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The problem of the quantization of the Maxwell equations is analyzed in connection with the basic as-
sumptions of quantum field theory. It is shown that it is impossible to quantize the Maxwell equations
by means of a potential A„(x) which is a weakly local field. Thus, a result which was known for the Coulomb
gauge is shown to hold in general: The quantization of the Maxwell equations requires the use of a potential
A„{x)which is both noncovariant and nonlocal. It is shown that a weakly local and/or covariant operator
A„(x) can be introduced only in a Hilbert space in which the vectors corresponding to physical states do not
form a dense set, and therefore unphysical states must be present. The connections with the Gupta-Bleuler
formulation are discussed.

I. INTRODUCTION

ECAUSE of the interplay between the Poincare
and the gauge groups, the quantization of the

Maxwell equations has encountered many and serious
difficulties since the beginning of quantum Geld theory. '
Several solutions of this problem have been put for-
ward, but the real core of the problem has not been
suKciently clarified. As a matter of fact, almost every
year a new paper on this subject is published proposing
a solution of the gauge problem in quantum electro-
dynamics.

The best known solutions of the quantization of elec-
trodynamics are essentially two. One involves indefinite-
metric and covariant fields (Gupta-Bleuler formula-
tion'), the other uses noncovariant fieldss (Coulomb- or
radiation-gauge formulation). We will comment later
on the difhculties connected with the Coulomb gauge.
As far as the Gupta-Bleuler formulation is concerned,
we do not Gnd it very appealing from a physical point
of view, for the following reasons.

(a) Unphysical particles have to be introduced in the
theory.

(b) The Hilbert space has to be equipped with an in-
deGnite metric, and one is faced with the problem of
giving a meaning to states of negative norm, to negative
"probabilities, " etc.

(c) The unphysical photons enter into the theory with
a gradient-type coupling to the electromagnetic current

@int~ J fib~" p p

and the widespread belief that these particles do not
' W'. Heisenberg and %. Pauli, Z. Physik 56, 1 (1929); 59, 169

(1930); E. Fermi, Rend. Accad. Nazi. Lincei 2, 881 (1929); Rev.
Mod. Phys. 4, 87 (1932); P. A. M. Dirac, V. A. Fock, and B.
Podolsky, Z. Physik Sowjetunion 2, 468 (1932).' S. N. Gupta, Proc. Phys. Soc. (London) 63, 681 (1950);K. T.
Bleuler, Helv. Phys. Acta 23, 567 (1950).' P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 243 {1927);
A114, 710 (1927); W. Heitler, The Qmawrurl Theory of Radiafiow,
3rd ed. (Oxford U. P., New York, 1954); P. A. M. Dirac, The
Principles of Quantum Mechanics, 4th ed. (Oxford U. P., New
York, 1958); J. Schwinger, Phys. Rev. '74, 1439 (1948); 127, 324
(1964); S. Weinberg, ibid. 134, B882 (1964); 138, B988 (1965).
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contribute to anything is not correct. As a m.atter of
fact, it has been proved that the above interaction
affects the renormalization constants by infinite
amounts. 4

(d) The presence of unphysical particles in the theory
gives rise to complications when one tries a I.ehmann-
Symanzik-Zimmermann (I.SZ) formulation of quantum
electrodynamics. ' In fact, the physical photon states do
not form a complete set of states, and therefore the
asymptotic limit for the interpolating Geld, which may
create unphysical photons, must be combined with a
gauge transformation. ' We will comment on this point
later (Secs. VII and VIII) in more detail.

(e) The Maxwell equations are not satisfied when ap-
plied to the vacuum state. More precisely, the equation

8"F„„+0=0

does not hold as an equation in 3'., the Hilbert space in
which A„(x) is de6ned as a local covariant operator.
This last appears to us as an unpleasant feature of the
Gupta-Bleuler formulation. For a more detailed dis-
cussion of the Gupta-Bleuler formulation see Secs. VII
and VIII.

In conclusion, we Gnd it dificult to regard the Gupta-
Blueler formulation as a completely satisfactory solu-
tion of the problem of quantizing the Maxwell equations.
As a matter of fact, the difhculties of quantizing the
Maxwell equations have been overcome by changing
the equations and, to a certain extent, the physical con-
tent of the problem.

A natural question at this point is why the quantiza-
tion of the Maxwell equations encounters such diK-
culties. Do the difhculties arise because we insist on
asking for unnecessary conditions or is there something

4 S. Okubo, Nuovo Cimento 19, 574 (1961);A. S. Wightman,
in Cargese Lectures in Physics, edited by M. Levy (Gordon and
Breach, New York, 1967), Pt. III, Vol. 1; B. Klaiber, Nuovo
Cimento 36, 165 (1965}.

K. Nishijima, Phys. Rev. 119, 485 (1960); H. Rollnik, B.
Stech, and E. Nunnemann, Z. Physik 159, 482 (1960);R. E. Pugh,
Ann. Phys. (N. Y.) 30, 422 (1964); R, Q. Willey, Qniversity of
Pittsburgh report (unpubhshed).
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fundamental at the roots of this problem? The impres-
sion one gets from the literature is that the de.culties
connected with the quantization of the Maxwell equa-
tions have a rather accidental origin. As a matter of
fact, it appears as if all the troubles arise because one
insists on the Lorentz condition B„A&=0 and one re-
quires a positive metric in the Hilbert space. Now, none
of the above conditions are really necessary. Even
classically, there is no need for imposing the Lorentz
condition in the Maxwell equations

Poincare group (g,h.) ~ U(a, A) such that one has

U(o,A)F„„( )U(o,A) '=A ' A '„'Fp,(Ax+a). (3)

(3) There exists an invariant state 4'o (vacuum state)
such that

U(a,A)eo=+o (4)

Now, the second set of Maxwell's equations is equiv-
alent to the statement that F„„may be written as a
four-dimensional curl of a potential A„,

g„„—B„a„)A"=0.

Thus, one may wonder about the possibility of quantiz-
ing the Maxwell equations without imposing any of the
above conditions.

Unfortunately, as we shall see below, the difficulties
connected with the quantization of the Maxwell equa-
tions have very deep roots. They have very little to do
with the Lorentz condition and the indefinite metric,
in contrast with what is generally stated in the litera-
ture. Rather, they are connec'ted with some of the basic
principles of quantum 6eld theory.

The aim of this paper is to show which of the basic
assumptions of quantum field theory conQict with the
quantization of the Maxwell equations. The natural
framework for the discussion of this problem is the
Wightman formulation of quantum field theory.
Therefore, even if we do not use all of the Wightman
axioms, we shall follow the Wightman formulation as a
guide.

II. QUANTIZATION OF MAXWELL EQUATIONS:
BASIC ASSUMPTIONS

BqFf""=0,

e„„p 8"I'& =0 (2)

Among the many advantages of these equations, we
want to stress the fact that they do not involve un-
physical particles and do not suffer the ambiguities
connected with the gauge problem.

(1) The fields F„„(x) may be deaned as operator-
valued distributions in a Hilbert space 3'..

(2) There exists a "unitary" representation of the

In order to clarify the crucial points in the quantiza-
tion of the Maxwell equations, we will proceed by suc-
cessive steps. We will successively adopt some of the
basic assumptions of quantum field theory (Wightman
axioms), and we will point out when the contradictions
arise. In this way, it will be clear which of the funda-
mental axioms of quantum field theory cannot be rec-
onciled with the quantization of the Maxwell equations.

(0) Definstioe of the Problems We want . to describe
massless spin-one par ticles. According to the representa-
tions of the Poincare group, we have to use an anti-
symmetric tensor F„„and to impose the Maxwell
equations

so that the quantization of the electromagnetic 6elds
may be reduced to the problem of quantizing the po-
tential A„. The use of the potential A„ is in fact neces-
sary if one wants a connection with conventional quan-
tum electrodynamics. As a matter of fact, we are not
able to write down a local interaction Lagrangian in
terms of Ii „„.In addition, the fields J „„cannot account
for the production and absorption of soft photons which
are instead characteristic features of electromagnetic
interactions (long-range forces):

Thus, in any case, the fields F„„cannot reasonably be
expected to enter into transition amplitudes or 5-
matrix elements.

In conclusion, there is little hope of having a reason-
able quantum field theory of electrodynamics involving
only the fields F„„,and the introduction of the potential
A„appears to be an unavoidable step in the quantiza-
tion of the Maxwell equations. Therefore we shall make
the following assumptions.

(1') The fields A„(x), ti =0, 1, 2, 3, may be defined as
operator-valued distributions in a Hilbert space K.

(4) The fields A„(x) transform correctly under the
space-time translation group

U(u, i)A„(x)U(a, i)—'=A„(x+a), (6)

and the spectral condition' is satis6ed.
Before proceeding further, it is convenient to corn-

ment on the mildness of the above assumptions. The
statements (0), (1), and (1') are essentially the defini-
tion of the problem. It is worthwhile to stress that no
restriction has been made on the type of operator-
valued distributions, i.e., on the kind of singularities
which the fields F„„and/or A„may have. (In the con-
ventional Wightman theory, the fields are assumed to be
operator-valued. tempered distributions. ) Condition (2)
is merely the statement that the electromagnetic 6elds

6 A. S. Wightman, Phys. Rev. 101, 860 (1956); Lectures given
at the Faculte des Sciences, Universite de Paris, 1958 (unpub-
lished), and in Les Probtemes Mathematigles de 4 Theoric Qgan-
tiqme des Champs (Colloques Internationaux du Centre Nationale
de la Recherche Scientifique, Paris, 1959); A. S. Wightman and
L. Ga,rding, Arkiv Fysik 28, 129 (1964); R. Streater and A. S.
Wightman, PCT, Spin and Statistics and All That (Benjamin,
New York, 1964).
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F„„are observable quantities and therefore they must
transform as the component of a second-rank tensor
under the Lorentz group. The situation is different for
the potential A„, which is not an observable quantity.
As a matter of fact, up to now no assumption has been
made about the transformation properties of A„under
the Lorentz group. The four Gelds A„(x), @=0, I, 2, 3,
are not restricted to behave as the components of a
four-vector. Weak local comme. tativity is not assumed
to hold for the Geld F„„(x)and/or A„(x).

It may be worthwhile to remark that the above con-
ditions, and in particular Eq. (6) and. the spectral
condition, are obviously satis6ed in the standard quanti-
zations of the Maxwell equations, as in the Gupta-
Bleuler or in the radiation gauge formulation, in spite
of the many contradictory statements one may 6nd in
the literature.

Finally, we want to stress that no assumption has
been made about the positivity of the metric in the
Hilbert space K in which A„(x) is defined. It may very
well be that the physically meaningful quantities such
as the transition probabilities, vacuum expectation
values, etc., have to be de6ned in terms of a "product"
(, ) between vectors, which does not coincide with
the scalar product (, ) in 3!. The product (4i,%)
between the two vectors %i, 0'2 may be de6ned as a
sesquilinear form

then necessarily one has A„(x)=B„y(x), i.e.,

F„„(x)=0.
For the details of the proof, we refer the reader to Ref. 7.

Here, we want to remark that Lorentz covariance is
one of the building stones of axiomatic Geld theory.
All the mathematical tools, such as analytic continua-
tion of the Lorentz group, analyticity domain of the
Wightman functions, etc. , are based on the Lorentz
covariance of the fields. Thus, the impossibility of
having a quantum field theory of the Maxwell equa-
tions, defined in terms of a covariant potential A„(x),
has rather unpleasant consequences. For example,
almost all the interesting results of the Wightman
theory, such as the TCP theorem, the connection be-
tween spin and statistics, etc., have no sound basis in a
non-manifestly covariant theory.

Clearly, no de.culty arises if the theory is formulated
only in terms of the fields F„„(x),which may be defined
as covariant Gelds. In this sense, one may have a co-
variant quantum field theory of Maxwell equations.
Difhculties, however, arise when one wants to deal with
the interacting case. Local interactions, S-matrix ele-
ments, etc., require the introduction of the potential
A„(x), which should have an asymptotic limit A"„(x).
As shown above, the free Geld A'"„(x) cannot be defined
as a covariant field.

(+i,@s)= (tiki, @s),

where q is the "metric" operator. In this case, the vac-
uum expectation values are de6ned, e.g. , in the following
way:

(+„A„(x)A„(y)e,)= (t7% s,A„(x)A„(y)%s).

It is important to remark that the unitarity of the
representation of the Poincare group is defined in terms
of the product (, ). This last, in fact, occurs in the
definition of observable quantities. The results of the
present paper are independent of whether g = 1 or g/ 1.

In the following sections, we will see that inconsist-
encies arise when additional assumptions such as
Lorentz covariance or weak local commutativity, are
made on the fields.

III. DIFFICULTIES OF QUANTUM FIELD THEORY
OF MAXWELL EQUATIONS: LORENTZ

COVARIANCE

The Grst basic difhculty connected with the quantiza-
tion of the Maxwell equations is the Lorentz covariance.
In fact, if we require that the Gelds A„(x), p =0, I, 2, 3,
transform as the components of a four-vector, we get a
trivial theory. More precisely, if one adds to the pre-
vious conditions the requirement

IV. DIFFICULTIES OF QUANTUM FIELD THEORY
OF MAXWELL EQUATIONS: WEAK LOCAL

CON MUTATIVITY

Independently of the above result, one may wonder
about the possibility of quantizing the Maxwell equa-
tions in the framework of quantum 6eld theory. The
point is to understand whether Lorentz covariance is
the only difhculty and whether one may hope to get a
reasonable quantum Geld theory of the Maxwell equa-
tions by using noncovariant Gelds. As a matter of fact,
it is not obvious whether one may have a Wightman-
type formulation of electrodynamics satisfying all of
the Wightman axioms except Lorentz covariance.

In order to clarify the above problems, we shall in-
vestigate the possibility of imposing one of the basic
assumptions of quantum 6eld theory: weak local com-
mutativity. Again we will 6nd that this assumption is
incompatible with a nontrivial quantum theory of the
Maxwell equations.

We shall now investigate the possibility of a quantum
6eld theory of the Maxwell equations, in which the
potential A„(x) satisfies weak local commutativity
(WLC), i.e.,

(+o P (f) A (g)3+o) =0 if s"ppfXsuppg (&)

(suppfXsuppg means that the support of f is space-
like with respect to the support of g, i.e., that any point

(5) U(O, A.)A„(x)U(0,h.) '=h. ' &A (Ax) ' F. Strocchi, Phys. Rev. 162, 1429 {1967).
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of suppf is spacelike with respect to every point of
suppg).

We will show in Sec. V that if conditions (0)—(3), (1 ),
(4), and (7) are satisfied, the theory is trivial and does
not describe physical photons.

formations) as a consequence of condition (7). Then,
one may show that an analog of the Bogoliubov-
Vladimirov theorem holds' and the possible nonco-
variance of P,„(s) is at most polynomial. This means
that P,„(s) can be written in the following form:

V. IMPOSSIBILITY OF LOCAL QUANTUM
THEORY OF MAXWELL EQUATIONS

In order to prove the announced theorem we consider
the following Lemmas.

Lemma 1. Condition (2) restricts the possible non-
covariance of A„(x) to the following kind:

M 3

~-()= 2 Z ('"-'". "&P'- "'"'(")"- '.
k 0 i~ 0

or, equivalently,

N 3 8 8
V .(s) = P P c' - ' &'"&- -" —f"-' '"&(s')

k=0 iE=O ~~i1 ~~ik

"(*)+ " (*' ' Taking the boundary value of the above equation gives

where F(x,h.) is a field of which we do not specify the
transformation properties under the homogeneous
Lorentz group.

Proof. By assumption (2) there exists a unitary repre-
sentation {O,A} -+ U(&A) of the homogeneous Lorentz
group, and therefore we may consider the action of
V(O,A) on A„(x). Without loss of generality, we may
write

A. '„pU(O,A) 'Ap(Ax) U'(O, A) =A„(x)+F„(x,A).

Then, by taking the four-dimensional curl of the above
equation and comparing the result with condition (2),
we get

a„r.(x,A) —a„e„(x,A) =0, (9)

i.e., F„(x,A) may be written as the p derivative of a field

N 3

~-(*)=Z Z "-;,'"& . . f',-.", "'(), (12)
k=0 s& 0 gg.1 Bg'k

where f;,...;,.&'" (&)xare Lorentz invariant distributions.
In momentum space we have

N 3

+-(P) = 2 Z s'o'i- 's'"&P*i P'.f'i- ~p'"&(P),
k=0 i~=0

and we may reorder the above sum in such a way that
terms belonging to the same irreducible tensor represen-
tation are grouped together:

o'-(p) = r. 2'~'"'(P)
k 0

S„(x,A) =a„S(x,A).

I.emma 2. The two-point function

r„,.(x—y) =—(+p,A„(x)F,.(y)+p)

(10) where

T' '"'(P)= Z s'e'- '"'P P f '"'(P)

where

9"=—{s~

—~ (Res( o&, Ims& V+},

V+=—{x~xis a four-vector, x')0, xp)0}.
The analyticity domain of P,„(s) can be extended to the
extended tube 9"'=—{union of the open sets obtained
from V by applying all proper complex Lorentz trans-

transforms covariantly under the homogeneous Lorentz
group, i.e.,

~„,.(AP) =A„~A, A. S„„(P).

Proof. By inserting U(0,h.) U(O, A) ' into Eq. (11) and
using the transformation porperties (2) and (8), we get

~...(~) =A."A,.A:L~...(~)+~ (~.,~(*,A)P„(y)~.)j
Hence, in order to prove the lemma we have to show
that the two-point function

V,„(t)—= (+„S(x,A)P,„(y)e,)
vanishes.

Now, as a consequence of condition (4), F,„($) may
be regarded as the boundary value of an analytic func-
tion F,„(s), which is analytic in the forward tube 9':

Furthermore, we reorder in such a way that the above
formulas show the "minimal" noncovariance. By this
we mean that it does not contain terms that reduce to a
covariant function when grouped together. For example,
terms like

. (7'y)~g1aq~ . . .~. g. . (VV)(~
p'a]. p'skj sl ~ ~ ~ See

(g"'2 being the metric tensor) will not appear explicitly
in the above expression.

%'e will now exploit the full consequences of the Max-
well equations

CIP„.(x)Op=0, B~P„„(x)+p=0.

They imply the equations

aS,.(x) =0, a 5:„„(x)=0,
or, in momentum space,

P'&-(P) =o, P'&-(P) =o (13)

The 6rst equation implies the vanishing of each ir-

¹ ¹ Bogoliubov and V. S. Vladimirov, Nauchn. Dok1.
Vysshei Shkoly 3, 26 (1958); J. Bros, H. Epstein, and V.
Glaser, Commun. Math. Phys. 6, 77 (1967).
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reducible tensor

)' '"'(P)=Z '" * '"'P P )' " ' '"'(P) (14)

where

h' -'.'"'(P) =p'f' -'.'"'(P),

and, since the tensors p;, ...p;, are linearly independent,
each coeKcient h;, ...,,~'")(p) must vanish. Then, one
may write

f' " '.'"'(P) =~' -'.'"'(P)~(p').

when F;(s), i = 1,. . .4, a,re invariant under L+(C),

F;(h.s) =F;(s), h.&L+(C)

and, therefore, they may be written as functions of s'.
Then, by using the same technique discussed elsewhere"
a,nd the antisymmetry of F„,Eq. (16) may be written
in the equivalent form

8 8
5:„,.(z)=(g.. —g.. &(E')+".- &(~'). (&&)

Bsp Bs0 cISg

Finally, by using microscopic causality or ~.c, one gets By going to the boundary value, we get

f*"'.""'(P)=l'- '.'"'0(P)&(p')

where the X's are constants and may be eliminated by
a rede6nition of the c;,...;,{'")'s:

~-(P) =(E ." '.'"'P' P")e(p)&(p')

We will now use the second of Eqs. (13). Again, by a
reasoning similar to the previous one, each tensor

&...(*)= (g..
BXp

8 8—g„,—F(x)+e„,.; G(x)—, (18)
t9Xrr BXg

F and 6 being Lorentz-invariant distributions. Finally,
by using the Maxwell equations-. on F», we get

(ag„.—B„B.)F(x) =0,
(~g„),—8„8),)G(x) =0.

ZP"' -*.'"'P' - P'P(p) ~(p') The above equations have been shown" to have only
the trivial solutions

=Zo* -'.', '"'p' p'.p', ~(P)~(p')

must vanish. This is possible only if the c's are of the
form

. . {i)~rr. i~~. . . . (g)C j1 "jfriz g jg nil ~ ~ ~ tl-ltl+Iig

(g being the metric tensor). Therefore, we have

5:-(P)=P.(Zc' - '.'"'P' .P'.)0(p) ~(P') .

The argument may be repeated for the index v, yielding

~-(P) =P P (Z~' - *.P' "P'.)0(p)~(p ) (15)

Finally, by the antisymrnetry of F„„,S,„must also be
antisymmetric under the exchange of r and v, and,
therefore, the above Eq. (15) gives

~-(P) =0.

Ke may now prove the following theorem.
Theorem: If conditions (0)—(4) and (7) are fulfilled,

one has

Proof. As a result of the previous lemrnas, the two-

point function 5:»,(() yields a representation of the
complex Lorentz group L+(C), when analytically con-
tinued to complex z. Then by the Araki-Hepp theorem, ~

one may write 7» (s) in the following form:

~,.()=g...F.()+g...F.( I
+g„,s„F3(s)+e».,s'F ~(s), (16)

' K. Hepp, Helv. Phys. Acta 36, 355 (1963}.

F(x) =const, G(x) =const.

Hence, one gets

~„,.(x) =0.

The conclusion of the above theorem implies that the
two-point function of the electromagnetic 6eld vanishes:

(e„F„,(x)F,.(y)e,)=0, (20)

and there is little hope of having a nontrivial theory,
as is shown in the following corollary.

Corollary. Let Do be the set of vectors of K, which are
obtained from the vacuum state by applying poly-
nomials in the smeared fields F„,(f), and let the metric
operator g be non negative on Do. Then F» ——0 implies
tha, t all the Wightman functions of the field F„„(x)
vanish, i.e., the theory is trivial:

"F.Strocchi, Phys. Rev. 162, 1429 (1967};166, 1302 (1968}."S. Weinberg, Phys. Rev. 134, 3882 (1964};138, 3988 (1965}.

Proof. It is not dificult to see that if 4'&DO and

(+,+) =0, then (V,C) =0 for any 4 &DO, provided that
q is non-negative on Do Now, Eq. (20) im.plies

(F"(f)+o,F"(f)+o) =o

(F„„is Herrnitian with respect to q). Thus

(+.,F'"(f ) F,.(f-)+.)
(F"(fi) Fi.(f--i)+o,F"(f-)+0)=o .
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VI. REPRESENTATIONS OF POINCARE AND
GAUGE GROUP FOR MASSLESS

SPIN-ONE PARTICLES

We may now discuss the implications of the previous
results in terms of the representations of the Poincare
and gauge group for massless spin-one particles.

A detailed analysis of helicity representations has
been given by Weinberg" under the following assump-
tions.

(a) The Hilbert Space is equipped with a positive
de6nite metric, p=i, and therefore the analysis of the
representations of the Poincare group follows the
standard pattern.

(b) The discussion is carried on in the Fock repre-
sentation and the representation is realized with
tempered fields.

(c) The Lorentz condition

is imposed on the potential A„as an operator identity.
(d) The fourth component Ao of the potential is

required to vanish. In this framework, the representa-
tion obtained is the Coulomb or radiation gauge, as
could have been anticipated:

U(O, h)A„(x) U(O, A)
—'=h. '„&Ap(kx)+8„4(x; A),

Ao ——0, divA =0.

As is known, the Coulomb gauge has two disadvantages:
(i) It is not manifestly covariant; (ii) it is nonlocal in
the sense that the fields do not satisfy weak local
commutativity.

Actually, one has

fA;(x),A;(y)j=ib;,A(x —y; 0) i(8,8~/ (
V

~

'—)6(x—y; 0)

and the second term is clearly nonlocal, i.e., it does not
vanish for spacelike separations.

For the above reasons, the Coulomb gauge was not
regarded as a good candidate for a Wightman formula-
tion of quantum electrodynamics.

The natural reaction to the difhculties of the Coulomb
gauge is to regard them as the price for the very strong
assumptions (a)—(d). One might hope to get a more
reasonable theory by rejecting some of the above as-
sumptions. For example, by working in a Hilbert space
with a non-positive-definite metric, one should look for
representations of the Poincare group which are "uni-
tary" with respect to the metric operator

U(a, A) rtU(a, A) I = rt,

and the analysis of these representations is not known. "
Moreover, one might hope that a suitable choice of the
phases of the helicity representation could give locality

' A. S. Wightman and L. Garding, Arkiv I'ysik 28, 129 (1964).

VII. WEAK LOCAL COMMUTATIVITY AND
UNPHYSICAL STATES

Iri conclusion, one may say that the quantization of
the Maxwell equations, even in the weak form

B„F""0'o=0,
e""I'~B F %o=0,

(21)

(22)

can be done by means of a potential A„(x), only if
A„(x) is (i) noncovariant and (ii) nonlocal.

In order to get a local and covariant theory avoiding
the above difficulties, Eqs. (21) and (22) must be
abandoned. On the other hand, if the theory must have
any contact with quantum electrodynamics, one is
forced to have the Maxwell equations satisfied at least
in the "mean. "This means that one may require that
the Maxwell equations are satished only when one takes
the mean values of Eqs. (1) and (2) on the physical
states.

Here, and in the following, a vector of 3'. correspond-
ing to a physical state is a vector belonging to the set
Do defined, in the corollary of Sec. VII.

Thus, instead of Eqs. (1) and (2), one has

8~(%,F„,C) =0, e""B„(O, ,F. )4=0, (23)

where O', @ADO. It is important to remark that Eqs.
(23) are rather weak equations; in fact, D, cannot be
dense in K, as shown by the following statement.

Sfutenseet. In a weakly local theory with the properties
(1)—(4), the set of physical states D„on which Eqs. (1)
and (2) hold in the mean, cannot be dense in K.

In fact, the equations

(0 8 F&"4)=Q, e"~ cj (4F 4 )=Q

with 0' running over a dense subset of 3'., imply

(VO,A,B&F„„%0)=0, (% O,A, e&"~~8„F,.+,) =0.
By the previous theorem, the above equations lead to a
trivial local theory.

An alternative way of stating the above result is that
the vacuum 4'0 cannot be a cyclic vector uith respect to the

polynomial algebra of observable fields F„„.
Thus, one cannot hope to realize a local quantum

held theory of the Maxwell equations by means of a
potential A„(x), in a Hilbert space K in which the
physical states form a dense subset of BC. Alternatively,

if the two conditions

Ao(x) =0, B&A„(x)=0

are relaxed. Unfortunately, this cannot happen.
The results of the previous sections show that the

difFiculties of the Coulomb gauge, i.e., (i) noncovariance
and (ii) nonlocality, have a very general character. As a
matter of fact, they appear to be necessary features of
the quantization of the Maxwell equations by means of a
potential A„(x).
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VIII. COMMENTS ON GUPTA-BLEULER
FORMULATION

As anticipated in the previous section, the Gupta-
Bleuler formulation is essentially forced by the require-
ment of locality and Lorentz covariance. It may be use-
ful to check explicitly how the Gupta-Bleuler formula-
tion escapes the difhculties discussed in the previous
sections.

To this purpose, we introduce the subspace K~&K
deGned as the set of vectors 4 such that

B~A„+(x)e=O. (24)

$B&A„+(x) is the positive-frequency part of the operator
B~A„(x).j

Equation (24) is the Gupta-Bleuler substitute for the
Fermi condition

8&A„C =0. (25)

This last equation leads to inconsistencies. For example,
if one takes the vacuum state 0 0 for the physical state
4, one has by Eq. (25),

(VQ, A„B&A„%'Q)=0,
whereas the equation

one may say that a local Geld A„(x) cannot be intro-
duced in D0. The introducting of unphysical states, in an
essential way, is a necessary step if one wants to de6ne
A„(x) as a weakly local operator.

Finally, we want to recall the following theorem.

Theorem. The vector potential A„(x) can be defined
as a weakly local and Lorentz-covariant operator-
valued distribution only in a Hilbert space with indef-
inite metric.

Proof. See Ref. 12.
The results of this section show that the introduction

of unphysical states and the inde6nite metric are neces-
sary features if A„(x) has to be local and covariant. All

this leads essentially to the Gupta-Bleuler formulation.

Without any reference to Eq. (26), one may im-

mediately see that Eq. (25) leads to a theory that is
either trivial or inconsistent. In fact, Eq. (25), together
with C]A„V=O, leads to the Maxwell equations (21)
an.d. (22), when. 4'p is taken as the physical vector O'. As
shown in Sec. VI, this leads to a trivial local theory.

The above paradox does not arise if one uses Eq. (24)
instead of Eq. (25). As a matter of fact, in the Gupta-
Bleuler formulation the Maxwell equations do not hold
when applied to vectors of D0 or when applied to vectors
of Ky&DQ. One has instead

(+ B"F"(f)c')=o (+ """B.F.-(f)c') =o

for any two vectors +, 4+Dp. In particular, by taking

4=B"F„p(f)4, 4=4""I"B„Fp,(f)C',

one has that even if the Maxwell equations do not hold
when applied to vectors of Do, they yield vectors of zero
length. One may say that the Maxwell equations can be
regarded as equations in BCq(XQ, where BCQ is the set of
vectors of BC~ with zero length.

Finally, it is not difficult to see that in the Gupta-
Bleuler formulation one has

(+Q,A (x)F (y)+Q) = (g B —g B )D(x—y), (27)

in agreement with Lemma 2 and Eq. (17) of Sec VI.
Equation (27), however, does not imply a trivial theory,
again because the Maxwell equations do not hold as
equations in D0.

From Eq. (27), one has, in fact,

(op,A„(x)B&F,.(y)% p) =B„B.D(x y) ~0. —
This is not in contradiction to Eq. (23), as A„(f)%p is
not, in general, a vector of DD. One has a physical state
if one takes the vector

A(f) +Q=A„(x)f—~(x)epd4x,

where f"(x) is a test function satisfying

(+o,A.(x)A.(y)+.)=g"D(x—y) (26) B„f&(x) =0.
(which is assumed to hold in the Fermi theory) gives

(ep, A„B&A„@p)=B„D(x—y) &0.

To "explain" this paradox, it has sometimes been
concluded that the vacuum has ininite norm, that it is
not a vector of K, or that it is not a physical state.

In this case, however, one has

(e ,0A( f) B' F,.( y)e )Q= B.D(x y)B„f (x)d4x=o, —

in agreement with Eqs. (23).


