1, . . . , 5) denote the following symmetry-

be easier for us to work. There, (2.1) and (2.2) become

E,=—I, kk, k'k', kk', k'k. (2.11)
Dgy (731)~2)C'Kv(131)~2) dI33dI34

D„„'(kl,k2) = (k12+m12)

Similar symmetry-conserving tensors involving the
derivatives 8 and i)' with respect to k and k' may also

XV„„(kl,. . . ,k4)CK„(kp, k4), (2.3) be added to (2.11). Thus, for each term of (2.10) the
BS equation (2.8) may be written in the following form:

XL(k,'+ m, 2) b„.-k,„k,„]. (2.4) q (k) =X U(k, k') q (k')dk', (2.12)

If we make use of translational invariance and the
following change of variables U(k, k')= Dp(k) EE"(k,k', k k'). (2.13)

Z=731+k2 ——F3+&4, f3=a)'31—b732,

l3'=ak3 —bk4, a+b=1,
To separate Eq. (2.12), we expand q2(k) in the set of

(2 5) 0(4) VSH de6ned by (A4)"

we obtain after some algebraic manipulations the
following equation for the wave function +:

+(K,k) =AD(K, k) V(K,k,k') .4I2(K,k')dk', (2.6)

where
I —(bK —k) (bK —k)/m '

D(K,k) =— (2.7a)
L(aK+k) '+ml']L(bK —k) '+m2']

D-'(K,k) =L(aK+k) 2+ml'-]

x{L(bk —K)2+m2']I —kk}, (2.7b)

where I stands for the unit dyad. We have dropped the
cumbersome subscript notation in favor of the more

12 G. C. Wick, Phys. Rev. 96, 1124 (1954).

Since J is always conserved, and E and e are good
quantum numbers at E=O, the matrix elements of U
with the angular functions reduce to

(023 &,,&
~(Q) U (k,k ) ' QN &,, &~(Q'))

=U "'(k,I3')bye h~~ b,:. (2.15)

Thus U is diagonal in the M=1 states (4=&) while
it mixes the M=O states (p=0). This result is consis-
tent with the O(4) parities and reflection eigenvalues
for the states (see the Appendix). If we now substitute
(2.15) and (2.14) into (2.12), we end with the following

"The method of 0(4) VSH and its use to separate the 3S
equation are discussed in great detail by the author, J. Math.
Phys. ll, 2272 (1970).
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matrix integral equation in the radial variable k:

nf
k "dk' U„„N'(k,k')PN(„, ,)

("') . (2.16)

Equation (2.16) consists of two one-dimensional equa-
tions for the M =1 states and a two-dimensional matrix
equation for the 3f=0 states. For a given X this equa-
tion possesses, in general, four solutions and four cor-
responding eigenvalues which we indicate with the sub-
script r =1, . . . , 4. Moreover, for given X and r there is
an infinite number of eigenvalues corresponding to
different potential strengths Xz„'. This inhnity, which
we indicate with the superscript i, results from solving
an integral equation in the radial variable k. It is
obvious from the formulas given in the Appendix that
only the identity tensor E=1 gives nonvanishing matrix
elements for the 3f=1 angular functions. Therefore,
URN+=UNN N, which means that the radial func-
tions and the eigenvalues of the M =1 wave functions
are identical. Let us write down the total wave func-
tions and their eigenvalues:

III. M=I RESIDUES NEAR X=o

QN, ~'(k, K) = g K&ON„~'(»(k),
p=o

r(N ~' = g Kr)(N J'&"'
p=o

(3.1)

where +N„~'~'~= q N„~' and) N '~'~=—)Nr' are the zeroth-
order eigenfunctions and eigenvalues obtained in Sec.
II. If we now substitute (3.1) into (2.6), we can in

principle 6nd the corrections for the eigenfunctions and
to all orders in E. Let us focus on the angular depen-
dence of @ only. The perturbed 3f=1 wave functions
may then be written in the following form:

+N, ~(k,K) = g GN„,N. „~(k,K)QN, ~(Q),

If we assume that nondegenerate perturbation theory
holds near E=O, the BS wave functions and their
eigenvalues may be expanded in powers of K (the
length of K) in this region:

&frN1 (k) 7N (k) +N(N, +) (Q)

(0N0 (k) =TN (k)+N(N. —) (Q) with

M = 1 (r = 1, 2) (3.2)

with eigenvalue xNi' ——xN~' ——xN',
GNr, N'r' )K ')rN ~Nr, N'r'

+NS (k) 'gN(N 1,0) (k)@N(N——1,0) (Q)+rlN(N+1, 0) (k)

XQN(N+1, 0) ~(Q) with eigenvalue r(N0*,

01N4 (k) fN(N —1,0) (k)+N(N —1,0) ( )Q+I (NN1+, 0) (k)

XQN(N~1, 0) (Q) with eigenvalue XN4'.

It remains now to determine the explicit form of the
matrix U„„N' for the various tensors enumerated in

(2.11). This may be a,ccomplished using the basic
formulas given in the Appendix and the following
expansion:

~(k,k', k k') = P Z.,-(Qy „(k,k')Z„,-(Q'). (2.1))

+Q K&HN, , N „(»~(k), (3.3)

where yN is the M = j. radial function at K=O and the
index r'=1, . . . , 4 stands for the pair of quantum
numbers (n', 0') = (E, ',+), (1P, ), (1P—1,0—), and
(X'+1, 0), respectively.

If the kernel of Eq. (2.6) is of Fredholm type or may
be made so by introducing appropriate cutoQ functions,
then the resolvent kernel, which is the T matrix, is a
meromorphic function of the parameter ) . If we assume

the poles in ) to be simple, the T matrix may be proven
to have the following form near a simple pole at )N,~.

TN„~(k', k",KX) =
IN„f"(k', K)4N„~(k",K)

GN, , N r r ~(k', K)GN„,N „"~"(k",K)QN. „~(Q')QN" „"f(Q")
~Nr N'r' N" r"

, GNr, N'r' (k ) )K¹Cr' Xn' (X )J l8, L s' Nfrf, N«r"
Nr

XGN„N"„"ft(k",K)CN"„.'""'~X„""(x")Yg&,.t(re', 0')Yg«, "(rp",0"). (3.4)

We made use of Eq. (AS) to pass from 0(4) to O(3) in the J plane, we Reggeize expression (3.4) by con-

VS'. To find the residues of the corresponding poles tinuing A and J into complex values while keeping their
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diRerence always equal to a non-negative integer. ' Thus

E-+ np, J—+n„, with np —n. =K=0, 1, 2, . . . , (35)

and (3.4) becomes

T„„(k',k",K; n„) =-
(dX„/dn„) (n„—J)

The 0(3) state obviously is a, nonsense state since
l=J—1=n„—1=—1, while the 0(4) state is nonsense
at K=O (n =IV—1=—1) and sense at K=1 (11=0). In
the 6rst case the matrix element does not vanish while
in the second case it behaves like g n„as expected.

(ii) In G~„,0I „we encounter matrix elements of the
symmetry-conserving tensors enumerated in (5.11) and
the symmetry-breaking tensors

t,' S' l" S K'9' K k.K, I, kK, Kk, KK. (3.7)

XY.„v,"(0",0")

Thus the 0(3) residue matrix is given by

p
pt~ I«r«(l txt.

hatt

Xtt. It. )

Rr, r'r' Cr'ri

dX„

r = 1,2 (M = 1) (3.6)

where G„„,„„Kand C„„'"~ are the Reggeized versions
of the coeKcients G~~,~ & and Cg (,& )

' given bp
Kq. (3.3) and tabulated in the Appendix, respectively.
~=0 corresponds to what is usually called the parent
pole, while K=1, 2, . . . correspond to the daughter
poles. '

Let us investigate P near n„=0, where some of the
0(4) and 0(3) states are unphysical or nonsense, as
they are usually called.

(i) The matrix &„„.'" 'x„'(x) may be written down
explicitly using the tabulation in the Appendix, Eq.
(A2), and the Reggeization prescription (3.5). If we do
this and examine the product near n„=0, we And the
following to be true: All the matrix elements that con-
nect sense (nonsense) 0(4) states to nonsense (sense)
0(3) states contain a factor of Qn„ if they do not vanish
for some other reason. '

Let us illustrate this result on the matrix element
CI0(Ip i, p& XI0 1

' which relates the 0(4) VSH
QIp&Ip 1 0~ to the 0(3) VSH Yq q

~X(N—1,0) XN—1

J(1V+J)(1V+JX1) 2 '~+'lVI'(E+ J)
2(2J+1)E' I'(J+-') I'(.V—JX1)

Xsinx~—10FI(IV+J, —IV+J, J—10; 01 —10cosx) .

If we now Reggeize using (3.5) and isolate the factors
that determine the behavior near n,, =0 [we do not have
to worry about the factor sin&'&F1( ) because it is
finite at n„=Oj, we find that the matrix element behaves

Ln /(n. +K)3"'

(+Niip' —I,—) (k'K) ' +Ipnp —I,p) )
= —kE[J (J+1)/2X(iV+1) '$"'
—+ kX[n—„(n„+1)/2(n„+K)(n„+K+1)'jII'

=[n /(n +K)J"'=
at K=O, o.,=0

Qn„at K=1, n„=O

Combining (i) and (ii) and remembering that the M = 1
states are nonsense at n„=O (since M) J), we obtain the
following behavior for the residue matric near n„=0:

P„,'""""
I .=0= fmite for nonsense l's', sense l"s"

=gn„ for nonsense l's', sense l"s"
or vice versa

=n, for sense 1's', sense l"s". (3.8)

Thus only the nonsense part of the 0(3) content of the
M =1 residues survives at o.„=0.This result, which is
true for the M=1 residues onLy because the zeroth-
order iV = 1 wave functions belong to 0(4) states which
are pure nonsense at j=0, is not expected to be true for
the 3f=0 residues where the zeroth-order wave func-

' This result was proved for the SN case by W. R. Frazer, F.
R. Halpern, H. M. Lipinski, and D. R. Snider, Phys. Rev. 176,
2047 (1969).

Tensors constructed from the derivative 8 and the
vector K may also be added to (3.7). If we reduce the
matrix elements of these operators with 0(4) angular
functions, then Reggeize according to (3.5), we f'Ind

the following result to be true: Near n„=0 the matrix
element of any tensor, symmetry-conserving and other-
wise, with any two 0(4) VSH contains a factor of Qn„
if one of the 0(4) states is sense while the other is non-
sense. Thus G„...„'contains at least one factor of gn„
near n, =O if Kr correspond to a sense 0(4) state while
K'r' correspond to a nonsense 0(4) state or vice versa.

Let us illustrate this result on the following two
matrix elements which may be calculated from formulas

(A6) and (A10):

(+iV{ip—1,0) 'kk' + ( Ip+tvI, 0))

=k'[$(IV+2)g"'/2(1V+1)
—+ k'[(n +K)(n, +K+2)j't'/2(n„+K+1)

Qn„at K =0 aiid ng 0 t
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tions belong to a mixture of sense and nonsense 0(4)
states at J=O and E=O, and pure sense at J~& 0 and
E& 1.

Finally we note that (3.8) gives the minimal behavior
in n„, P may vanish as a higher power of n„since, as we
mentioned above, G contains (Jt least one factor of gn„
when it relates two 0(4) states that disagree in sense or
nonsense.

J1' g (+E2)( Ji(2)+. . .

1

k'+my

2k cosx
+ r PN ' IA" ' )k'+)Nrp

(4 2)

IV. SLOPES OF REGGE TRAJECTORIES xl (o)) ""'.2k cos+

k'+mp XN 9)))
We may substitute the power-series expansions (3.1)

into Eq. (2.6) and, in principle, find the corrections for
X and C to all orders in E. However, we expect the
perturbation formulas obtained in this manner to be
quite lengthy and complicated due to the complicated
dependence of Eq. (2.6) on E and cosX, where X is the
angle between the total 4-momentum E and the rela-
tive 4-momentum k. (We choose a coordinate system in
which E lies along the fourth axis.) Fortunately, Eq.
(2.6) may be simplified considerably if we notice that
its eigenvalue spectrum does not depend on the partic-
ular choice of the parameters u and b as long as a+b = 1,
a fact that may be proven by examin ing Eqs. (2.3), (2.5),
and (2.6): A change of u and b into a —c and b+c
changes k into k—cE and k' into k' —cE.If we now define
new variables, p=k —ck and p'=k' cE, the eig—envalue
equation will look the same as before, while C(E,k)
changes into C(E, p+cE)=F(E,p). —

If we choose a=1 and b =0 (in the c.m. system a=b
=-,' for the equal-mass case), Eq. (2.6) reduces to a
simpler form:

cosx 1
~

1+ K+ K')c (K,k)
kP+m P

U(k, k') +(K,k')dk'

+X W(K,k, k') C(K,k')dk', (4.1)

where U is the E-independent (zeroth-order) kernel
defined by (2.13) while W is the E-dependent kernel
which may be expanded in a power series in E near
K =0. Further simplihcations occur if we are interested
only in classes of s-independent potentials (s= —E').
In this case the second term on the right-hand side of
(4.1) drops out and the perturbation formulas for X

and W assume very simple forms.
To obtain the slopes of Regge trajectories, 6rst we

find the second-order correction for X Lthe first-order
correction vanishes owing to 0(4) parity considerations)

by inserting (3.1) into (4.1);we restrict ourselves to the
case of s-independent potentials:

dn„„'(s)

ds g p

Bx„'(s,n„)/Bs

N, „'(S,n„)/B(k„. p

x,'(') (n„)/x, '(np)
, (4.3)—P&,'(k, k', np)/&npg/U, '(k, k'; ~p)

where

U„'(k,k; np) =( 'pp(k, n )'pU(k, k ) pp '(k, np)),
r =1,. . . ,4.

Let us investigate the signs of the slopes:

(a) The investigation of the sign of the numerator of
(4.3) is far from easy because the second term in (4.2)
involves a sum over an inhnite number of radial states.
It is possible, however, to make a rough approximation
that estimates the size of the second term in (4.2), which

we denote by 8, relative to the first term, which we

denote by A:

B(max

(C q~
4cos x

Ji
k'+m '

cos

(k'+m(P) '

(4C ~ J'i. ~ zs

k'+mP )
(4CDA, (4 4)

where
C=—max~ Xw, '/) ~ „1~

and D is the result of reducing the matrix elements of

Then we Reggeize 1V and j as prescribed in (3.5). Thus

X))(,~'=X,'(S,n„), X)p„' —k X„'(np),
J1(P) ~ ) ((2)(& )

The Regge trajectories n„„'(s) are found by setting the
strength of the potential X,'(s,n„) equal to a constant
and solving the resulting equations for n, as functions
of s. The slopes of the trajectories, however, may be
found without having to solve the equations:
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cos'X. Using (A10), we find the following values of D
for the first few values of E and J:

X=0, J=O
V=1, J=O
E 17 J 1

r=1 r=2 r=3,4
1

12
1

1

(4.5)

For the numerator of (4.3) to be positive, A has to be
larger than B. In the language of the rough approxima-
tion (4.4), this means

4CD(1
or

min~ hx, '/hx, "—1))4D. (4.6)

From (4.5) we have for the ground state 4D= io. Thus
if the potential is such that the ground state is well
separated from the others (note that h for the ground
state is the smallest eigenvalue), which is a reasonable
assumption, (4.6) will hold for the ground sta, te. There-
fore, the numerator of (4.4) is positive for the ground
state. We expect this result to hold also for at least the
first few excited states since approximation (4.3) was
very rough and was directed toward overestimation of
8 at every step.

(b) The sign of the denominator of (4.3) may be
shown to be positive for a positive-definite potential
and negative for a negative-definite potential. Using
expansion (2.16) and formula (A6), we find, taking
E= 1 [see (2.13)],

d U„'(ap) d
U '(ao) = — lnU *(ap) (4'.8)

(h'+mio) (h'+mo') U ~'(h h')

=(b„„+e,o(h'/m, ')a„„a„„.)F„.(h, h'). (4.7)

We choose the tensor E= I because it is the only sym-
metry-conserving tensor that has nonvanishing matrix
elements with the M=1 wave functions. Now if Ii is
positive definite, for the expansion (2.16) to converge it
is necessary that F„decrease monotonically in m. Prom
Eqs. (4.7), (3.5), and. (A7), we find that lnU„'(ap)
decreases montonically as np increases and therefore
the denominator of (4.3),

h to~(a„+i) —h„o (a„)= 2(ap l(—)[A ( a)o+Bq( ap)

+C,(ao) —D„(ap)b,o$,

h &"(a ) —h &"(a„ i) =2(ap —~+1)[ (4 9)

The same relations, except for the fact that there are
more terms inside the square brackets, may be shown
to be true for the M=O case (r=3,4). Relations (4.9)
and Eq. (4.3) give for the slopes a'(s=O) of three con-
tiguous daughters the following sum rule:

(ap K+—1)a„+i'(0)—(2ap —2«+1)a„'(0)
+(ao—x)a„—i'(0) =0. (4.10)

It is easy to prove that the slopes for the spin-0 case
satisfy the same sum rule.

V. CONCLUSION

(1) To determine the behavior of the 3f= 1 residues
near a„=0, we made use of two facts: (i) When an 0(4)
state and its 0(3) content do not agree in sense or non-
sense at o.„=0, the matrix element which connects their
angular functions behaves like ga„near a„=0. (ii)
the matrix elements of all the tensor operators (includ-
ing symmetry-breaking ones which contain Z) with two
angular functions belonging to 0(4) states that disagree
in sense or nonsense behave like ga„near a„=0. We
have illustrated these facts in Sec. II on the spin-1 case.
They are deduced solely from the behavior of X„'(~)
and the Wigner coefficients C~(„,~ "~,and if higher-spin
spherical harmonics are dehned we expect a similar
behavior in O,„near o,„=0.

We should also mention that the behavior in n„of
the M=1 residues derived in Sec. III is by no means
unique to the BS model. The same results may be
obtained in a similar way outside the BS model pro-
vided factorization is imposed.

(2) When we go on the mass shell, where we must
evaluate the residues eventually since off-shell generali-
zations are arbitrary, cosX, given by

Reggeize, we obtain (we drop the radial superscript i)

hagio~(a„) = A„(ap)+t&(2ap —«+1)B,(ao)+(«+1)
X (2a p

—K+2)C~(ap) +(ap «—) (ap
—«+ 1)D, (ap) br 2

&

r=1 2

Thus

dip dO!p cosX = (moo —mio)/2hZ, K = —g —s

is positive. Similarly, we may prove that (4.8) is nega-
tive for a negative-definite potential.

Combining a and b, we can assert that the slopes for
the ground state and very possibly the first few excited
states, whose ei geiioalues are expected to be well separated,
are positive (rising trajectories) for a positive-definite
potential and negative for a negative-definite potential.

Ke will end this section by deriving a sum rule
satisfied by the slopes. If we use Eq. (A10) to reduce
expression (4.2) for the M = 1 case (t= 1,2), then

on the mass shell, blows up as K approaches zero. This
in turn induces the 0's contained in the perturbed wave
function [see (3.2)j to blow up. The nondiagonal matrix
elements Gio „,« „~[see (3.3)$ do not decrease fast enough
to overcome the increase in the 0's. ' Thus we are left
at E=O with an infinite series which requires a test
for convergence before anything can be said about the
vanishing of its sense-nonsense part through the sense-
nonsense factor ga„Thus it .seems as though the
results obtained for the residues in Sec. III are uncer-
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tain except for the equal-mass case where cosX vanishes
on the mass shell. However, if we allow for coupling
of unequal-mass to equal-mass channels and remember
that the BS model obeys factorization, it will be easy
to establish similar results for the unequal-mass case.
Several authors have proposed o6-shell generalizations
applicable to the unequal-mass case.""

(3) The results obtained in Sec. IV for the slopes are
true for the unequal-mass case as well as the equal-mass
case since the masses are hidden in the parameters a
and b, and P does not depend on the particular choice of
a and b as long as (J+b= 1. Also the results of Sec. IV
may be proven to be true for a system of two particles
one of which has a spin equal to zero while the other
may have an arbitrary spin. This is so because the BS
equation for such a system reduces to an equation
exactly analogous to Eq. (4.1) if we choose a=1 and
b =0.
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APPENDIX

By analogy with 0(3),"where VSH are defined by
combining the orbital space spanned by the I'l 's with
the spin space e„()1=0,+1), we construct 0(4) VSH
by combining the orbital space (10m, 0111) spanned by the
functions

~JZO = I J (&Pre)e00.
J ) J~1

Ke have calculated the coefficients CN(„, ) which
involve Vhgner 9j symbols. The results are tabulated
at the end of this Appendix.

The following basic formulas are useful in reducing
the angular parts of the tensor operators:

For given total 0(4) and 0(3) angular momenta 1V and

J and azimuthal quantum number M, there are four
possible VSH with (n, 0) = (rV, &), (%&1,0). The reflec-
tion eigenvalues (eigenvalues of Q) are (—1)s+' for the
state(1V, +) and (—1)~ for the other three. The first
two VSH (1V,&) belong to cV=1 representations while
the other two VSH (iV&1, 0) belong to ALII=0 repre-
sentations. The values of the 0(4) quantum number
(Toiler quantum number) lM fall in the range 0(M
(maxS, where 5 is the total 0(3) spin which can be
either 1 or 0. Ke note that in addition to a part that
describes a system with total spin equal to 1, the BS
equation contains a part that describes a system with
total spin equal to 0. The latter part can be removed
only by imposing subsidiary conditions which are bound
to lead to a more complicated equation. The spin-1
and spin-0 parts separate when we look at the 0(3)
content of 0(4) VHS:

AN(. ..) "=2CN(, .)' X.'(X)~~) (V' 0)
ls

Yg)1 =— Q (lm, S)((i 1S,JM) F) (rP, O)el„,

Z„,"((p,O, X) = Y, (q, 8)X„'( ), (A1)
k =Pk,„e,„=kt =Pk, „*e,„t,

J0,„=e,„t k= (irk/%2)Z), &*((p,8,x),
k,„*=k e,„,

~ ' +N (n, e) ~ep~~NnZN J )

(A6)

where
XsinX0' F1(v+i+2, n+l; /—+$; 2

—
2 cosx), (A2) —1/2

e =.V—1
with the spin space {10,21) represented by the 4-vectors

e00= e4, el 1——(el —ie,)/v2,
e10=e0, eil= —(ei+ie0)/v2,

2(iV+1)
BN~

IV+2 I=X+1.-2(AT+1)

(A/)

where ei, . . ., e4 are unit vectors directed along the four
Cartesian axes. Since we are interested in 0(4) repre-
sentations, i.e., representations belonging to (j,j )
8 (j',j) rather than (j,j') alone, our functions must be
eigenfunctions of the reQection operation

QF(p, H, x; e,„)=F(lr+rp, m. —0, x; (—1)'e,„), (A3)

which leaves the BS equation $Eq. (2.8)j invariant.
Thus we define the 0(4) VSH as follows:

Z1r —p CN (
1 nZ)IE Z

l, s, m, p,

kZN j=~ Q ()eOI3Nn+N (n, c)
(n, e)

10+NN 1+N(N 1,0) +10~N—N+1+N(—N+1, 0) 1 ( g)

K &N(„,)a. =ECN(„,) ' Z„J )
(A9)

K =Eepp =Ee4,

(@N(n, 6)
' (+~)+¹('e') )n()n'n —11~~

XP CN( e) Cn¹(n l, r. ') ~n—)+t)n'n+1+j0
l, s

lsJf, , ls JanXP ~N( e) nCN'(n+l, r. ') ~~nil) r

l, s

0=0, &1. (A4)

"G. Domokos and P. Suranyi (unpublished)."R.F. Sawyer, Phys. Rev. 16'7, 1372 (1968).

(e—l)(N+/ —1) "'
Xnl=

411(ted+1)
(A10)
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TaBLE I. The coefBcients C~&~,.)" .

,e)
(&, +)

(J,O)

&=1
(&, —)

-J(J+1)-»~

(N+1)'

(N 1, 0—)

(N J) (—N+ J+1)
2$'

y'+1, 0)
—

yr —J+1)(X+J+2)- &f~

2 (N+2)'

(J—1, 1) 0
(J+1)(N J+1—) (N+J+1)

(2J+1)(N+1)'

J(N+J) (N+J+1)

2(2J+1)N'

J(N J+1—) (N —J+2)

2(2J+1) (N+2)'

(J+1 1) 0
J (N —J) (N+ J+2)

2(2J+1)(X+1)~ 2(2J+1)S2 2 (2J+1)(N+2)'

(J+1)(N —J) (N —J—1)~'" (J+1)(N+ J+2) (N+J+3)

Table I gives the coeKcients of C~(„,,)"~.

PHYSICAL REVIEW D VOLUM E 2, NUM BER 10 15 NOVEM BER 1970
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We derive a general chiral U(3) 3U(3) phenomenological Lagrangian for the meson-baryon system. The
meson-baryon derivative coupling is discussed in detail, and E-N scattering is studied. Some renormalized
meson-baryon coupling constants are computed and compared with experiments. A suitable canonical
transformation is introduced, and conditions under which it yields the Yukawa coupling are discussed.

I. INTRODUCTION Thus in Sec. II, we start with two triplets of quarks
transforming according to the six-dimensional linear
representation of U(3) 3U(3). Assuming that there is
only one "physical" quark triplet in nature, we express
the two triplets of quarks in terms of one quark triplet
(the "physical" one) and a unitary meson matrix with
definite linear transformation properties under the
group. The physical quark fields, however, transform
nonlinearly under the group.

In Sec. III, in a similar way, we formulate the meson-
baryon chiral- U(3) U(3)-invariant Lagrangian, ex-
pressing the two baryon nonets (or octets) in terms of
the physical baryon nonet (or octet) and the unitary
meson matrix. While the two sets of baryons and the
unitary meson matrix obey the linear transformation
laws under the group, the physical baryons will obey
the nonlinear one. In this formulation, only the de-
rivative meson-baryon coupling constants appear,
which are completely determined by means of chiral
U(3)g U(3) invariance of the theory. No particular
symmetry breaking is needed in the theory, except the
one which splits the masses in the observable way.

' 'N this paper we formulate chiral U(3) U(3)
~- phenomenological I.agrangians with both pseudo-
scalar mesons and baryons transforming nonlinearly
under the chiral U(3)g U(3) group. Our main aim is
to study meson-baryon scattering and, in particular,
to derive the 2;„& for x-S and K-S systems. Our for-
mulation is in a way unconventional, since we do not
use Weinberg's covariant derivative formalism, ' which
recently has been used quite successfully in formulating
chiral U(3)SU(3) phenomenological Lagrangians by
Turner. ' Instead, we 6rst formulate a U(3)SU(3)
chiral-invariant quark-meson I.agrangian, which is
then used as a guide for the formulation of chiral
U(3) U(3) invariant meson-baryon interactions.

*Present adress.
r Steven Weinberg Phys. Rev. 166, 1568 (1968); Phys. Rev.

Letters 18, 188 (196 ); W. A. Bardeen and W. B. Lee, in Pro-
ceedings of the 1967 Canadian Summer Institute in Nuclear and
Particle Physics (Benjamin, New York, 1968);J. Wess and Bruno
Zumino, Phys. Rev. 163, 1727 (1967);L. S. Brown, ibid 163, 1802.
(1967).' Leaf Turner, Nucl. Phys. Bll, 355 (1969).


