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relation to fit the data, . In other words, Eq. (9) might
be useful if the measured amplitude did not satisfy the
usual dispersion relation within experimental error.
Then if Eq. (9) were satisfied only for l larger than some
lo it would appear that causality was violated to dis-
tances of is. Hotoener, as long as the ztsual dispersiort rela
ti on ft ts the experiments, Eq. (tt) is of no use in boundhng a
fundamental length

In conclusion, the only believable limit on a funda-
mental length at this time is given by the dimensional
argument that since dispersion relations work at ener-
gies up to 20 BeV, a fundamental noncausal length is
unlikely to be much larger than hc/(20 BeV) = 10 "cm.
It should be understood that this is a purely dimensional

argument and should be viewed with the appropriate
caution. 9
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'An excellent example of the pitfalls of dimensional analysis
occurs in calculation of the muon decay width (c.f. S. Gasiorowicz,
Etemerttary Particle Physics (Wiley, New York, 1966)j. Dimen-
sional analysis gives F G'm„5, while a detailed calculation in the
V-A theory gives I'= (1/1962i-')G'm„', a difference of nearly
four orders of magnitude.
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The structure of an equal-time commutator involving the time component of the axial-vector current and
its divergence is investigated. It is shown that the value of the equal-time commutator, formerly given by
a power-series expansion, can be obtained in a closed form.

I. INTRODUCTION

i 'HE model due to Sugawara' is a concrete realiza-
tion of a theory of hadron dynamics envisaged

by Dashen and Sharp' based on the idea that the vector
currents V„' and the axial-vector currents A„' should
be considered as local observables in terms of which one
can formulate the theory. The dynamical content of
Sugawara's model resides in an explicit representation
of the energy-momentum tensor of the hadrons Q~&" as
a bilinear form

Oe"(x) = (1/2C) t V;~(x) V,"(x)+V;"(x)V,'(x)
—g""V"(x)V'.(x)l+(V~~) (1 1)

Dashen and Frishman' then pointed out that Q~&" as
given by Eq. (1.1) can be put in the form

eo"(x)= 0+o"(x)+Q o"(x) (1.2)
I
/~ On leave of absence from the Department of Physics, Uni-

versity of Khartoum, Sudan.' H. Sugawara, Phys. Rev. 1'70, 1659 (1968); that the Sugawara
0&" should be interpreted as a limit was discussed recently by
S. Coleman, D. Gross, and R. Jackiw, ibid. 180, 1359 (1969).

s R. F. Dashen and D H. Sharp, Ph.ys. Rev. 165, 1857 (1968);
D. H. Sharp, ibid. 165, 1867 (1968).' R. F. Dashen and Y. Frishman, Phys. Rev. Letters 22, 572
&1969).

where 0'~ are bilinear forms of the same structure as Q&o"

but constructed out of currents J+;o=rs(V,&~&;&).
They then demonstrated that Q~+&" are separately
conserved, commute with each other at equal times, and
transform into one another under parity. This feature
then leads to the invariance group I'+l3I', with I'+
and I' being two commuting Poincare groups which
transform into each other under the parity operation.
These authors then argued that this aspect of the model,
which they called too much symmetry, requires parity
doubling of the spectrum of particles.

A way out of this difhculty was proposed by Cronin
and Guralnik by insisting that Q~+ should be identically
equal to 0~ instead of being related to it by parity. I'or
this equality to hold one must abandon the algebra of
fields' which the currents V;" and A,& are supposed to
satisfy in Sugawara's model. Instead, these authors
proposed an algebra with q-number Schwinger terms.
For Q~&" they adopt the same form as (1.1), i.e., they
Wl Ite

QH eV Qll or+ QH llV

J. A. Cronin and G. S. Guralnik, Phys. Rev. 184, 1803 (1969).
~ T. D. Lee, S. Weinberj„and B. Zumino, Phys. Rev. Letters

18, 1029 (1967).
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Q~ pv —
Qw pv (1.4)

Equation (1.4) leads to a rather strong condition on
the bilinear product of currents4 and, furthermore,
imposing the fundamental Schwinger condition' as well
as the Heisenberg equations of motion leads to eigen-
valuelike equations for the Schwinger terms.

Both Sugawara's model and the Cronin-Guralnik
model possess SU(3)SU(3) or SU(2)SU(2) sym
metry, depending on whether one considers the full
octets of vector and axial-vector currents or only the
isovector currents. Extensions of these models that
break the conservation of the axial-vector currents, and
hence reduce the symmetry to SU(3) or SU(2) only,
have been proposed in Refs. 7 and 8. The basic idea is
that one extends the set of independent dynamical
variables in terms of which one expresses all quantities
occurring in the theory to include, besides the vector
and axial-vector currents, the divergences of the axial-
vector currents D;. The dynamical content of such
models is speci6ed by requiring Q'"" to read in the
Sugawara case

O~"(x) = O.~"(x)+)g~"D,(x)D;(x), (1.5)

where

o+""=(1/f') P+'"( x)~+'"(x)+~+'"(x)~+'"(x)
—g""~+"(x)J~',(x)l, (13)

and, of course

SU(2) group and a= 1,2,3. The operator function
f;,(x) is a Lorentz scalar function that commutes with
Ds(y) at equal times and that is subject to the constraint

2) f;,(x)D, (x) =D,(x). (1.10)

f' (D) =f(D')3*+g(D')D'D, (1.12)

with f and D being isotopic scalar functions of Ds. The
Jacobi identity between A,'(x'), AP(x), and Ds(y) then
leads to the relation

This equation states that in the space of internal

quantum number the operator function f;; when acting
on the operator D, leaves it essentially invariant. Stated
differently, the column vector D whose elements are
the D,.'s is an eigenvector of the matrix f whose elements
are the f,,'s with an eigenvalue 1/2P. .

A power-series represents. tion for f;, tha, t satisies
the constraint (1.10) was obtained in Refs. 7 and 8 in
the case of SU(2)c)SU(2). One assumes that f;, is a
functional of the divergences D; and writes

f' =f'(D).
With such a structure, the last commutator in Eq. (1.9)
is automatically satished if the one that immediately
precedes it holds and it is not necessary to require it to
hold separately. Now, since f,,(D) has even parity, its
most general form is'~

where O, I"" is given by Eq. (1.1), while in the Cronin-
Guralnik case Q'+&" should read 2ff'+2D'f'g fg+1=— (1.13)

O~~"(x) = O~.~"(x)+-',) g~"D;(x)D,(x), (1 6) In terms of (1.12), Eq. (1.10) reads

I V,o(x),D, (y)j.,=„,= c...D.(x)3'(x —y),

L~ "(x) D,b)j..=..= -'f' (x)3'(x-y),

(1.7)

(1 g)

L.~' ( ),D, (&)~*.=..=L.~' ( ),D;(&)~*.=..
= LD'(*),D (3)j*.=..
= Lf' (x)»~() )j" v, = o (1=9)

where O~~, '" is given by Eq. (1.3) and X is a non-
vanishing constant, i.e., the new energy-momentum
tensors differ from those of the symmetrical models by
the addition of a term proportional to the bilinear
product D,(x)D,(x). Such models have the merit that
the chiral symmetry is broken without appealing to
canonical fields, ' namely, in terms of quantities per-
taining to the original dynamical variables on which the
symmetrical models are based. The generalized models,
of course, still possess SU(3) or SU(2) symmetry. In
the extended models the following extra set of equal-
time commutation relations are assumed to hold:

f+D'g = 1/2X. (1.14)

A power-series solution for f and g that satisfies
Eqs. (1.13) and (1.14) was given as (writing a=D')

f(s) =V

,(..)= —+—
(
—)+ (

—)+ (1.16)

II. CLOSED FORM FOR TRANSFORMATION
FUNCTION f;;

with g=1/2).
In this paper we wish to show that a solution to

Eqs. (1.13) and (1.14) exists in a closed form. This is
the subject of Sec. II. In Sec. III we state some
conclusions.

where c;;s are the structure constants of the SU(3) or

' J. Schwinger, Phys. Rev. 130, 406 (1963); 130, 800 (1963).
~ M. A. Ahmed and M. O. Taha, Phys. Rev. 188, 2517 (1969).
8 M. A. Ahmed, Nuovo Cimento 6gA, 47 (1970).
9 K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.

170, 1353 (1968').

The equations we wish to solve are

2ff'+»f'g fg+1= o, —

f+sg
I S. Weinberg, Phys. Rev. 166, 1568 (1968).

(2.1)

(2.2)
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f= 2rt(ta'/ce)s, (2.4)

where co is some function of 2', transforms the differentia
equation (2.3) into a homogeneous linear second-order
differential equation

4'g (te /M)s+ 2'g 6& /to+ 1=0. (2.5)
'

It is easily veri6ed that Eq. (2.5) can be cast into the
form

s"'—a)'s"s+ te =0.
ds 4g'

(2.6)

%e now transform from the variable z to a new variable
I simply related to s by

(2 7)

In terms of I the differential equation (2.6) becomes

d Q)
—+ to=01

dQ
(2.8)

which is nothing other than the standard equation for
the simple harmonic oscillator. In terms of X, (2.8) reads

d M

+4K'to =0.
dQ

(2.9)

Writing the solution of Eq. (2.9) as

to=A cos2XN+B sin2Xtt, (2.10)

and going back to the original variables, we can now
write

(s) =
s't'( A+B cot2Xs't—')

A cot2)ts"'+B
(2.11)

a(s) =
2Xs

s 't'( A+B cot2Ãs't'—)

A cot2Xs"'+B
(2.12)

Note that whereas in Refs. 7 and 8 the parameter )
was required to be small to ensure convergence of the
series (1.15) and (1.16), no such requirement on X is
needed in the present case.

"See, e.g., G. Birkhoff and G. C. Rota, Ordilary Digereatial
Eqaatiols (Blaisdell, Waltham, Mass. , 1962).

Eliminating g from (2.1) by means of (2.2), we obtain

»f' ~f/s+f'/s+1= o (2 3)

This equation is recognized to be of the form of a
generalized Riccati differential equation. " The
substitution

III. CONCLUSIONS

We now write the equal-time commutator (1.8)
between A; and D; in its 6nal form:

LA"(*)D b)j"=-
-(D') 't'L —A+B cot2X(D') "']

= —z
A cot2X(Ds) '"+B

(D') 't'f —APB cot2)t(D')"'j~
ID;Di

2gDs A cot2&(D')'t'+B )
X8'(x —y) . (3.1)

We thus see that of the class of possible functions f(D')
and g(D') entering the transformation law of the
divergences under the time components of the axial-
vector currents and satisfying Eq. (1.13), the constraint
(1.14) helps to select the set of harmonic functions.
Various simple choices of the constants A and 8 lead to
simple expressions for the functions f and G. Thus, for
example, the choice A = 0, B&0 gives for the function f

f(D') = (D')'t' cot2X(D')'t'. (3.2)

If we now make a tentative link with Geld theory by
assuming PCAC in the operator form D;=Cx;, with
m; being the pseudoscalar pion 6eM and C a constant,
then we see that a suitable choice of X leads essentially
to the function f(et') occurring in the transformation
law for the pion Geld in chiral Lagrangian theories as
written down by Callan ef, al. ," by Isham, " and by
Char ap. '4

One may assume a general validity for (3.1), thus
abstracting it from the model in which it was estab-
lished. Extension of these considerations to the case of
chiral SU(3)SU(3) should be interesting. "
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~ S. Coleman, J. Mess, and B. Zumino, Phys. Rev. 177, 2239
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