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Nonlinear EfFects in Quantum Electrodynamics. Photon Propagation
and Photon Splitting in an External Field*
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The eftective nonlinear Lagrangian. derived by Heisenberg and Euler is used to describe the propagation
of photons in slowly varying but otherwise arbitrary electromagnetic Gelds. The group and the phase veloc-
ities for both propagation modes are calculated, and it is shown that the propagation is always causal. The
photon splitting processes are also studied, and it is shown that they do not"play any significant role even
in very strong magnetic Gelds surrounding neutron stars.
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Owing to the universality of electromagnetic inter-
actions, ' the same Lagrangian (1) describes the inter-
action between photons and between photons and an
external field.

The self-interaction of photons can also be described
in terms of Feynman diagrams. In the lowest order of
perturbation theory in n, the only diagrams that con-
tribute to this interaction are those containing one
closed electron loop. The leading term in the low-energy
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1These are fields whose variations over the Compton wave-
lenth of the electron (K =3.9 10 "cm) and over the corresponding
time interval (v =I/c) are much smaller than the field itself:
I s.f~a I «ml f~. I' W. Heisenberg and H. Euler, Z. Physik 98, /14 (1936).

'This form of the Lagrangian is taken from the paper of
Schwinger LJ. Schwinger, Phys. Rev. 82, 664 (1951)j, who re-
derived the result of Ref. 2 by the proper-time technique.

4 The interaction of charges with an external Geld is the same as
the interaction with photons.
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I. INTRODUCTION

'~T was recognized in the early thirties that virtual
- - creation and annihilation of electron pairs induces
the self-coupling of the electromagnetic Geld. This self-
interaction is in general nonlocal, and its description is
further complicated by the possibility of real pair
creation. However, for slowly varying' but arbitrarily
strong electromagnetic fields, the self-interaction energy
was computed already in 1936 by Heisenberg and
Euler' in the lowest order of the fine-structure constant
(i.e., without radiative corrections). The effective
Lagrangian which they obtained' (in units A=1=c) is

approximation of the Feynman amplitude represented
by such a diagram with 2e photon lines corresponds to
the eth order term in the asymptotic expansion of the
Lagrangian (1).This was veri&ed by a direct computa-
tion for m=2 by Karplus and Neuman. ' Thus the
calculation based on the effective Lagrangian (1) can
replace the complicated S-matrix calculation in all
problems with slowly varying external fields and/or
low-energy photons.

Out of many nonlinear effects which can be discussed
with the help of this Lagrangian we have selected two:
the photon propagation and the photon splitting in an
external electromagnetic field. These problems have
been studied in many papers. ~' None of these papers,
however, contains the correct formula for the proba-
bility of the photon splitting. Our calculation of the
photon splitting was prompted by recent speculations
that intense magnetic Gelds may be produced by neutron
stars. We have wondered whether photen-splitting
phenomena could inQuence the spectrum of the electro-
magnetic radiation from neutron stars. We have found,
however, this effect to be exceedingly small. The
theoretical explanation of the smallness of the photon-
splitting amplitude is that owing to gauge invariance,
this amplitude is of a much higher degree in the external
field than one would expect on purely dimensional
gl oullds.

II. PHOTON PROPAGATION

The propagation of photons in an external electro-
magnetic field will be described here as the propagation
of weak disturbances in a strong background field. In
this approximation the equation for the photon wave
function is linear, but the coefFicients depend on the
external field. For time-independent and homogeneous
external fields this propagation problem can be solved
explicitly for any relativistic local theory. Such a theory

' R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950).
6 A. Minguzzi, Nuovo Cimento 4, 476 (1956); 6, 501 (1957);

9, 145 (1958); 19, 847 (1961).
r J. J. Klein and B. P. Nigam, Phys. Rev. 135, B1279 (1964).' N. B. Narozhnyi, Zh. Eksperim. i Teor. Fiz. 55, 714 (1968)

I Soviet Phys. JETP 28, 371 (1969)g.
eV. G. Skobov, Zh. Eksperim. i Teor. Fiz. 35, 1315 (1958)

I Soviet Phys. JETP 8, 919 (1959)g."S.S. Sannikov, Zh. Eksperim. i Teor. Fiz. 52, 1303 (1967)
I Soviet Phys. JETP 25, 867 (1967)P.
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(b) The coeflicient 7 is arbitrary.
(c) 5=0.

Since Vk„does not contribute to pp„(x), we shall not
consider it any further. Nontrivial solutions for n and P
can be obtained, provided the determinant of the
system of Eqs. (14) vanishes. This leads to the following
dispersion laws":

k'= a'(k) lt~ =u'(k)

78(7—SS+VPP)+25(VS SV PP VSP'—)~~'"
X

2L Vs +27s(57PP PVsP)+P (7$sVPP VSP )]
(15)

(3)f"=P"+&.
The field equations for f„„,

8 k&"(x) =0
where
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(~) where

is most generally described by the Lagrangian density
I.(x) which is a function of two invariants 5 and P. At
the end of this section we concentrate on the Lagrangian
derived from quantum electrodynamics.

Let us split the total electromagnetic field f„„into the
strong external constant field F„„and a weak varying
wave field Pp„:

in the linear approximation with respect to p„„,take the
form

~f~p f-p
B„y p(x)=0. (6)

and

Bh""
k),kp

Bfpv f P=
=78(gp"k' k"k") 7—88apa"—

78P(re&—"+8"8") VPPS'8"—(9)

We seek the solution of these equations in the form

y.p(x) = e.p(k)e
—",

(7)
e p(k)=k ep(k) —kpe (k)—=ki spy(k)

and we obtain the following set of algebraic equations
for e„(k):

M~"e„=O )

where

~= [78(788 7PP) —25(VS—SVPP VSP')]-'
+[2YsYSP 2P(VSSVPP 7sP )] (16)

In general, the propagation of waves in the external
field exhibits the phenomenon of birefringence. We will
call X the birefringence index because to two values of X

(X+ and X ) there correspond two different polarization
states described by pola, rization vectors e~p(k), and the
waves with different polarizations propagate according
to different dispersion laws. It is only when 6=0 that
the propagation velocities in all directions do not depend
on the wave polarization. The Maxwell theory and the
nonlinear electrodynamics of Born and Infeld are the
only relativistic theories in which this takes place."

Most of our further considerations will be restricted
to those cases in which the nonlinear effects are only
small corrections as compared to the predictions of the
Maxwell theory. This restriction places a limit on the
strength of the external field. In particular,

I&. i f&..l'«1. (17)

PSI'=
RSVP g p

8 =F "k

'Yss=
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) happ=
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a~=—I'"k, .

(10)

Under this condition the interpretation of Eq. (15)
becomes especially transparent. Since

a'(k) = (E k)' —E'co'(k)
—(kXB)'—2(o(k)k (BXE), (18)

the solutions for positive frequencies &o+(k) are

The general solution for e„(k) can be written as a linear
combination of any four linearly independent vectors.
For a general external field these vectors can be chosen
as c~) Q~) kp, ) and 6p, )

where
~~(k)= Ik I (1—l4 I Q I'),

Q=nXE+nX (nXB)

n=k/IkI.

(20)

b„=—F„„g,") (12)

e„(k)=rra„+Pd, „+Vk,+6b„. (13)

Upon substituting this form of e„ into Eq. (8), we derive
the following conditions:

(a) The coeflicients n and P obey the equations

r (78k' 7888'+VSPk'P)—
+P[788k'P VSP (8'+ 2k'5) ]=0, —

rr( vSpa' jVppk'P—)
+P[78k'+VSPk'P VPP(a'+2k'5)] =0. —

The phase velocity u and the group velocity v are
therefore given by the formulas

u+=~n(1 —s~+ I Q I') (»)
v~ =en[1——,'X~ (E'+B')+ (n E)'+ (n B)']

+cP+[E(n E)+B(n B)—(BXE)]. (22)
"The same formula has been obtained independently by G.

Boillat I J. Math. Phys. 11, 941 (1970)g, who studied the propaga-
tion of discontinuities in general nonlinear electrodynamics."This was proved by G. Roillat (Ref. 11) and independently by
J. Plebanski, Lectlres on Xonbneer E/ectrodynamics (NORDITA,
Copenhagen, 1970).
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(30)

Both the phase and the group velocities do not depend
on the frequency but only on the transverse components
of the wave vector relative to the external fields E
and B.

The necessary and sufficient condition for a causal
propagation in a not too strong external 6eld is that
both birefringence indices X+ and P be positive. In that
case the larger value of X (X+) corresponds to the
smaller velocity. Since in the lowest approximation

where
n'(k) = —I/a'(k).

The polarization vectors e+&(k) correspond to dispersion
laws k'= u'(k)X+.

III. PHOTON SPLITTING

Before we will carry out an explicit calculation of the
transition amplitude for the photon splitting in quantum
electrodynamics, we will make a few general remarks
about the phase space and the invariance requirements
for this process.

The relativistic phase-space volume p~(k) for E free
photons of total four-momentum k is

4=2{(7»+7»)~L(ass 7»)'—+47»'&"') (24)

the causality requirement (X+&&0) is equivalent to the
following conditions for partial derivatives of the
Lagrangian:

v»~&0, v»&~0, (vsse» vsz')&~—0. (25)

In our approximation the moduli of both velocities are vectors in the lowest approximation are
equal,

Iv+I = I~+I =c(i—-')'+IQI') (23) e+"(k)=n(k)d"(k),
e "(k)=n(k)a"(k),

The nonlinear Lagrangian (1) derived from quantum
electrodynamics can be expanded into an asymptotic
series whose 6rst four terms" are

327i 0,
L=S+ (45'+28')+ (85'+1358')

45m4 315m'

p~(k) —= Q d'kg0(k. p) b(k") b "(k—P ks)
B-1

=C~H(k')(k') ~ ',
where

(r~)N 1—
(X—2)!(Z—1)!

(31)

(32)

128m'n4
+ (44654+2015'F'+3824)

945m12

g(0)+j(2)+j(3)+g(4) (26)

The use of the first few terms of this expansion is
justified if the dimensionless expansion parameter

n fi' 5XI0—28(B in G)'
(27)

te4c' 6X10 "(E in V/cm)'

is much smaller than unity. This is indeed the case even
for strong magnetic fields which one may expect to
6nd" in the vicinity of a neutron star. To describe the
propagation of photons in an external field in quantum
electrodynamics we need only the first correction term
L('). Higher terms will be used in Sec. III to study the
photon splitting. In this approximation we obtain

ps=i+8KS, ass=8K, p»=14K psg =0,
(28)

X+——14', X = Sff,
where

K=2n'k'/45m'c'=2. 1X10 "G '

and we have consistently kept only terms linear in ~.
Since both P 's are positive, the propagation of photons
in an external field is causal. "The photon polarization

"The term which can be identihed as L(') contributes to charge
renormalization only.

'4 According to T. Gold )Nature 218, 731 (1968)],the magnetic
induction B may be as large as 10"G.

5 The photon propagation in external Geld in quantum electro-
dynamics was studied in Refs. 6-8. The results obtained in Ref.

b„„=g„„+XrF,„F"„.

The phase-space volume is

(34)

p~(k) —= II d'k. 8(k.o)
A=1

Xb(k. b k.)b")(k—Q ks). (35)
B=1

By linear transformation of the integration variables

(36)
6 were of a rather general nature. In Ref. 7 only the propagation in
a uniform static electric 6eld was studied. Owing to an error in
their calculations, the incorrect statement was made that the
phase velocity may exceed the speed of light. In Ref. 8, only the
special case of crossed 6elds was studied.

Therefore, if the initial and final photons are assumed to
propagate along the light cone, then from the phase-
space argument alone we can exclude the decay into
more than two photons. However, if we take into
account the inQuence of the external electromagnetic
field on the propagation of photons, this conclusion is no
longer valid. The calculation of the E-photon phase
space in this case—say, p~(k)—is easy only when all E
photons have the same birefringence index XJ We will
restrict our discussion to this simple case, expecting that
it contains all essential features of the general case. All
photon momenta satisfy now the condition

0=k" Xra'(k. )=k. —b kx=kz"b„„kx",
a=i, 2, . . . , cV, (33)

where
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where the matrix U diagonalizes b,

U~ b. U=g (37)

we can reduce the phase-space integral p~ to p~.

pi2(k)= IdetbI &~+'&"p (U 'k). (38)

We will evaluate now the total rate for the process

y ~ y+y using the effective nonlinear Lagrangian (1).
In this Lagrangian we substitute for f„„ the sum

F„+C„„ofthe external field and the quantized electro-
magnetic field:

This can be further simplified by noticing that

(U 'k)'=k. (U~) 'g U 'k=k b k,

so that the Gnal formula for p~ reads

(39)

d'k{ [2cu+(Ir) 7'e+„„(k)e '2+—*a+(k)C„„(x)=
(22r)'

+[2a) (k)$ 'e „„(k)e '2- a (k)}+H.C., (43)

k k k= P;—Xr)a2(k).

Since in the lowest approximation

(41)

'(k) = —
I
&I'I Q I', (42)

the sign of k b k is that of P r—X,).
If the initial photon is faster than the decay products

(Xr)X;)
&

then it can decay into any number of photons,
but the phase-space volume pi2. (k) contains the (N 2)nd-
power of the small parameter (Xr—X;) I Q I

'.

p~(k)= IdetbI '~+'&"C~g(k 0 k)(k b.k)~ ' (40)

Denoting the birefringence index of the initial photon by
X;, we obtain

where the creation and annihilation operators a+t and

a+ obey the following commutation rules:

[a~(k),a~t(k')] = 2(v~(k) (22r)28&2& (lr —lr'),
(44)

[a+(&),a-'(&') 3-=o

The terms trilinear in C~„arising from L(@ and L&') are

1. ~'&=~:[(C C~")(C &F e)

+(7/4)(C .C" )(~-ep')3: (45)

L2"' = —i'6~: [16(C'"F"")'
+24(p P")(C,C. ) (C, F"")
+»(F,p")(~-eC') (~'F')

+26(F .C'"")(4' &F ) j: (46)
If X;=)~, only the decay into two photons is possible.

If X,)A~, the phase-space volume is zero for all E.
where

P = 322rn2/3152i22.

We now consider restrictions placed on the photon-
splitting amplitudes by the requirements of relativistic
invariance, gauge invariance, and charge-conjugation
invariance. I.et us consider the photon splitting into X
photons. The corresponding transition amplitude must
be a scalar which is linear in the polarization vector of
the initial photon and antilinear in the polarization
vectors of the final photons. In addition it will depend
on the external Geld tensor F„„and photon four-
momenta. If we assume that the propagation of the
initial and final photons is not affected by the presence
of the external field, then it follows from the conserva-
tion of energy-momentum that all four-momenta must
be parallel. Under these assumptions the most general
form of the amplitude compatible with invariance re-
quirements must be of at least (N+1)st degree in F„„
We will confirm this prediction later by a direct
calculation in the case iV=2." This conclusion also
holds when the change in the propagation of photons
due to the external field is taken into account, because
these corrections bring again additional powers of Ii„„.
Even for the strongest external fields which we may
expect to Gnd in the cosmos, the dominant photon-
splitting mode will be that into two photons. The
splitting into a larger number of photons is suppressed,
owing to the smallness of both the amplitude and the
available phase space.

~6 All results for the photon-splitting amplitude (and the am-
plitude for the inverse process of the photon fusion) obtained in
Refs. 6, 9, and 10 are not only in mutual disagreement but also do
not comply with the invariance requirements discussed above.

The first expression is linear in F„„an@it will contribute
to the transition amplitude only when the corrections to
the photon propagation are taken into account. The
second expression, however, will contribute even when
the photons are considered to be free. The corresponding
two transition amplitudes will be denoted, respectively,
by T»nd T&.

In the approach based on Feynman diagrams, the
leading contributions to Tj would have come from the
diagrams containing corrections to external lines (Fig.
1) whereas the leading part in T2 comes from the
diagrams containing only one closed electron loop
(Fig. 2). One can infer from these diagrams that the
amplitude T~ will contain an additional factor o. as
compared to T~. The direct calculation of T~ is given in
the Appendix, and it confirms the expectation that the
contribution from T~ to the total decay rate is negligible.
The leading term in the amplitude T~ is

r2=i(0I a(k) d4x &2~(x)at(ki)at(k2)
I 0)

—iI4(22r) 48&4~(k —ki —k2) 4„.(k)

X[6P""P'P"+(13/'4) (P""F'P

+F~"P eF~'+F~"F ep~') j~.&'(k&) 4»"(k2)

=82@(22l') 8 (k ki —k2) 4p(k) {6a (k) a (kl) a (k2)

y(13/4) [ (k)a(kia)d~(k )y (k)a(k a)a~(k, )

+a&(k)a (ki)ae(k2)$}c '(ki)ee"(k2). (47)
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Pro. 1. Example of diagrams
containing corrections to external
lines.

The total transition rate for unpolarized photons is

Sy'(2m-) 4

-8~4&(k —ki —k,)
(1r) (2 )'2 (ki)2(v(k;)

X(6a"(k)a (ki)ap(k2)+(13/4)I al"(k)a (ki)ap(k2)

+a&(k)a (ki)aP(k2)+a&(k)a (k,)aP(k,)]}
X(6a.(k)a.(ki}up(k, )+(13/4) La„(k)a.(ki) ap(k. )

+d„(k)a (ki) dp(k, )+a„(k)d,.(ki) up(k, )]}
—1083w' d'k»d'ks

2(4vr)'co(k) o)(lri)co(k2)

X8 ~'i(k —ki —k,)a'(k) a'(ki) a'(kg)

1083p,
'
II

I
IQI'

2(4n-) '

extended to them at the Department of Physics of the
University of Pittsburgh during the academic year
1969—70. Professor P. Goldreich aroused our interest in
photon-splitting phenomena, and we would like to
thank him for correspondence on this subject.

APPENDIX

VVe will calculate here the amplitude T» in the special
(most favorable) case when the faster photon decays
into two slower ones in the presence of an external
Inagnetic field. The polarization vectors of the initial
and final photons are then e (k), c~(ki), and e+(k2). We
And

= ia(2') '8 «&(k ki —k2)—$2e+„,(kl) ~+""(k2)~ ~ap

+,'e „„(k)e-+~"(ki)e+ P(km)P. p

+-,'~ „„(k)g+&"(k2)e~ P(ki)P p], (A1)

where we used the following properties of polarization
vectors in the pure magnetic field:

After the integration over k» and k2, we obtain

361
-u'I I

I
'I Q I

'
1607t

=o »~'(I l I/~)'(ul Q I
'i~')'I &

I (49)

Even for hard y rays (E~=50 keV, IkI/nz 10 ') and
a magnetic field of 10"G (I Q I

= 10"G/Q(4r)), we get
an exceedingly small transition rate. The photon mean
free path with respect to photon splitting is in this case
of the order of 10" cm.

Thus our result shows that even under most favorable
conditions which one may expect to find in the vicinity
of a neutron star, we can safely&disregard the photon-
splitting processes.
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FIG. 2. Example of diagrams
containing only one closed electron
loop.

With the use of Eq. (30), this further reduces to

Ti= —2ia(2ir)48&+(k —ki—k2)a(k)u(ki)n(k2)

X(4u (k)I ki k2d(k&) d(k&) —ki a(k2)k2 I1(ki)]
+7a'(ki)I k.k2a(k) a(k,)+ (k, a(k))' —kPa'(k)]
+7a'(k2)I k kia(k) a(ki)

+ (ki a(k))' —kPa'(k)]}. (A2)

It shows that the amplitude T» does not contain a
zero-order term since all products like k', k»', k&', k»-k~,
k ki k kg, ki a(k2), kg a(ki), ki u(k), k2 a(k) are of
higher order. The leading term in the amplitude T»
calculated in the case when kg 3 in the special coordi-
nate frame in which k=

I
lr

I (1,0,0), 3=
I
3

I (0,0,1), and
ki= ('r, P sing P cosp) ls

T&=a(2ir)'b(~ (lr) —~+(ki) —~+(k2))8"&(k—ki —k2)

X 2~
I
& I I

& I'L2&
I
& I'—8

I
Ir I7—42m'

—sin P(36 I
lr

I
—42

I
lr

I y+8+2)] (A3)

The corresponding transition rate 8' is

I4'= »1~ "41~ I'I
&
I'=10 '~'(I &I/~)'(~ I

~ I'/~')'I &I.

It is much smaller than the transition rate for the
amplitude T2 owing not only to the additional factor of
n' but also to a much smaller~numericaljfactor.


