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Construction of Convergent Dual Loops
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Starting with a generalized representation for the multiparticle dual amplitudes, we present a construction
of convergent dual loops. This is done at the expense of a simple condition to be satisfied by the universal
functions which enter into our representation. The case of nondegenerate trajectories is discussed, and it is
shown that the convergence of the loops does not depend on any condition on the Regge intercepts.

I. INTRODUCTION and show that it is possible to construct convergent
loops without imposing any conditions on the intercepts.
Thus Olesen's conditions are a reflection of his use of a
particular form for the tree graphs and not duality as
such.

In Sec. II we discuss the single and double factoriza-
tion of our generalized tree graphs using a five-
dimensional oscillator formalism. In Sec. III the
construction of the dual loops is done following the
method of Amati, Bouchiat, and Gervais' and the
condition of convergence is obtained. Section IV deals
with this condition and Sec. V contains a discussion of
the case of nondegenerate trajectories. In Sec. VI we
present a discussion and conclusions.

POSSIBLE procedure for the unitarization of dual
resonance models has been to associate the multi-

particle dual amplitudes' with the "tree graphs" or
Born terms in a perturbation series. For this purpose,
expressions for higher-order loops were constructed, '
using as a guide the so-called "tree theorem, "namely,
that the residue of the loop amplitude at a pole corre-
sponding to an internal line must coincide with the
corresponding double factorized tree graph. Starting
with the usual dual amplitudes, it was found that the
loops diverge exponentially and hence do not exist. This
was attributed to the large number of resonances in the
particle spectrum involved in the dual amplitudes.

Recently a generalization of the multiparticle dual
amplitudes' 4 has been presented, in which the particle
spectrum may be richer than before, but with the
difference that the couplings of the various resonances
is to a large extent arbitrary. The natural thing to ask
then is whether it is possible, starting with these
generalized amplitudes, to construct convergent loops-
the hope of success being based on the idea that in spite
of the richness of the spectrum, one may use the arbi-
trariness in the resonance couplings to suppress a great
portion of it.

This question is discussed in this paper ag.d answered
in the affirmative. It is possible to construct convergent
loops if a simple condition is satisfied by one of the
universal functions that enter into the generalized
representation of dual amplitudes with which we start.

We should point out here that recently Olesen' has
discussed this problem and arrived at a convergent loop
in the case of nondegenerate trajectories. This is done
at the expense of a certain condition that the Regge
intercepts must satisfy. We briefly touch on this case

II. GENERALIZED TREE AMPLITUDE IN A FIVE-
DIMENSIONAL OSCILLATOR FORMALISM

The essentially new input into the construction of
convergent dual loops is a generalized expression' ' for
the tree graph shown in Fig. 1. Following the notation
of Ref. 4, this expression takes the following form:

N
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The two universal functions f(s) and R(s) must.
satisfy some simple conditions and equations which are
also discussed in Ref. 3. We only remark here that to a
large extent they are arbitrary.

The choice f(s)=1—s and E(s)=1 leads to the
expressions for the tree graphs usually employed.'The five-point function was given by K. Bardakci and H.

Ruegg, Phys. Letters 28B, 342 (1968), and by M. A. Virasoro,
Phys. Rev. Letters 22, 37 (1969). The generalization to multi-
particle amplitudes was given by H. M. Chan, Phys. Letters
28B, 425 (1969); H. M. Chan and T. S. Tsnn, ibid 28B, 485.
(1969); C. Goebel and B. Sakita, Phys. Rev. Letters 22, 257
(1969);K. Bardakci and H. Ruegg, Phys. Rev. 181, 1884 (1969);
Z. Koba and H. B.Nielsen, Nucl. Phys. B10, 633 (1969).

2 K. Bardakci, M. B.Halpern, and J. Shapiro, Phys. Rev. 185,
1910 (1969); K. Kikkawa, B. Sakita, and M. Virasoro, ibid.
184, 1701 (1969).

~ Khalil M. Sitar, Phys. Rev. 186, 1424 (1969).' Khalil M. Bitar, Phys. Rev. D 1, 3319 (1970).' P. Olesen, Nucl. Phys. B18, 473 (1970).
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FIG. 1. Multiparticle tree graph.

6 D. Amati, C. Bouchiat, and J. L. Gervais, Nuovo Cimento
Letters 2, 399 (1969).
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In this section we shall use a five-dimensional
oscillator formalism to reexpress Eq. (1) as the vacuum
expectation value of the factorized product of operator
vertices and propagators. We are only extending here
the usual four-dimensional oscillator formalism. The
extra modes introduced reQect, as we shall see, the
arbitrariness in our universal functions.

quantities L&"' and E&"' as follows:

k—1
F(")=p),+Q p s-t"p

Q —ps+1+ P pk/t, r prat,
r=k+1

(10)

A. Single Factorization

One may write Eq. (1) asr

k—1
I-(")=1+2 p, ,s-i",

+0, ...,N+2 Il, k—ilk+1, N d~k+k &(")=1+ Q p~+i.."
r=k+1

(12)

Xf(x )+2 ny no+ +Big(-x)s One also expands lnf(s) and in'(s) about the point'

II f(p„) "'""~(p„), (2)
'=':

where

N & g'& k & i & 1,q'~i

lnf(s)= g c„s",
n=l

(13)

Il, k—1 g] ~ ~ ~d
k—1

dxt- t II x; 1nR(s) = P d„s".
n=l

(14)

xII f(.;)--' '"- ~(*,)

x II f(p* )"'"""'"&(' ) (3)
k—1& j&i& I

Combining Eqs. (7)—(14), one is led to the following
expressions for F and G of Eqs. (5) and (6):

F=f(xs)' expLP c„xnan(2aF(n'Q(n)) 1 (15)

Ik+1,N dxk+] ' ' '
N

dx~ II x;—o'—'
i=k+1

G =exp/+ d„xs (")(I.("'E("))].

Thus the tree amplitude takes the form

(16)

Define

x II f(x,)--''. -z(x,)
i=k+1

II f(p') ""'"'"~(p'). (4)
N & q'&i & k+1

&s, ....zr+s' +"=It.s ils+t, x dxsx) "~—'f( )x~s'

Xexpf p x nI 2ac p(n) .Q(n)+d I (n) .It (n)) j (17)

Introducing the Ave-vectors, n= 1, . . . ,5,

F=f(xs)—nr. , s+i—i
N & q'& k & i & I,j~i

-R(p*,) .
N& q& k& i& l, q'4i

One then has

G=~(») II

f(.',)"""., (5)
J (n)=((2a)iisp(n) (d /c )iisl. (n))

~ (" =((2a)'i'Q ("),(d„/c„)'i'It("))

the exponential in Eq. (17) takes the form

exp+(c )x„nJ n). H(n)a

(18)

(»)

(20)

G=exp(
N&q&k&i&1

&( e)j

F =f(xs)+~'expt 2a pi ' pi+1»f(p;, ')], (7) The metric is such that g s= g„„ for n,p= 1,. . .,4;
g55= j. ; and all other elements are zero.

Introduce now the oscillators

a ( ) a (") o.= i . . . 5

In these last expressions when j= i= k, one has p» ~ xk. such that
We now define the four-vectors F("' and Q(") and the (n) a (m)tj g g (21)

7 Our metric is (1, 1, 1, —1).n;, = —g(p;+ ~ ~ ~ +p, )'+b.
f(s)~1—s and R(s)~1 and s -+ 0. Thus, the expansions start

with m =1.



2308 KHAL J. L M. B ITAR

p p P3

x1 x2

po pN+2
F1G. 4. Simple vertex

FIG. 2 &jng e ac oriz. S l f t rization of the multiparticle tree grap .

and the complete set of states

earlier, 4 to a spectrum possibly ric eer than that with
the usual amplitudes.(22)

It is straightforward then, using 'qn techni ues similar to
those o u ini, orf F b' 6 rdon and Veneziano' an others,
to show t at eac erh t h term in the exponential o q. ( )
may be written as

exp(c xsnJ&n'H&"&) = (0( exp[J&"'a&"&pc ]n
(

"'""'t ""'ex [H'"& a&"&talc„j~0). (23)X (xI,"~ "
exp

Thus Eq. (17) becomes

& +"=It, s iI&,+i,&i (0
~ exp(Q c„1/2J &n& .a &n&)0 y ~ ~ ~ s X+2

n

—ePIcyZnna(n) tg(n)X dxaxa

B. Double Factorization

h d ble factorization of the tree
h at x, and xI, as shown schematically in Fig.

ards the E-fold factorizationThis is the 6rst step towar s e
and lea s us o ana t expression for the vertex o ig.

'm le(for r=k —1 nee e in e) d d the construction of the simp
loop.

17) and define the followingWe consider expression
five-vectors:

r—1
U-'"' =L(2a)"'(P.+2 ~.;. r"P'). -

i=1

&(f(xq) ~' exp(P c„"'H&"& a&"&t)
~ 0), (24)

where all indices n have been suppresse .
Th f t rization of the amplitude is then c ear ye ac or

is ex licitlexhibite as e m
'

ns one to the leftd' 'd d
' t two separate contributions, one odlvl e in 0

a earanceh ther to the right of xI, in, 'Fig. 2. The appandt eo er o
as ointed outof a fifth oscillator mode here leads, as p

Pl P2 P„ k+1 N N+1p p

One then has

where
J &n& —V &n&+snx nU' &n&

Pr+1,k—1 ~

V-'"'=[(2a)"'(P + &»' —"P').
i=r+1

(27)

(28)

FIG 3 Double factorization of the multiparticle tree grap~ ~

With these de6nitions, one may w
'

write the tree amplitude
as follows:

n (n). y(n) I&~+s&=It „ i dx x —'~'f(x„)~'exp(Q c„x„nU&n& V& I„+r,s i0, .",%+2 1,r—1 XrXr
n

"V&"& H&"&+xs"s"x„nU&"& H&"&)]Is~i,~)( dxsxs nos 'f(xs)~' exp[+ c„xq"
n

dx x —" 'f(x )~' dxsxs '~'f( )~xs'I1,r-lIr+1, k-irk+1, N XrXr

n& n n n &n&. H{n& (29)"V&"&.H'"&+x,"U&"' V&"&+xk"s"x,"&&exp[+ c„xs"V" .

Ph s. Letters 29B, 679 (1969).9 S. I'umn1, . or. I b, D Gordon and G. Veneziano, ys. e
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Introducing again the 6ve-dimensional oscillators of
Sec. II A, we may rewrite Eq. (29) as follows:

&o....,o)+1'~+1&—(0
~
&I„ I(po, ,p„&.'"&,c )&(H,~o,)

XSo+1,N(po+I ~ ~ pN+8&Ha &cta ) ~
0) p (30)

where

&1.-1(Po, . . .,P, &.'"& ~.)
=I1, I expfp c„'~'E'&") a&"&7 (31)

1;,)
I'

and

p(p p„V (a) g (a)t g )

=I„+I,/, I exp(g c„'~'V&"'8&" t)s~

Fre. 5. Multiparticle loop diagram.

expression for the simple loop of Fig. 5 following the
method of Amati, Bouchat, and Gervais. ' If pI,po, . . . ,p~
denote the incoming external momenta and k~, . . .,k~ ~

the internal independent momenta, then

6'(H, IIo„)= gX X aP~H If(—X ) O I— —(32b)
(p&,po, . . . ,p~) = d'k M(k, k), . . .,k))t 1).(35)

H=P nu&"» u&"& (32c)
In Eq. (35) we have

The vertex of Fig. 4 is then easily obtained by further
factorization or, more directly, by looking at I' of (32a)
for r=k —I. Thus the vertex operator in that case
becomes

I'(Po, a &"»,u ) =expfQ c„"'Vo&"& a&"&"7

Xexpfg c / IoV( )a. g(n&7 (33)

cV= dxI . . dx)o(g f(x,)~I)

Xg Trfx)o'")I'&"&(pI) "x)) "'")I'&"&(p)o)7

N

(36)

This is true because now s= j., so that I„+j,I, q reduces
to 1 (no integration), and the fIve-vector Vo&"& becomes
simply fsee Eq. (26)7

where

I'&a& =expfc„'~'V&a& uIa)t7 expfQ c I)'VIa&. aI"&7

(37)

Vt &" &((2a)'~'p (od„jc„)"'). (34)

The main ingredients then entering into the construc-
tion of the simple loop are expressions (33) and (34) for
the vertex and expression (32b) for the propagator.

We point out here that if E(s)=1 Pand hence

f(s) = 1—s7, then all the d„'s will be zero, and the fIve-

vector of (34) will be the four-vector (2a)II'po and
Eq. (33) will be the vertex usually' used to construct
dual loops. In Olesen's model the fifth component of
the vector is related to the unequal intercepts of the
trajectories. U in our case we use unequal intercepts,
the effect would be to modify the 6fth component by
adding to it the one used by Olesen. tA'e shall say more
about this later.

III. CONSTRUCTION OF CONVERGENT
SIMPLE LOOPS

where

~ .„v,&-) v, &-).;,—
Xexp

(1—w")
(38)

c;;= (x1 .x;)"
= (x1 x;)"(x;+I xg)"
= (xj+I x')"

if j=X
if i&j &E 1(39)—
if i)j.

and V &"& is given by Eq. (34). The trace in Eq. (36)
has been calculated in Ref. 6 and using that result we

f)nd, wltll 10=+'=I x',

Starting with expressions (33) and (32b) for the Note that as x;~1, c;;~1 and that V;I"& V;I"& is the

vertex and propagator, respectively, one Inay write an scalar product of Gve-vectors. Thus the loop amplitude
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becomes

(p4p» )p&)

d4k dxl d»(II f(*') ')

particle loop is convergent. Since this function is to a
great extent arbitrary, it is not a very restrictive condi-
tion. In the following section, we shall discuss the
possible choices of R(z) for which Eq. (47) is satisfied
and consequently for which the loop amplitude of
Eq. (40) is well defined and convergent.

Notice that the simplest loop has E=2. If condition
(47) is satisfied for %=2 it will be satisfied as well for
all other values of E.

Q c„V;&"'V,&"'c;, . (40)
I —Zg" i, j=l

IV. FUNCTION R(z)

We recall from Eq. (14) that

The usual difhculty arises when in the integration over
xi the integration region where m ~ 1 is approached
(all x;—+ 1). In the usual case, all V;&"& are simply the
four-vectors p, and c;,—& 1. In this case the integrand
becomes

lnR(z) = P d„z".
n=l

This is possible if R(0)= 1, which we take it to be.~ Vsing
this series expansion, one may easily write

(41)
d„' lnR(z)

dz
n=l g,

(48)

which is exponentially divergent.
Thus the condition of Eq. (47) now becomesIn our case the situation is diGerent. The v' "& are

five-vectors as in Eq. (34), and as w —+ 1, the integrand lnR(z) 5s'
approaches ds (49)

—iV'd. —

exp- -—
I —w ) (I—w"))

t5~' 1 d=exp~ exp —cV' P — — . (42)
k6 1—w ~ (1—w")

Although the first term is divergent, the possibility still
exists that by a proper choice of the constants d„, i.e.,
a proper choice of the function R(z), one may damp
this divergence by the exponential multiplying it.

Now for m 1 we have

d. q
E' d„~—

exp —iV' — =exp —. 43
~=& 1 —w"I 1—w ~=i e &

If we put

then the integrand takes the form

R(1—z) =R(z), (50)

which is the function that is symmetric under reflection
about the line s= ~. Our tree graph then is the simple
sum of a leading term plus satellite terms. It must be
quite evident that there are many choices of R(z) for
which Eq. (49) is satisfied. It also must be clear why
the usual tree graph also leads to divergent loops, for
in that case R(z) =1 and condition (49) is evidently
not satisfied.

For more general choices of f(z), we do know' that
there are infinitely many choices for R(z). Therefore,
again satisfying Eq. (49) should not prove to be dificult.

This may be easily satisfied by taking R(z) large enough
between zero and 1. Since the convergence of the loop
does not depend critically on the choice of f(z) (although
of course its value does), we may, for the purpose of
simplicity, then take f(z)=1—z, which is the usual
choice. In this case, R(z) is such that

expL(-', n' —(cV') (1—w)j . (45) V. NONDEGENERATE TRAJECTORIES

This is convergent as w —+ 1 (from below) if

(56vr' —$E') (0,
l.e.)

$)5n-'/6E'. (47)

This condition is the basic condition to be satisfied
by our universal function R(z) so that the simple E

The above discussion has been carried out for de-
generate trajectories in all channels. Recently Olesen'
discussed the problem of constructing dual loops for
trajectories with nondegenerate intercepts. He finds
that the condition of convergence leads to some condi-
tions on these intercepts. We attribute these conditions
to the particular choice of tree graph, namely, the usual
one he uses in constructing the loops.
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-'s' —E' P ——2cVL(2c")"' Q b,"$

cn
X P(dncn)'" Z —(—2c" 2 b'")' &o (52)

n=l n=l

For f(z)=1—z and R(z)=1, all d„=0 and c„=—1/n,
and Olesen's condition is obtained.

It is clear in this case that the convergence condition
is more complicated than before. It involves the inter-
cepts b;" and the constant c", as mell as the coefficients
d„and c„. Thus in this case both universal functions
f(z) and R(z) are involved.

It should be clear that Eq. (52) is not a condition on
the intercepts in this more general formulation. One
may choose b;" and c" at will and then make a proper
choice of R(z) and/or f(z) to satisi'y Eq. (52). As an
example we choose again f(z) = 1—z. In this case
c = —1/n. The third term on the left is pure imaginary
(we take, say, all d 's positive) and may be discarded.
The condition becomes

2c 7l

-', n-' —1V' Q —+ — (Q b,")'&0, (53)

which is Olesen's condition modified by

If we start with nondegenerate trajectories, in our
case the eRect is the modification of the five-vectors
of Eq. (34) to the form

I'""'=((2~)'"p~ (d /c )'"+(2c")'"b."), (5 )

where c" and b&" are defined by Olesen. This then leads
to the same loop amplitude as in Eq. (40) with the
modified five-vector of Eq. (51). The convergence
condition then reads

expression for the generalized dual tree graphs with
which we start. In particular, the convergence of the
loop leads to a condition on the function R(z) for
degenerate trajectories LEq. (49)j and f(z) and R(z)
in the nondegenerate case LEq. (52)].These conditions
do not restrict our universal functions in a strong way
but point out the possibility of further restrictions as
one constructs more complicated higher-order graphs.
This is in line with the view expressed before, that the
construction of these higher-order graphs may lead not
only to a unitary amplitude but to a unique one as well.
At this stage, however, we are far from uniqueness
There is an inhnity of loops, each determined by a choice
of an f(z) and an R(z).

The expression for the tree graphs with which we
start leads to a possibly richer resonance spectrum than
the expressions usually employed. Nevertheless, this did
not interfere with our construction, for the relative
couplings of the various resonances were arbitrarily
determined by our universal functions, and hence
convergence could be achieved by a proper choice of
such functions. In the special case of f(z)=1—z and
R(1—z) =R(z), which corresponds to a simple sum over
leading and satellite terms, the condition on R(z) is
simply a condition on the relative strengths of these
terms. We point out here that the compact form we use
for such a sum fi.e., via R(z)j made it much more
apparent that the construction of convergent loops is
possible.

APPENDIX

In this Appendix, we make further comments about
the generalized amplitudes we use for the tree graphs.
This may be also considered as an erratum for Ref. 4.
It was claimed there that the generalized amplitude is
cyclic under permutation of the external momenta.
This is not generally true. The discussion of Ref. 4
amounts to saying that there is a case where this is so.
We show here that it is the usual case. We demonstrate
this for the line point amplitude.

Consider Eq. (24) of Ref. 4, namely,
It is clear that this may be satisfied for any choice of b;"
by simply making P (d„/n) or the integral of Eq. (48)
as positive as necessary.

From the above discussion, we see that in our more
general formalism one may write convergent dual loop
amplitudes when the trajectories are nondegenerate,
and that this leads to no restrictions on these intercepts.
but only makes considerably more complicated the
conditions that both our universal functions f(z) and
R(z) must now satisfy LEq. (52)].

f(») f(»)
X2 ~

f(xix2) f(xix2)

This implies that

f(1)=0 (x2=0),

f(0) = 1 (x2= 1),
as is required.

Putting xi=0, we have

(A1)

VI. DISCUSSION AND CONCLUSIONS

The main result of this discussion has been the
construction of convergent dual loop amplitudes as
given in Eq. (40). This amplitude depends on the two
universal functions f(z) and R(z) which enter into the

X2 X2 (A2)

which is again equivalent to Eq. (23) of Ref. 4. This
generality, however, is spoiled for arbitrary values of
xi as Eq. (24) of Ref. 4 becomes very restrictive and
leads essentially to the unique solution f(x2)=1—x2.
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Putting xr= 0 and using f(0) = 1, we get

f'(f(xs)) f(xs) = —1+xs.

Diiferentiating Eq. (A2) leads also to

f'U(»))f'(*s) =1.

(A4)

(A5)

Therefore one has, by combining Eq. (A5) and (A4),

f'(xs)/f(xs) = —1/(1 —xs) . (A6)

In other words, —1—lnf(x, ) =
dS X2

and

(A7)

or, in general,
ln f(xs) = ln(1 —xs),

f(*,) =1—x, .

(AS)

(A9)

This is the usual choice for f(z). If we add one to all n;;
in Ref. 4, then the only choice for R(z) may be shown

Ke now demonstrate this. We take the derivative of
Eq. (A1) with respect to xrr One has then

( f{xs) ) f(x,)-f'I —

lxs f'(xrxs)
kf(xrxs)) f'(xrxs)

f'(xr) xs'f(xr)=xs — — f'(xrxs) . (A3)
f(xrxs) f'(xrxs)

to be a constant. The condition on f(z) is basic, because

f(z) carries all the dependencegon the kinematic
invariants S„.The condition on R(z) is a consequence
of the product of R-functions that we have chosen.
This choice, however, maintains factorization, as is
evident in the discussion in the present text and Sec. V
of Ref. 4.

Our amplitudes are, of course, still dual in the sense that

they may be written as an inftnite sum over narrow width-

resonances in any channel and have the characteristic

Regge behavior.

One, of course, may construct amplitudes invariant
under cyclic permutations by taking the sum

, 0. .. Ns , +JiN+3, 0....,%+2 + ' ' '

+&r, ..., ttps o'~+"

We point out here that our amplitudes have, of
course, the important property of symmetry under
reQection, namely,

&0 x+3'~+"= &++3 0'"+".

Thus, the only disadvantage of our amplitudes rela-
tive to the usual ones is that upon vrriting an amplitude
for the E-particle process, one has to add not only
terms for all possible permutations of the external legs
but all the cyclic variations as mell. Their advantage is,
of course, that they have arbitrary residues and, as is
evident in the text, lead to convergent loops.
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Covariant Time-Ordered Products of N Nonconserved Currents*
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Deportment of Physics and Astronomy, The UniMrsity of Rochester, Rochester, New Fork t4627
(Received 18 June 1970)

The covariant time-ordered products of arbitrary number of nonconserved currents are shown to exist.
We formulate the rules for constructing such products, and show explicitly that they are covariant under
Lorentz transformations.

I. INTRODUCTION

ECENTLY the existence of covariant time-ordered.
products has been an interesting subject for in-

vestigation. The construction of covariant time-ordered
products has been studied by Brown and others' '
within the framework of canonical 6eld theory. Dashen
and Lee4 have demonstrated that covariant tirne-

* Work supported in part by the U. S. Atomic Energy Commis-
sion.' D. G. Boulware and L. S. Brown, Phys. Rev. 156, 1724 (1967).

~ S. G. Brown, Phys. Rev. 158, 1~~ (1967).
g S.L. Adler and R. I'. Dashen, CNrrent Algt. bra (Benjamin, New

York, 1968).
4 R. F. Dashen and S. Y. Lee, Phys. Rev. 187, 2017 (1969).

ordered products of conserved currents exist and can
be constructed by algebraic methods. In their approach,
one assumes only the following: (1) The equal-time
commutators of two time components of the currents
are the usual ones, and the equal-time comrnutators of
their time and space components contain terms which

are no more singular than the erst derivatives of a b

function. (2) The Schwinger terms are assumed. to be
well-defined operators so that Jacobi identities for
currents are satis6ed. Possible c numbers can be taken
care of by subtracting the vacuum expectation value.

In this paper, we generalize the work of Dashen and
Lee. We Gnd the following: (1) In addition to the above


