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A dual resonance model with nonlinear trajectories which includes the Veneziano model as a limiting case
is discussed. Rules are given for constructing the N-point function in such a model, and an explicit expres-
sion for the N-point planar tree graph is derived. A conjectured rule for loop diagrams is also presented.
Representations of four-point-function satellite terms which admit straightforward generalization to the

N-point function are derived.

I. INTRODUCTION

URING the past year, the Veneziano representa-
tion! has been used or interpreted in two ways:
(i) as a guide to an improved Regge phenomenology, or
(ii) as the first Born term in a perturbation series of a
theory containing an infinite number of particles of
arbitrarily high spin. To implement this second pro-
gram, it is necessary to specify a procedure for calculat-
ing higher-order “Feynman-like diagrams.” Progress
in this direction has been made by Kikkawa, Sakita,
and Virasoro,2 Fubini, Gordon, and Veneziano,?
Bardakci, Halpern, and Shapiro,* and others.?

In this paper, we seek generalizations of the N-point
functions of Veneziano,! Bardakci and Ruegg,® Chan
and Tsou,” Goebel and Sakita,® and others® in order to
find a larger class of candidates for an N-point Born
approximation. In order to be acceptable candidates,
the functions must have the correct pole structure,
crossing symmetry, and suitable asymptotic behavior.
This problem was solved in the four-point-function
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case by Coon.'® Coon looked for a function F(s,t) which
was crossing symmetric and had poles in s and ¢ with
polynomial residues. Upon imposing these requirements,
he found a class of crossing-symmetric meromorphic
functions Ba(s,t) which has poles at s=s;, where

asitb=q7, j=0,1,2,---. ¢y

The parameters ¢, a, and b are arbitrary except that
0<g¢<1. In the limit ¢— 1, Ba(s,t) reduces to the
Veneziano representation. These generalizations of the
Veneziano representation may well constitute the
largest class of amplitudes which are good Born terms.

In this article, we first obtain a double power-series
expansion in s and ¢ for the Coon four-point function.
Use of this series greatly simplifies its generalization to
the N-point function. We can then obtain a power-
series representation for the N-point function which
explicitly exhibits crossing symmetry and has the
correct pole structure of planar tree graphs. We have
not succeeded in constructing a deductive argument
analogous to Coon’s argument leading to the four-point
function. However, a lemma of Watson concerning
power-series representations of certain meromorphic
functions has enabled us to extend our representation.
Thus, we may, in fact, have the most general form
satisfying the above requirements of meromorphy,
polynomial residues, and crossing symmetry. We discuss
these general forms in Appendices B and C. In Appendix
C we show that Veneziano satellite terms are obtained
as ¢ — 1 limits of our expressions. The actual proof that
our N-point function reduces to the Veneziano N-point
function®? in the limit ¢ — 1 will be given in a future
paper.t!

It should be emphasized that our amplitudes are
constructed by requiring only that they possess the
correct pole structure and crossing symmetry. However,
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it turns out that all of these amplitudes also possess
duality; that is, they can be represented as sums over
the set of poles contained in any one of the planar tree
graphs. For example, the four-point function can be
represented either as a sum over {-channel poles or a
sum over s-channel poles.

The fact that any properly behaved crossing-sym-
metric resonance approximation must possess the above
duality property can easily be understood on the basis
of general arguments which are reviewed in Sec. II. In
that section we also discuss the physical requirements
for a good Born term. Of course, our basic hypothesis,
namely, that the Born term be well behaved, cannot be
justified on any a priori physical grounds. One cannot
rule out the possibility that the high-spin Born terms
have their usual bad properties and that these are
somehow canceled out by the higher-order diagrams.
However, such a cancellation mechanism is unnecessary
if one starts from an unrenormalized Born approxima-
tion where the masses are given by Eq. (1). Then the
higher-order diagrams would just shift the masses as
well as produce unitarity corrections.

In Sec. III, we review the properties of the Coon
four-point function and its ¢— 1 Veneziano limit, and
give a double power-series expansion which is valid for
¢<1. One can take the ¢ — 1 limit only after summing
the series. In Sec. IV we obtain the explicit form for the
five-point function and formulate the rules for the
N-point planar tree graphs.

Although our rules for planar tree diagrams suggest
natural rules for loop diagrams, the situation is more
complicated and will be mentioned only briefly in Sec. V.

The proofs of certain mathematical theorems which
are needed in the text are given in Appendix A. Ap-
pendix B is a discussion of generalizations of the power-
series expansion for the N-point function which have
the same poles but different polynomial residues. (In
accordance with the usual terminology we can call
these generalizations satellite terms.) In Appendix C we
introduce explicit forms for four-point-function satellite
terms and show that as ¢ — 1, they reduce to the usual
Veneziano satellite terms. We also derive the power-
series representation of these terms.

An expansion of the nonlinear-trajectory four-point
function which is the formal nonlinear analogy of the
beta-function integral representation is derived in
Appendix D.

II. DUALITY AND BORN TERM

The discussion of this section is qualitative and much
of it is perhaps familiar. It also contains no results which
we later use. Its purpose here is to help provide physical
motivation for the work of the remainder of the paper.

We argue that duality is simply a consequence of
requiring that the Born term be sufficiently well be-
haved to describe peripheral collisions at high energy
(small fixed ¢ and large s). To satisfy this reasonable and
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apparently weak requirement in general, we must
include an infinite number of particles with arbitrarily
high spins. Historically, this rather drastic measure was
supposedly avoided by dropping Born terms in favor of
Regge poles as peripheral, high-energy pole approxima-
tions. But the insight into Regge poles provided by the
models of Van Hove,'2 and Blankenbecler, Sugar, and
Sullivan,'® as well as the field-theory approach to the
Veneziano representation, all seem to lead us back to
the possibility of a good Born term arising from an
infinite number of particles with arbitrarily high spin.

From this point of view, there is no reason why one
should expect the Born term to accurately describe
nonperipheral processes such as fixed-angle scattering.
Thus, for example, one cannot rule out as possible
candidates for Born terms the unequal-slope Veneziano
model or the nonlinear model of Coon just because they
increase at high energy for some physical fixed angle.10-14
Higher-order effects like cuts should be important here.

We begin by considering a theory in which the
i-channel pole terms are given by

i .PJ(S)

, (2)

J t—my?

where the residues are polynomials of order J in s. For
simplicity, we assume that there are no #-channel poles
and that the amplitude is s <> ¢ crossing symmetric. If
the sum (2) itself has no singularities in s, then (2)
represents an entire function of s which is not a poly-
nomial and therefore must grow faster than any poly-
nomial as |s| — . This behavior cannot be canceled by
a sum of s-channel poles because, in general, Mittag-
Leffler expansions do not exist for functions which grow
faster than any power at infinity.

This undesirable large-s behavior can be avoided if
the sum of {-channel pole terms (2) contains at least
some of the s-channel pole terms. Moreover, the number
of such s-channel pole terms in (2) must be infinite in
order to avoid bad behavior as |{| —. Furthermore
if the amplitude contains an additional finite number of
s-channel pole terms which are not present in (2), the
amplitude will then possess polynomial ¢ dependence.
In general, the asymptotic ¢ behavior of (2) is s depen-
dent and cannot cancel an additive polynomial in ¢.
Therefore, if we demand that the Born term be well
behaved at small fixed s and large ¢, the only s-channel
pole terms which might not be included in (2) would be
s-wave terms. Hence, the requirement of good behavior
of our Born term in the peripheral, high-energy region
leads to duality. Furthermore, we have examples!-1
which show that the behavior of such a Born term can
be better than one which contains only finite spin.

21, Van Hove, Phys. Letters 24B, 183 (1967); see also L.
Durand, III, Phys. Rev. 161, 1610 (1967).

1 R, L. Sugar and J. D. Sullivan, Phys. Rev. 166, 1515 (1968);
R. Blankenbecler and R. L. Sugar, sbid. 168, 1597 (1968).
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We now turn to the explicit construction of our “good
Born terms.”

III. FOUR-POINT FUNCTION

Ideally, one would like to know the most general
function which satisfies our Born-term requirements of

(i) meromorphy,
(ii) polynomial residues, and
(ili) “acceptable” asymptotic behavior.

Coon'® found that in addition to the Veneziano repre-
sentation, there is a one-parameter family'® of functions
which satisfies the three conditions. This more general
representation consists of an arbitrary constant times
the function

G(o7) o (1—org))
B4(S,t) = =H ’ (3)
G(0)G(r) =0 (1=og)(1=¢")
where ¢ is a parameter, 0<¢<1,
o=as+b, r=cttd, 4)
and
G(U)=lfi (1—og¢h) (3)
=0

is an entire function. The poles of B4 are located at
o=¢ 7 with polynomial residues of order 7, and so the
trajectory function is

a;=—(Ino)/Ing. (6)

If the ¢ dependence of ¢ and 7 near ¢=1 is given by
o=1+1—=d'(s)+(1—=g)*"()+---,  (7)
r=1+1—g7'()+A—g* " (9+---, (8

then
lifg as=g" )
and G@G(r) _ T(=o)T(=7)
lim (1—¢) kil (10)
LAt G(o)G(7) I(—d'—7)

Thus, we see that in the limit ¢ — 1 the logarithmic
trajectories become linear, and the representation re-
duces to the Veneziano formula.

From an asymptotic expansion!® given in Appendix
A or a simple asymptotic estimate,? it can be shown
that for large |s|,

(1)

Buy(s,t)~ (ct)es. (12)

5In order to obtain his representation from assumptions (i)
and (ii), Coon made an additional technical assumption about
the cancellation mechanism which produced the polynomial
residues required by (ii). However, it can easxly be seen that this
mechanism is the only one which’ is consistent with assumption
(iii). Thus, his solutions may be the unique solutions.

18 7. E. thtlewood Proc. London Math. Soc. 5, 361 (1907).

B4(s,t)~(as)"“,
and for large |{|,
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In order to exhibit the polynomial residues and
duality, we give the two partial-fraction expansions

G(9)G(oT)
G()B(s,t) = —— "
G(o)G(7)
1 ) 1 j T_ql
= +2 11 (13)
1—¢ i=11—0ogi=11—¢
1 ) 1 7 U—ql
= +2 TI . (14
1—7 =1l—rgit=11—¢

The first converges for |7| <1 and the second for
|o| <1, as can be seen from the ratio test.
In Appendix A we obtain the expansion

LR P A

awmrﬁwww(mi
where

(@Den=0—=g)(1—=¢?---(1—g). (16)

This expansion converges for |¢| <1 and |r|<1. In
order to exhibit the poles of the function defined by this
series, one can use the summation formula

1 0 4

— =3
G(Z) n=0 (9) a,n

derived in Appendix A to do either sum in Eq. (15).
After evaluating the # sum, one finds that

G(o7) = 1 ™
G(0)G(r)  m=0G(aq™) (Q)am

The pole at ¢=¢~7 occurs only in the terms with m< j,
so that the polynomial nature of the residues is obvious.
It is shown in Appendix B that one can also use
Watson’s lemmal” to prove meromorphy and poly-
nomial residues without doing any sums.

A very important feature of the power-series repre-
sentation is the way in which duality manifests itself. If
the g™ factor were not present, then both summations
could be done using Eq. (17), and the result would be

1/G(0)G(7), (19)

which has poles in both ¢ and 7 simultaneously. Thus,
we see that the ¢ factor prevents simultaneous poles
and replaces singular residues with polynomial residues.
One can therefore think of ¢"™ as a “simultaneous-pole
eliminator” or a “duality factor.” This factor can be
inserted in more complicated multiple sums to obtain
representations for amplitudes Wlth more comphca.ted
pole structure.

17)

(18)

IV. N-POINT TREE GRAPHS

The simple way in which duality manifests itself in
our representation (15) for the four-point function will

1 G. N. Watson, Trans. Cambridge Phil. Soc. 11, 281 (1910).
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F16. 1. Feynman-like diagrams which are
represented by the five-point function.

enable us to immediately write down representations
which incorporate duality for the N-point tree graphs.
That is, each of the N-point functions will have many
distinct partial-fraction expansions which correspond
to summing different subsets of lowest-order “Feynman
diagrams.” We say that these various sums of Feynman
diagrams are related by duality because including any
one set of diagrams is equivalent to including any one
of the other sets of Feynman diagrams. Each sum of
diagrams can be denoted by a single, typical diagram
where a sum over particles with all spins in the internal
lines is understood. Such a diagram is called a Feynman-
like diagram.'8

A. Five-Point Function

Suppose that we wish to relate the five planar Feyn-
man-like diagrams of Fig. 1 by duality. The external
particles have zero spin. We can introduce five quan-
tities, o1s, oes, 034, 045, and o5, which are linearly
related to the five kinematic variables s;j=(pi+p;)® by

0ii=ai;Sij+bij. (20)
We can introduce poles corresponding to all the “pro-
pagators” by simply writing the multiple sum

© 012" 03" 034" 045" 051"

““:L—*;i':o friz frna Jra ‘ fras  frm
=[G(012)G(023)G(034)G(045)G(o51) T2, (21)
where we have used the abbreviation
[r=(@an=1-)(1—¢»---(1—¢") (22)

and Eq. (17) to do the sums. The expression (21) has
simultaneous poles in all channels. It is obvious from the
graphs in Fig. 1 that we cannot have simultaneous poles

18 This is the terminology of Ref. 2.
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in adjacent channels. That is, no diagram with a pole in
the sq3 channel can also have a pole in the 515 or the sa4
channels. This requirement can be enforced by inserting
the factors gn2n= and ¢"#s7s under the sums in (21). By
cyclic symmetry, we must include other such factors,
and then we obtain

n!
023 23
qn12n23—_q"23'ﬂ34

Sz

0-3471 34 0—45n45

X qnsuuﬁ
fn34 fﬂ45 npl

where ;= a:;5:-+bi;=a:;(pi+p;)?+bij. The sums con-
verge for | i;| <1 and the relevant range (0< ¢<1) of .
We are not able to do all of the sums. However, we will
show that with the summation formulas (15) and (17),
one can easily evaluate any two sums and verify that
only pairs of poles exist and that these pairs correspond
to the poles in the diagrams of Fig. 1. With successive
application of Eqs. (15) and (17), four of the five
summations in Eq. (23) can be per formed.

If we use the summation formula (17) to evaluate the
793 sum in Eq. (23), we obtain a factor
! 1 ! 24

G(Uzsqmﬁnu) ZI;IO (1—023ql+"12+”“) ( )

under the remaining multiple sum. From Eq. (24) we
see that the pole at ge3=1 is contained only in the
n1e=n33=0 terms in Eq. (23). Thus, the residue of the
o23=1 pole of B; is independent of o1 and o34 The
surviving o;; dependence of the residue is easily seen
to be

© 0—12ﬂ12

B5=

all ngj=0 fmz

051"
n45n51
q

np17nl,
gbl 2,

(23)

746 o561
q"“‘nﬁl_._ ,

Jrst

which is just a four-point function (15). This proves the
consistency between our four-point and five-point
functions and factorization at the g23=1 pole. The pole
at o93=1 corresponds to spin zero because there are no
dot products involving p, or p; in the residue (25).
Factorization requires that this residue be proportional
to our four-point function for spin-zero external lines.

In addition to the ns3 sum in Eq. (23), we can also
use Eq. (17) to do the o45 summation to obtain

had © 045

(25)

n45=0 n51=0 f, o

w g™ 1

Bs—_—i i

n19=0 n34=0 n51=0 fmz G(G’zsqmz'l'"“)

03473 1 o517t

X
Sraa G(0'45qn34+n51) Jra

which shows that we have poles at go3=¢7 and o4s=¢*
with 7, k=0, 1, 2, .... Furthermore, all terms in the
triple sum (26) with n1s+#n3:> 7 or nzs+ns1>% do not
possess a pair of oy, 045 poles and therefore the residues
of the og3, 045 pair of poles are polynomials in o1s, o34,

(26)

5171
qn nz’
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and o51. This is the general structure which one expects
from Feynman diagrams or pole models. Since Eq. (23)
is cyclicly symmetric, our conclusions apply to any pair
of poles in nonadjacent channels.

In order to find out what happens in adjacent or
overlapping channels such as syj» and sp3, we use our
four-point-function expansion (15) as a summation
formula. Evaluating the 712 and 7,3 sums in Eq. (23)
gives

© » © G(0.120.23qn51+n34)
B5= Z
n34=0 n45=0 n51=0 G(o-lzqmﬂ)G(o-%qnu)
0-347'/34 0-457l45 0-517151
x qnsmu qn45n51 (27)
fn34 fn45 751

From Eq. (27), we see that simultaneous poles in the
012 and o323 channels are prevented by the vanishing of
the G(o12023¢™113¢) factor. Thus, our five-point function
is free of poles in adjacent channels. Therefore, we have
a five-point function with only that pole structure
which is found in the trilinear coupling graphs of Fig. 1.
Furthermore, we see that only trivial applications of
Eqgs. (15) and (17) are required in order to exhibit these
properties of B; if we start with our defining repre-
sentation (23). This fact together with the symmetry of
Eq. (23) and the ease with which one can guess the form
(23) on the basis of Eq. (15) for the four-point func-
tion are all appealing features of the power-series
representation.

We will now show that it is possible to express Bs as
a single infinite sum. This can be accomplished by
successive applications of Egs. (15), (17), and (A11).
Using Eq. (17) to do the 745 sum in Eq. (27), we find that

) G(012023g™51+"34)

B5=
n34=0 n51=0 G(012¢"%) G(023¢™4)

1 343 05151

X .
G(o-4sqﬂ51+7b34) fnu fnsl
Equation (A11) can be used to write

(28)

G(alzo'gsq””'”“)

G(0.45qn51+n34)
O as™45

ko 012023 45
= Z qn4s(n51+na4)
n45=0 \ 045 / q,n45 Fnss

and Eq. (17) can be used to expand 1/G(o12¢™*) and
1/G(o239™). Substituting these expansions in Eq. (28)
gives

(29)

© 0-121112 0-23"23 0-34”34
qHZSnSL——_——qﬂM"AS

all nij=0 fmz fnzs f’"'34
o nHL

(0120 23) 45" 51 -

51 NHIN
X gmes” q .
045 7/ g,nap fma fnsl

Bs=

(30)
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By means of our manipulations, we have eliminated the
factor grnz, Again we use our four-point function
expansion (15) as a summation formula for the 75y, 71,
and 73, 734 double sums and find that
0 G(0’510'12q"45)
B;= _
n45=0 G(651q"45)G(0'12)

G(0330349™) /0’120’23) 045"
G(025)G(034g™9)\ 045

A virtue of this representation is that one can now
take the limit ¢ — 1 of (1—¢)%G?(g)Bs to obtain a five-
point function with linear trajectories. In Ref. 11, we
show that this limiting case is the Bardakci-Ruegg five-
point function. In Ref. 11, we also verify that Bj has
the correct Regge asymptotic behavior.

629

9,145 f”%

B. Rules for Feynman-like Diagrams
Compatible with Duality

We can now see the simplicity of the structure of our
mermorphic functions with which we represent a given
set of Feynman-like diagrams related by duality. For
tree graphs with spinless external particles, the rules
are as follows!?:

(a) For each internal line of momentum p, define a
quantity o=ap?4-b, where ¢ and b are constants which
may be different for different lines.

(b) Write a multiple sum for the product which

contains one factor
w g

n=0 fn

for each internal line of distinct momentum. The con-
stants f, are given by Eq. (22).

(c) Under the multiple sum, introduce a factor of
g"™ for each pair of internal lines which are dual to each
other, i.e., for each pair of “propagators” which never
occur in the same Feynman-like diagram.

(32)

These rules give the correct pole structure for non-
planar as well as planar tree graphs. The nonplanar case
differs only in that there are more diagrams and
internal lines.

Following the methods used in the discussion of the
five-point function, one can show that the residue of
each of the o=1 (spin zero) poles factorizes into two
lower N-point functions which are consistent with the
same rules. Factorization of the residues of spin-zero
poles just relates over-all constants which can multiply
our By.

Simple considerations” show that the N-point planar
tree graphs can have poles in the variables

sij=(pitpirrt- - +p)?,
A brief treatment of the procedure for constructing our

N-point functions is also contained in another article by M.
Baker and D. Coon (unpublished).



2354 M.

where 1<i<N—2 and i++1<j<N—1, with the ex-
ception of i=1, j=N—1. A given planar tree graph
which has a pole in a particular variable s;; cannot also
have a pole in a “partially overlapping” channel sy,
with i+1<k< 7 and j+1<I<N—1.7 With our rules it
is a simple matter to write down a dual amplitude
having this pole structure.

The explicit expression for the planar-tree-graph ap-
proximation to the N-point function which one obtains
from the above rules is the following:

» N—2 N—1 O'ij"ij

By= ¥ 1II
all nij=0 i=1 j=i+1 fni].
i N-1 j
X II (I g/ 11 greime),  (33)
k=1+1 I=i+1 I=1+1
where

gij=aif(pitpart- - +p5)*+bi, (34)

except for o1y-1=0 which is introduced to make
Eq. (33) more compact. The limit as ¢— 1 of the func-
tion defined by By has been shown!! to be the Veneziano
N-point function.®*

V. LOOP DIAGRAMS

Although loop diagrams will be treated in detail in
another paper,? we think it might be useful to make a
few comments on them here.

Since the problem of consistency of factorization of
loop diagrams and planar tree graphs has proved to be
difficult,> it may be that extra considerations are re-
quired in constructing loop diagrams. However, the
most natural guess for the rules appears to be the rules
of Sec. IV plus the following rule:

(d) One f'd* for each loop.

To clarify the ambiguities of this prescription would
require further discussion and examples. Here we only
want to note two features of the integrals. First, they
do not correspond to the rules of Kikkawa, Sakita, and
Virasoro? although the rules as applied to planar tree
graphs do give the appropriate generalization of the
Veneziano N-point function.>™® Secondly, if one tries
to take the limit ¢ — 1 before doing the loop integrals,
a divergence is usually encountered. Thus, to get
meaningful results in this limit it may be necessary to
carry out the integrals before taking the limit ¢ — 1.
It therefore appears that when loop diagrams are con-
sidered, basic differences arise between the linear and
nonlinear theories. These are not present for tree graphs.
Since dual theories of the higher-order diagrams in the
Veneziano limit are still in an incomplete form and
detailed discussion of higher-order diagrams in the non-
linear theory has not yet been presented, it is clearly
still an open question as to which if either of these
possibilities can be made into a consistent theory.

2 M. Baker and D. D. Coon (unpublished).
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VI. CONCLUSION

We have deduced rules for comstructing a one-
parameter family of N-point-function Born terms By
which satisfy duality, have nonlinear trajectories, and
include the Veneziano N-point function as a limiting
case. These rules yield power-series representations for
By in which the role of duality is transparent. As shown
in Appendix C, the structure of the power-series repre-
sentations of satellite terms is similar enough to allow
straightforward generalization of the rules to the case of
satellite terms.

As illustrated in the example of Bs, many properties
of By can easily be deduced from the power-series
representations using the expansion (15) of the four-
point function as a summation formula.

Because the nonlinear Born term By goes smoothly
into the Veneziano Born term as ¢ — 1, it is not easy to
distinguish the case where ¢=1 from the case where ¢ is
near one by direct comparison with experiment. Thus,
in order to determine whether the nonlinear dual reso-
nance theory is physically interesting, one must prob-
ably await the study of the higher-order diagrams. In a
forthcoming paper?® we will present some attempts in
this direction based on the ideas mentioned in Sec. V.

APPENDIX A: MATHEMATICAL RESULTS

Here we shall derive some results which are needed in
the development of the ¢<1 theory. The relevant special
functions have been thoroughly studied in the mathe-
matical literature. They are known as basic functions
and their theory has been developed by Heine,?!
Jackson,?? Watson,'” Bailey,?® Sears,?* and others.?® We
will use their notation in this Appendix and in Appendix
B.

We define an entire function

G =11 (1—2¢"), (A1)
=0

where 0<¢<1 and ¢ is called the base. A convenient
and frequently used symbol is defined by

(0)g,n=G(a)/G(ag™), (A2)
so that (a),,0=1 and for positive integer 7
(@gn=1—a)(1—ga)---(1—ag*™).  (A3)

271E. Heine, Handbuch der Kugelfunktionen (G. Riemer, Berlin,
1878).

2 TF. H. Jackson, Am. J. Math. 32, 305 (1910); Quart. J. Pure
Appl. Math. 41, 193 (1910). A more extensive list of Jackson’s
articles is given by L. J. Slater (Ref. 25).

% W. N. Bailey, Generalized Hypergeometric Series (Cambridge
U. P., London, 1935).

#D. B. Sears, Proc. London Math. Soc. (2) 53, 158 (1951);
53, 181 (1951).

* For further references and a summary of results see L. J.
Slater, Generalized Hypergeometric Functions (Cambridge U. P.,
London, 1966); see also Higher Transcendental Functions, edited
by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. 1, p. 195.
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In order to derive a useful summation formula, we
consider the series
st (a')q,n

Pla;2)=2

n=0 (Q)q.n

7" (A4)

which converges for |z| <1. Using Eq. (A3), it is easily
seen that

_ (a)Q,n
(@) an1

—(1—a) (aQ) a,n—1 .

q)a,n—1

(AS)

If we multiply Eq. (AS5) by z* and sum over n, we
find that

®(a; 2) —P(a; gz) = (1—a)2®(ag; 2) . (A6)
Again using Eq. (A3), we see that
(@)gn(1—aq")=(@)gnt1=(1—0a)(aq)qn. (AT)

Multiplying Eq. (A7) by z" and summing over # gives
®(a; 2) —a®(a; g2) =(1—a)®(ag;2).  (AS8)

If we eliminate the series ®(ag; z) in Egs. (A6) and (A8),
we find that
(1—az3)

®(a;z)= ®(a; g3). (A9)

—2
Repeated application of Eq. (A9) gives
(1—az)(1—qaz)- - - (1 —q™ 'az)

®(a,2)=
(1—=2)(1—g2)---(1—gm ")
X®(a; gmz). (A10)
If we let m —, ®(a; ¢"z) — 1 and we obtain Heine’s
formula: () @
G(az o (@)q,n
= T, (A11)
G(z) =0 (@a.n
A useful special case is found by setting ¢=0:
1 w0 "
(A12)

= Z ’
G(@) =0 (q)qn

which is a formula of Euler.
We will now use Egs. (A11), (A2), and (A12), in that
order, to obtain a power-series expansion of the function

Gr) 1 a2 (D

G0)G(r)  G(r) =0 (Q)am

o g" 1

=L @)an G(rg")

i S
— qnm 5
=0 m=0 (q)q,n (@ g,m

(A13)
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which converges for |¢| <1 and |7| <1. We frequently
use the abbreviation

fr=@an»

which suppresses the dependence on the parameter q.

Asymptotic Expansion

In order to demonstrate the Regge behavior (11) and
(12) of our four-point function (3) and to aid in esti-
mating the asymptotic behavior of our N-point func-
tions, it is helpful to have an analog of Stirling’s series
for the gamma function. Such a formula can be derived
from the identity!®

G(2)G(g/z)
In2(—2)
=exp[— +31 ln(—z)—}—H(z)] , (Al14)
21Ing
where
w? Ing

» cos[ 2mm In(—z)/Ing]

: . (Al5)
m=12m sinh(2mn?/Ing)

The quantity H(z) remains finite as |z| —w for
|arg(—3)| <. By expanding InG(g/z) for large 2, one
obtains!® the useful asymptotic formula

In?(—z)

+1In(—32)+H()

l

G(z)= exp[ —
Ing

d q

Z S —

=1 =g ()

in which the leading asymptotic behavior is displayed

in much the same way as Stirling’s formula displays the
asymptotic behavior of the gamma function.

:I, (A16)

APPENDIX B: GENERALIZATIONS

The power-series representation of the four-point
function (15) is an expansion of a function possessing
simple infinite-product and partial-fraction representa-
tions in which it is easy to see the spectrum of poles and
polynomial residues. These features are not manifestly
exhibited in the power-series expansion, but they can
be proved without evaluating any sums by application
of a lemma given by Watson.'” Likewise, without per-
forming any sums, all of the power-series representations
of our N-point functions (Sec. IV) can easily be shown
to be meromorphic with polynomial residues. Thus, we
see that we could generalize our rules to include power
series in which we are not able to evaluate any sums and
in which Watson’s lemma is sufficient to prove the
required properties.
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We now state Watson’s lemma'? without proof:

Given a series of the form

]
V(2) =2 tott1+ %K 3"

ne=0

(B1)

in which #, and K, can be expanded in the convergent
series

Un=1"4Arg"+ 420>+ - -, (B2)
K,=q""(BotB1g"+Beg*"+- - -) (B3)

for all integer values of # greater than a certain finite
no, where the A; and B; are independent of # and m is
not necessarily an integer, the only possible singularities
of the analytic function ¥(z) in the finite part of the
z plane are simple poles at the points z=¢=™, ¢

—m—2_ ...
"

The rules of Sec. IV generate multiple sums to which
Watson’s lemma applies. If a given residue is supposed
to be a polynomial in certain variables, we can look at
various powers of those variables in the multiple sum
and use the lemma to check that the pole is contained
only in the coefficients of finite powers of the relevant
variables.

It is clear that we could define new functions by
means of multiple power series in which each sum
satisfies the requirements of Watson’s lemma. Thus, we
could construct a more general class of functions with
properties required of a Born term.

For example, instead of including a sum such as

© o”

(B4)
=0 (‘] a.n

for each internal line [see rule (b) of Sec. IV, we could
include the more general term

3 Ugthre c Ugd™, (BS)

n=0
with .
ui=A4(q), (B6)

where 4(0)=1 and A(x) has no singularities in some
finite circle about x=0.

Similarly, the ¢"™ dual propagator factor [see rule (c)
of Sec. IV] could be replaced by the more general form

0
Kom= g Z Cijqin+.7'm ,

2,7=0

(B7)

provided that the ¢,  sum converges for all non-negative
n and m. The generalizations encompassed by (B5) and
(B7) will have the same spectrum of poles as the
N-point functions of Sec. IV, but the polynomials in the
residues will be modified.

A class of functions which satisfy the requirements of
Watson’s lemma and which have been thoroughly
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studied are the generalized basic hypergeometric func-
tions!”-21-25 defined for |z| <1 by

A<I>B(al,a2, o ey@4; bl,bz, e ,bg; Z)

© (81)g,n(@2)g,n" -+ (@4)gn 3"
=2 . (B8
7=0 (b1) g,n(b2) g,n" - * (®8)an (‘Z)q,n (B9

The sums in Egs. (A11) and (A12) are simple examples:
G(az)/G(z) =1P0(a; 2), (B9)
1/G(z) = ®o(2). (B10)

Besides being possible generalizations of the internal
line factor (B4), generalized basic hypergeometric series
are encountered when we begin doing sums in our
N-point-function formulas (Sec. IV) and in satellite
terms (Appendix C). ’

Various asymptotic limits of many basic hyper-
geometric series can be deduced from nonlinear iden-
tities given by Sears.?* These identities are the basic
analogs of the Thomae relations? for hypergeometric
series.

APPENDIX C: SATELLITE TERMS

If, in Eq. (3), we make the replacements ¢ — ¢Vo and
7—> qMr, where N and M are positive integers, we
obtain a similar function

G(og" ) /G(ag™)G(7¢™)

in which poles occur at o=¢¥, ¢"¥1 .., and r=¢"¥,
g1, ... The residues of these poles are polynomials.
Multiplying (C1) by the o7 polynomial

(CD)

L
IT (A —org+it) (C2)
=1

gives us a meromorphic function

G(org" 1) /G(og™)G(7g™) (C3)

with polynomial residues if L>0. There are poles at
o=g¢"%, where j> N, with polynomial residues of order
J+L—N. There are poles at 7=¢4, where j>M, with
polynomial residues of order j+L—M. The order of
each polynomial residue cannot be greater than the
maximum angular momentum content of the pole. This
is the no-ancestor requirement. Since we can always
define ¢ so that j is the maximum angular momentum
content of the pole at ¢=¢7, we have

JHL—-N<j. (C4)
Equation (C4) and the same argument for 7 poles give
M>L>0 (C5)

and
N>L>0. (Co6)

Any linear combination of terms of the form (C3) with
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indices satisfying Eqs. (CS5) and (C6) will satisfy our
Born-term requirements. The extra terms which we are
free to add are called “satellite terms.” For some pro-
cesses low angular momentum poles are missing, and
this can be taken into account through the indices NV
and M.

Linear Limit
In order to take the limit of (C3) as the trajectories

become linear (¢— 1), we must first multiply (C3) by
some appropriate constants:

1- )I—LM
q Glog™)G(rg™)
G(q)G(JTqN+M)_](O’TqN+M—L) oL
o ] .
G(UQN)G(TQM) (1_q)L

The equality follows from Eq. (A2). To take the limit
as ¢ — 1 of the term in square brackets, we use Eq. (A1)
and rearrange the infinite products:

G(q)G(aTqN“LM):I
G(og¥)G(1g™)
[, (1—9)(1—07'91”1”):]
im
1 (1—ggV)(1—7¢™)

(€7

A=lim [(1 —q)
g1

® 1— g\ (1 —grgN+M+1
X[H o E1—iq)£+l)(1igﬂl+l;]' ()
Substituting Eqs. (7) and (8) and taking limits gives
NAM—o'—7 o (N+M—o —7'+I)]
= (N —o")Y(M —+') 155 (N —o’ +D)(M —7'+1)

(C9)

Comparison with the infinite-product representation?6
for the beta function,

2ty o (xt+y+m)m
Blay)= T2 T ()
xy m=1 (x-+m)(y+m)
yields
A=T(N—o)T(M —7")/T(N+M —¢' —7"). (C11)
From Egs. (A3), (7), and (8), we can see that
(org¥+¥-L), ;1 1—grgNtM—Itr
lim —————— =]] lim [——————~ :|
=l (1—g)*F p=0 ¢>1 1—¢g
L—1
=TIl (—o'—7"+N-+M—L+p)
p=0
=T(—¢'—7'+N+M)/T(—d —7+N+M—L).
(C12)

2 This representation can easily be derived from the infinite-
product representation of the gamma function which is given in
Higher Transcendental Funciions (Ref. 25), Vol. 1, p. 1.
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Using this result and Eq. (C11), we can write the limit
of our general satellite term (C7) as
G()GoraN+M—L
lim (1—¢) I—L————————(q) (77 ——)—
-t G(og™)G(rg™)
=T'(N—o")[(M —7)/T(N+M —L—o'—7), (C13)

which is just a Veneziano satellite term.

Power-Series Representation

We will now derive the power-series representation of
the satellite term (C3). We begin by considering the
function

Glorg™ 1) _ G(qu—L)[ G(ot) ] c14)
G@G(T)  Glor) Le@)end
The expansion

Glorg ™) = L (o7)
— = o C15
o = e (€15)

follows from Heine’s formula (A11). From Eq. (A3), it

is obvious that (¢=%),,1=0 for /> L1, so that the sum
terminates automatically.

Substituting Eq. (C15) and
G(a7) © g 7™

—_—= 3 . A13
G(0)G(r)  nm=o0 (Q)q.nq (re (419
in Eq. (C14) gives
G(orgE) ~ i gnHgrmamtl (=L
G(0)G(r)  trm=0 () ¢,n(@) g,m (@an
© ng (n=1) (m—1) zm L @
arq (%) q ct6)

=z,n,m=o @ an-t@am-t (@ an

To obtain the last expression, we have redefined # and
m and extended the sums down to #=0 and m =0 using
the fact that

1/(Q)q-=0 for i=1,2,...,

which follows from Eqgs. (A1) and (A2).

Our next step will be to derive a certain identity?’
relating basic hypergeometric symbols. Using Eq. (A3),
we find that

(1=g)(1—=g¢»---(1—g")
(1 _qn—l+1) N (1 __qn)

q—nq—n~|—1, .. q—n+l-—1

(=D =D (-1
(___1)1 ql (I-1)/2

(C17)

(@ qn-1=

=(q)qn

=(¢)q.n (C18)

g (T

27 A table of such identities is given in L. J. Slater, Ref. 25,
p. 241.
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This equation can be used to eliminate (¢)q,»— and
(@) ¢m—1 in Eq. (C16). This gives

G(org™ %) _ i orgmmr™ (¢F) q.l((rn)q.l(q_m)q,lgl
G(0)G(7)  tmm=0 () 4,n(q) g,m (@an
}3 T ——————s®o(¢ N g ), (C19)

nm=0 (q)q, (@ am

where the last expression is obtained by comparing the
sum over ! with the definition (B8) of generalized basic
hypergeometric series.

To obtain the power-series expansion of our general
satellite term (C3), we make the replacements o — g
and 7 — ¢™ in Eq. (C19). This gives

G(o"quJrM"’L) [ a” T"
—_— = am—,  (C20)
G(ogM)G(rg™)  nm=0(q)¢,n (@Dam

where
Knm= qnm+nN+mM3¢0(q—L,q—n’q—m; q) . (C21)

The ;®, series terminates after 14+min(L,n,m) terms so
that K,. involves only a finite sum of terms. The
dependence of K, on the satellite indices N, M, and
L is suppressed.

An important feature of Eq. (C20) is that we still
have the same structure as in Eq. (15), so that we can
easily generalize the rules of Sec. IV in order to construct
satellite terms for N-point tree graphs. The only change
will be that the factors ¢"™ — K., where each K, is
labeled by a different set of three satellite indices.

APPENDIX D: BASIC INTEGRAL
REPRESENTATION

Here we will derive the basic analog of the beta-
function integral representation. This is largely for the
sake of completeness since this representation appears
to be far less useful than one might expect.

_Jackson?? introduced an operation called basic inte-
gration which is defined by

OSF (x) d(gx)=b(1—¢q)
X[F(b)4-gF (gb)+¢*F (g*)+---] (D1)
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and is the inverse of the “g-difference operation”

defined b
ameen )= f(g)

x—qx

Dgf(x)= D2)

In the limit ¢ — 1, a basic integral becomes a Riemann
integral.

Using Heine’s formula (A11) and the definition (A2)
of (@)q,n, it can easily be shown that

GloT) 1 G(q"“)
GG Gl = Glo)
= __1_ - —nasG(q”+l) , (D3)
Glg) o G(g"9
where we have made the substitutions
o=ge, T=g (D4)

which follow from Eq. (6). If we multiply Eq. (D3) by
(1—¢)G(g) and compare the result with Eq. (D1), we
find that

(1—9) G(9)G(o7)/G(0)G(7)

1
=S g (1 — Q%) a1 d(gx), (DS5)
0
where the notation??
(1—%)a=G(x)/G(xg*)= (%) g,a (D6)
is motivated by the fact that for integer /
(A=2)i=(1—x)1—gx)---(1=g"%) (D7)
and
lim (1~gx);=(1-2)". (D8)

Thus, we see that Eq. (D5) resembles the integral
representation of the beta function

B(—as, —a;) = /dx (]l —g)—e-1, (DY)

However, the symmetry under the interchange o, <> o
is not apparent.



