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Assuming that the total cross sections tend to finite nonvanishing limits as s —& ~, it is shown in axiomatic
field theory that the scattering amplitudes f& (s,t) and f&(s,t) for processes A+8 —+ A+8 and A+8 ~A+8
must satisfy either or both of the relations o~(s)/os(s) ~ 1 and [do, (s,t(s))/dt7/)darn(s, t(s))/dtj ~ 1 as
s —+ ~, where cr; and do~/dt are the total and elastic diRerential cross sections and t(s) = —C(lns) ~. Since
o, and do~/Ct are both measurable, this result enables us to subject axiomatic field theory to an experimental
test.

o (s) ~ ~ as s + ~, (2)

or if o (s) tends to a nonvanishing finite limit but the
elastic cross section o,i(s) tends to zero, so that'

o' i(s)/o'(s) ~ 0 as s ~ co . (3)

But the Pomeranchuk theorem remains unproved in the
important case where both o(s) and o,i(s) tend to
nonvanishing limits.

Not infrequently, when a theorem is hard to prove,
it may be useful to modify it until it can be proved. The
purpose of this paper is to show that we may modify the
Pomeranchuk theorem in a similar fashion and obtain
a new theorem which can be proved in axiomatic field
theory. From the physicist s point of view, interest in
this theorem lies in that it can be compared with the
measurements of high-energy cross sections just as well

as the Pomeranchuk theorem itself. Thus it enables us
to subject axiomatic field theory to an experimental
test. It is amusing to note that an essential ingredient
of this theorem can be found in Ref. 4. What was
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S INCE Pomeranchuk' conjectured the equality of
particle-particle and particle-antiparticle total cross

sections at infinite energy and proved it under some
assumptions, attempts have been made to justify these
assumptions within the framework of axiomatic field
theory. ' 4 The most crucial assumption, which has thus
far defied such a justification, is one on the phase of the
scattering amplitude F(s,t) at t=0:

ReF(s,0)/f(lns)ImF(s, 0)) —+ 0 as s ~ ~, (1)

where s and t are the usual Mandelstam variables. '
What ha, s been found thus far is tha, t (1) can be derived
from unitarity and analyticity in the Martin-Lehmann
ellipse of the cos8 plane' if the total cross section cr(s)
grows indefinitely' 4:

missing is the realization that it can be stated as a
theorem somewhat distinct from the Pomeranchuk
theorem.

Before describing the theorem, let us recall some
results of axiomatic field theory. By this we mean those
properties of F(s,t) that can be proved rigorously in all
known versions of local field theory: Wightman field
theory, Jaffe's theory, r and the Araki-Haag theory of
local observables. '

(A) Analyticity in s artd t F(s, t) i. s analytic in the
domain ( ~

t
~

(to) 3 (cut s plarte), where ts is some positive
number, provided the masses of incident particles
satisfy certain inequalities. ' Actually it is sufficient for
our purpose to assume the analyticity domain proved
for general masses. "

(8) Polyrtomiai boundedrtess. For ~t~ (to and some
constant X, F(s,t) satisfies the inequality

~

F(s,t)
~(

f
s

f

~ for large
f
s

/

.'
(C) Artalyticity irt the Martirt Lehntartr-t ellipse For.

fixed real s above thresholdF, (s,t) is analytic in an
ellipse in the cos8 plane with foci at cos8=+1 and —1
and semimajor axis of the form 1+a/s for large s.'

Let fi and fs be the scattering amplitudes for the
processes A+8~A+8 and A+8 —+2+8, respec-
tively. Then, for fixed t in —to& 1&0, we can express the
crossing and reality relations as

fi(u)t) =fs(s, t),
f;*(s*,t) =f, (s,t), i 1, 2. =

Ke shall also define

p„(s,t) =Ref, (s, t)/L(lns) Imf, (s,t)j, i =1, 2. (5)

We are now ready to state the theorem.
Tkeorerrt. Let f, (s,t) be the scattering amplitudes

which satisfy (A), (8), (C), and unitarity. Suppose the
total cross sections tend to finite nonvanishing limits

o, (s) —+C;, i=1, 2, s~ ~.
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Then, for s-+ ~, we obtain

or

o.i(s)/os(s) -+ 1

L«i(~ ~(~) )/~~)/L«s(~ 1(~))/~G ~ 1

(7)

(8)

according as

or
p, (s,0) —+ 0, i = 1, 2

p, (s,0) WO, i=i, 2

(9)
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where t(s) = —C(lns) ', 0&C&Cp, Cp being a positive
constant.

Before we give the proof let us make a few remarks.

(a) Unlike the Pomeranchuk theorem, (9) and (10)
are not assumptions of the theorem but are simply
devices for classifying possible alternatives.

(b) If f, (s,0) satisfies (10), then (7) is not possible.
But (8) is not ruled out under (9). Thus (7) and (8) are
not incompatible. Our theorem simply maintains that
(7) and (8) cannot fail simultaneously insofar as the
axiomatic field theory is valid.

(c) When (10) holds, unitarity demands that
«, (s, t)/dt be peaked forward with a width which.
shrinks as (lns) ' for large s.4 Thus in this case we must
abandon the idea of Pomeranchuk-Regge trajectory, at
least in the usual sense.

(d) In general, o, (s) may become infinite as s ~ ~,
its growth rate being restricted only by the Froissart
bound,

o, (s) &const&&(lns)', s —& ~ .

As was mentioned in the beginning, if o.;(s) ~ ~ as
s ~ ~, the possibility (10) is never realized and our
theorem reduces to the Pomeranchuk theorem. On the
other hand, if o, (s) -+0 as s~ po, the latter is not
expected to hold in general. "This is why we concen-
trate on the case of finite nonzero limit of o, (s) in our
theorem. A somewhat weaker assumption will be a
finite but infinitely oscillating o;(s). Such an oscillation
cannot be ruled out within axiomatic field theory. "
Thus, strictly speaking, the a,ssumption (6) is not based
on field theory. Rather it must be regarded as an ansatz
whose validity is to be checked empirically. Meanwhile,
if we are willing to accept a weaker theorem similar to
the weak Pomeranchuk theorem of Meiman, " the
assumption (6) may be replaced by one which allows
infinite oscillation of o.;(s).

(e) A theorem of the form (8) for the differential
cross sections has been obtained previously. "However,

our result (8) is derived under different circumstances
and the resemblance is only superficial.

(f) We wish to emphasize that asymptotic theorems
such as Pomeranchuk's and ours will never be tested
experimentally in an unambiguous manner. The only
thing experiments can do is to indicate whether certain
theoretical ideas are on the right track or not. Indeed,
recent inquiries of the Pomeranchuk theorem" " arise
from the experiments at Serpukhov" which have cast
some doubt about its validity. Evidently experimental
violation of this theorem is not necessarily a disaster for
field theory. However, as is made clear by our theorem,
if further measurements of high-energy cross sections
indicate that both (7) and (8) are violated, there will be
some real trouble with the axioms of quantum field
theory. YVe are assuming in this discussion that the
spin-Oip cross sections can be ignored at high energy,
an assumption which may have to be examined more
carefully.

Ke shall now prove the theorem.
proof. The derivation of (7) from (9) constitutes the

content of usual proof of the Pomeranchuk theorem and
can be found in many places in the literature. ' 4 Thus
it will not be repeated here.

In order to prove (8), it is sufficient to show tha, t

Ref, (s, t) =0(s 1ns),

Imf, (s,t) =0(s), i=1, 2, s~ ~

Refi(s, t) = —Refp(s, t)+0(s/lns), s ~ po (12)

hold for appropriate values of t. In fact, when (11)
holds, f, (s, t) becomes predominantly real at high energy
and thus

«;(s,t)/dt ~
i f, (s, t) ~'

=LRef, (s,1)j'[1+0((lns) ')j, i=1, 2. (13)

The result (8) follows immediately from (11), (12), and
(13)."

Actually, whereas (12) can be proved for —tp&t&0,
(11) can be proved only for (almost all) t in the small
interval

—Cp(lns)
—'& t &0

where Co is a positive constant to be determined later.
Although this interval shrinks to zero as s —+ ~, it is
all we need in view of remark (c).

To derive (11), let us define a real function t(s) with
the properties

—fp& t(s) &0 for all s& (m~+ruii)',
—t(s) C(lns) ' for s —+ ~,

' A. Martin, in IIigh energy Collisions (Gordon and Breach,
New York, 1969), p. 227; R. J. Eden, Phys. Rev. D 2, 529 (1970)."J.V. Allaby et al. , Phys. Letters 30B, 500 (1969).

The prototype of this argument for the case t =0 can be found
sn Ref. 4.
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and expand f;(s,t(s)) into partial waves: which satisfies the twice-subtracted fixed-t dispersion
relation

f;(s,t(s)) = (s"'/2k) P (2t+1)
l=o

(18)
u"(u'-u)

s' A(s', t)ds' u' A u' t du'

f(s, t) =cs(t)+ — —+-
Xttt f"(s)Pt(1+t(s)/2k'), (16) sr s"(s' —s)

where k is the momentum in the c.m. frame. "We shall
also introduce

D;+(s,t(s)) = (s't'/2k) g (21+1)
L=O f(s,O) f(s,t—) =g(s, t)+k(s, t), (19)

for —to& t(0, where u =u(t) =2m~'+2mit' s —t. S—ub-

tracting (18) from the corresponding equation for

f(s,0), we obtain

where
&(L+Reat f'l(s) )Pt(1+t(s)/2k'),

s"(s'-s)

s' LA (s',0) A(s'—,t) $ds'
where $xj=x or 0 according as x) 0 or &0. Obviously g(s t) =-
we have 7r

Ref;(s,t(s)) =D~+(s,t(s)) —D; (s,t(s)).
Now, since Ref;(s,0) const)&s lns according to (6) and
(10), we may assume that D;+(s,0)-tt;+s lns, where at
least one of a~+ and tt; is nonzero. Since P„(z) has no
zero in the interval (1—sr'/8tt', 1),'s and sin. ce lim„„
P„(cos(x/st)) =Je(x), we obtain

Pt(1+t(s)/2k')) e)0 for all /&b(e)k/( t(s))'—"
where b(e) depends on e. For instance b(e) may be
chosen as 2.4 if ~ equals 0.0025 or less. Meanwhile, the
contribution of partial waves for l) b(e)k/( —t(s))'" to
D;+(s,t(s) ) can be made less than s by choosing a small
enough C in (15). For such C we have

D,+(s,t(s))) ea;+s lns.

Hence Ref;(s, t(s)) is of order s lns. In general,
Ref, (s,t(s)) will be of order s lns for larger values of
C, except possibly for some values of C for which
D;+(s,t(s)) and D, (s,t(s)) cancel accidentally. "Thus,
in order to obtain (11), we have only to define Cs in
(8) and (14) as the least upper bound of all C for which
D;+(s,t(s)) is of order s lns and Imf, (s, t(s) ) is of order s.
This result is closely related to the fact that the logarith-
mic derivative of f, (s,t) at t=O is bounded by const
&& (lns)'."

In order to prove (12), it is convenient to introduce
the crossing-symmetric amplitude

'(s, t) =f,(,t)+f,(,t) (17)
"For simplicity, we have assumed that both A and 8 are scalar

particles. The general case may be treated by the method of
G. Mahoux and A. Martin, Phys. Rev. 174, 2140 (1968).' G. Szego, Orthogonal I'olynonriat, s (American Mathematical
Society, New York, 1939), p. 118.
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(2m~'+2mit' —s) '

LA (u', 0) A(u', t) j—du'
(20)

u"(u' —2m~' —2mtt'+s)

k(s, t) being the remainder. Noting that
~

A (u', t)
~

&A(u', ()) C'u' )assumption (6)) for negative t and
large positive I', we hnd easily that

~It(s, t)
~

=O(t lns) for s~ ~ . (21)

On the other hand, for real t in —to& t& 0, g(s, t) has the

property
g*(se,t) =g(s, t),

g(s, t) =g(2m''+2mit' —s, t) . (22)

Furthermore, for the same t and real s) (mal+ma)', we
have

(23)0& Img (s,t) =A (s,O) —A (s,t) & C"s.

Now, analytic functions in the cut s plane satisfying
(22) and (23) are known to have the property"

~Reg(s, t)/Img(s, t)
~

&const&((lns) ' fors —++~. (24)

From (19), (21), and (24), we find

~
Ref(s,0) —Ref(s, t)

~
& constX (s/lns)

for t in the range —to(t(0. Combining this with"

~Ref(s, O)
~

&const&((s/ins),

we 6nally arrive at

~

Ref�(s,

t)
~

& constx (s/lns) for s ~ +~,
which is equivalent to (12). Q.E.D.
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