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In this paper we study the promotion phenomenon in potential scattering. In Sec. 3 we give the general
formulas for the scattering amplitude at threshold, and show that the asymptotic form of the scattering
amplitude as the momentum transfer squared approaches infinity is determined not only by the right-hand-
plane Regge poles Lzz(0)) ——,'g, but also by the left-hand-plane zeros of F(X). In Sec. 3 we study the
leading Regge pole cz (hzz) over the whole region —zo &hzz &0 for a weak and attractive Yukawa potential,
and find that it is indeed promoted from —1 to —~~ within a small neighborhood of the threshold. We also
obtain the leading zero of F'(X) if the potential is repulsive. Together with the results in Sec. 2, we have,
therefore, the explicit asymptotic form of the scattering amplitude. In Sec. 4 we study a general nth Born
term and find that its leading term is promoted from s '(lns)" ' to s "'(lns)" 'at threshold. Summing over
these leading terms, we obtain results in complete agreement with those in Secs. 2 and 3, both for attrac-
tive and for repulsive potentials, oR or at threshold.

1. INTRODUCTION
'N the two preceding papers, '' we made a field-

~ - theoretic study of the scattering amplitude in the
high-energy limit s —+ ~, with t near the two-body
threshold value. The cases examined included quantum
electrodynamics, scalar electrodynamics, and p' theory.
In all of the cases considered, we found that the power
of s for the scattering amplitude of a tower diagram or
a ladder diagram is promoted when t is near the thresh-
old. Specihcally, this power is promoted from 1 to ~3 for
tower diagrams in both quantum electrodynamics and
scalar electrodynamics, and from —1 to —

~ for ladder
diagrams in p' theory. In this paper, we shall study the
promotion phenomenon in potential theory.

In contrast to the various field theories considered,
the potential-scattering case can be treated in a
rigorous way. We recall that when we studied the
promotion phenomenon in a field theory, we had to rely
on the method of perturbation. We extracted the leading
term from each perturbation order, and summed over
all orders. This process of summing leading terms is,
however, without justification, and on occasion is
known to lead to an erroneous answer. It is therefore
interesting to apply it to the Born series, and see if the
results agree with those obtained by the rigorous
method. As it turns out, there is complete agreement
between the results obtained by the two methods.

We shall adopt the units 2M=A=1 in the Schrod-
inger equation, and denote the momentum as kt. The
threshold is therefore at k ~

——0.To be consistent with the
notation in the preceding papers, we shall put

s =—2k zs(1—cos8),
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where 0 is the scattering angle. Note that this designa-
tion of s is exactly opposite to the standard designation
in potential scattering. The potential V(r) shall be
taken to be a superposition of Yukawa potentials. Ke
are interested in the scattering amplitude in the limit
s ~ , with kt, axed in one of the following regions:
(1) kzs is nonzero (this case is of course standard and
shall be mentioned only briefly); (2) kzs=0; and (3)
k&' is very small.

In Sec. 2, we shall give the general asymptotic forms
of the scattering amplitude in the three regions listed
above. We shall find, to our surprise, that at the
threshold k& ——0 this asymptotic form is not entirely
determined by the Regge poles. A discussion of the
Regge-pole behavior near the threshold is also given in
this section. In Sec. 3 we shall study the leading Regge
pole in the weak-coupling limit for all values of kt .This
study confirms that it is the leading Regge pole, located
near 0.= —1 if kt' is not too small, which moves to the
right of 0.= —

~ at k&——0 if the potential is attractive. In
Sec. 4 we shall extract the leading terms in the Born
series and sum them up, and show that they agree with
the results of Secs. 2 and 3.

2. GENERAL FORMS OF HIGH-ENERGY
AMPLITUDE

Let us denote the scattering amplitude by f(kzs, s).
The Regge representation for f(kzz, s) is

y(kz, s) = P P„(kz )
Berm(kg)) —!g.

&&8( „(p,'z (—1——,'sk,—')/sinzrn„(kz')

—s+ &+&oa

dl(21+1)

XPt(—1——.,'sk ')2 (3zk ')/sinzrl, (2.1)
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lim A(l, k )k i = (sinirX)/Y(X), Rek) 0. (2.7)
kg~Q

When A. =n) an integer, the denominator and the
numerator of the right-hand side of (2.5) become equal.
Since S(e,ki) cannot be equal to 1 for all k~, we must
have6

P„=—ir(2n„+1) ResA(l, kP))i (2.2)

For the convenience of later comparisons, we shall

give the well-known asymptotic form of f(kP, s) in the
limit s ~ ~ with k& fixed at a nonzero positive value.
In this limit, we have

Y(e,ki)=(—1)" 'k'", I=O) &1, a2, . . . (2.8)

and, in particular,
I (i+1) e && -l

Pi(—1 ——,'sk, ') — . (2.3)
(Qir) I'(l+1) k, '

(2 9)F'(O, k,) =—1.

By taking the limit k, ~ 0 in (2.8), we find that
Thus we get

valid for kP)0 and for all s. In (2.1), e is a positive Thus we have
number and A (l,k P) is the analytically continued
partial-wave amplitude. We shall keep e&0 for reasons
that will become obvious. Also, e„ is a Regge pole of
A(l,kP) and

iot (ki')I'(~ (ki')+i)
f(kP, s)

n (Qir) I'(n„(kP)+1) sinirn„(kP)

Y(~)=0, ~)0

e(0. (2.10)

Z
—i~& «Pl2)

(X . (2.4)
k2

Although (2.4) is obtained by restricting k& )0, it can
be extended' to all complex values of k&'. Also, the
summation over e in (2.4) can include all Regge poles, '
not only those in the right half-plane as indicated

by (2 1)
Next we shall consider f(kP, s) as kP ~ 0. Before we

do this, some properties of the functions A(l,kP),
o,„(kP), and P„(kP) necessary for later discussions will

be listed.

Y(X(kP),ki)+(kPe ' )"i'~'i=0. (2.11)

By taking the limit k &
—+ 0 in (2.11),we find that if X (0)

is a Regge pole at threshold, we must have

Y(X(0))=0, Reh(0))0
Reh (0)(0. (2.12)

Since Y(X) is a meromorphic function of X, (2.10) means
that F(X) has zeros at X= 1, 2, . . . , e, . . ., and poles at
X= —1) —2, . . .)

—e) . . . .
From (2.6), we see that a Regge pole X(k p) =n(k ')+—'

is implicitly given by

A. Some Threshold Formulas

The 5 matrix can be written as'

Y(Xk)+k' e' "
S(z,k,) =

Y(X,ki)+kP~e ' " (2.5)

Thus the Regge poles X(0))0 are located at the zeros of
Y(X) and the Regge poles X(0)(0 are located at the
poles of F(X).The converse is not, however, necessarily
true. For example, the points X=+ (—e) are always
zeros (poles) of Y(X).

From (2.2) and (2.7),we have

where P, =i+-,', and where Y(X,k,) is a meromorphic
function of X and an analytic function of k& regular at
the threshold k&

——0, i.e., Y(X)=—Y(X,O) is a meromorphic
function of P. From now on, the variable P will be used
instead of 1 when convenient. We shall also use the
notation X„defined by

X„=a„+-,',

lim P„(kP)k,—oN (o)
kg~p

= —2n.X„(0)sinLmA„(0) j/ Y'(X„(0)),

Reit„(0))0. (2.13)

There are also infinitely many poles approaching
X=O at threshold. i From (2.9) and (2.11), they are
approximately given by

where O.„is the location of a Regge pole in the 1 plane.
Equation (2.5) can also be written as

A (l,k, i) =LS(X&k,)-1j/2ik,
where

X„2m-i/lnii', e= ~1, a2, .. .

g
—i)l'/~

~

(2.14)

kg" sine. X

Y(X k )+k '"e '~"
(2.6)

Since
kP~" sin(A„s.)

ResA (l,k, ')
~

i „= —, (2.15)
8 Y(X„,k,)/Bh+i7'". 1ng'
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the P„ functions for the poles given by (2.14) are

P„-2i~9.',/~ luau'

= —8irPs.4/g (1nrP)'. (2.16)

B. Amplitude at Threshold

I.et us consider the amplitude f(kP, s) at k, =O. We
set k~ ——0 in (2.1). Then from (2.1), (2.3), (2.7), and
(2.13), we get

number of Regge poles approa, ching X=O, while (2.20)
does not, these two equations do not seem to be con-
sistent with each other at Q.rst sight.

We shall show, however, that the contribution of the
Regge poles approaching X=O goes to zero as k& —+0.
From (2.4), (2.14), and (2.16), the contribution is
equal to

4s.2i(ln 2)—2~—1I2 g +(~k
—2)2nwi(lng& (2 21)

f(0,~) =
Rea~ (0)&——,'+ e

(s
—Arg) n„(0) Since (2.14) is valid only if ~X„(((1,or

with

+i
f~ f&&(2~)-'fin~2[, (2.22)I'(—i) (e '~s) '

the summa, tion in (2.21) should include only the poles
+'—'~ ~ 2 satisfying (2.22). Thus (2.21) vanishes as k~~0.

~.= —2(v' )I'(—-(0))LI'(—-(0)—,')I"(X„(0))&'.
(2.18)

3. LEADING REGGE POLE

It is well known that, when k&' is nonzero, the Regge
poles are in the neighborhood of l= —1, —2, . . ., —e,
. . ., if the potential is very weak. Qn the other hand, at
the threshold value k& ——0, there is always a Regge pole
on the right of l= —-', as long as the potential is attrac-
tive, no matter how weak it is. This promotion of the
Regge pole at threshoM has the same origin as that in
p3 theory. In fact, in Sec. IV we shall see that the Born
series in potential scattering is in precisely the sam. e
form as the perturbation series we investigated in q'
theory. For the sake of simplicity, let us from now on
restrict ourselves to the single Yukawa potential

Ge "/r, w—here ~G~&&1, so that the potential is very
weak. If 6 is positive, then there is always a Regge pole
on the right of /= —

2 at threshold. There are two
possibilities: (i) This Regge pole is the leading Regge
pole located near i= —1 for nonzero kP; (ii) this Regge
pole is not the leading Regge pole, in which case it must
be located to the left of l= —1 for nonzero k&' and
catches up with the leading Regge pole before k,'
reaches zero. In this section we shall show that possi-
bility (i) is the correct one. In so doing we shall also
obtain the behavior of the leading Regge pole through-
out the ran e 0&

have'0

Note ths, t (2.7) is applicable since we keep «) 0, and
(2.3) is applicable since, in the limit k, ~ 0 and s fixed,
the argument of I'i is infinite. Note also that (2.17) is
exact and is not merely an asymptotic formula for
S ~

Once we arrive at (2.17), we may now set «=0. In
fact, from the asympotoic form of F(X) in the left-hand
plane, ' we may move the contour of integration in the
background term of (2.17) to the left, obtaining

f(0,s) = g c„(e—' s)

I'(—i) (~
—Ar~) i

dl (2.19)
(+ )r(—t—', ) I'P, )

+i

where L is an arbitrary real constant and c„is given by
(2.18) with n„(0) replaced by a„.We observe that a„ is
the same as o,„(0) if Reu„)'——', ; however, if Reg„(—-'„

then itis a zero of 7'(X). In the limits-+ ~, (2.19) gives

f(0,~)-Z ~-(~ ' ~) ", (2.20)

g
It is interesting that the asymptotic form of f(O,s) is For ~~all ~al~~~ of G we
rot entirely given by the Regge-pole parameters.

Finally, we mention that the background integral in

(2.19) does not vanish when I.~ ~, and hence (2.20) 4(i~ki ) 2Gk~ Qil 1+
is an asymptotic series but not a convergent series.

G —e—ilm—i-- —Q) 1+—
2 coshr k& 2k, '

C. Amplitude near Threshold

As long as k, is nonzero, f(kP,s) is given by (2.1) for
k P) 0 and the asymptotic form of f(kt2&s) as s —+ 0« is i' cost (21+1)gjde-
given by (2.4) for all k P. On the other hand, when k P is

very small, f(kP, s) should approach f(O,s) and its
asymptotic form as s —+ should approach (2.20).
Since (2.4) includes the contribution of an infinite

(3.1)

8 H. Cheng aiiit T. 'Z. Wu, Phys. Rev. 144, 1232 (1966).
' R. G. Newton, J. Math, Phys. 3, 867 (1962)."H. Cheng, Phys. Rev. 130, 1283 (1963).
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nominator on the right-hand side of (3.1) equal to zero:

G
—

~
—iaw

Q.~
1+

2 cosa' k& k 2kP

~1' cosL(2a+1)Oj d8—-o. (32)
(~i+k&' cos'8) "'—

In the limit G ~ 0, the second term in (3.2) is in general
small compared to the first term and (3.3) cannot be
satisfied unless o. is in the neighborhoods of —1, —2,

n, —where Q has simple poles. Since

the limit of (3.9) as k, ~ 0 gives

1——,'G/X~O, (3.10)

which means that X(0), the Regge pole at threshold, is
given by

(3.11)X(0) -,'G.

F'p) —(1—2x/G)m'"/pr(1 —x)r(-,'yx)]. (3.12)

Equations (2.18) and (3.12) give

Equation (3.11) is consistent with (3.10) only if G)0.
This is in agreement with the earlier statement that at
k~ ——0, there is a Regge pole on the right of l= —

2 if the
potential is attractive. Comparing (3.9) with (2.11),
we get

cp —,'m.G'. (3.13)
(3.2) is approximately

GiP (1+1/2ki2)
~0

2k, (n+n+1)
ot'

1
„(kP) —s—1 GP„(1+ 2k—~

2k 2

P„(ki2) m(e+-,')GP„i 1+—

i
kP,

(
2k, 2)

(3.4)

Note that, when G&0, the right-hand side of (3.11) is
still a zero of 7'(X), although it is not a Regge pole.

Let us now consider the case G&0 so that (3.11)
holds. How does this Regge pole move when k& is small
but nonzero? Let us return to (3.9) and restrict our-
selves to the region q &~ 0. As g increases, the Regge pole
retreats to the left. By setting X= 0 in (3.9), we find that
the Regge pole moves into the left half-plane Reh(0
as q&go, where

qP expL —2/G+y —P(i2)j exp( —2/G). (3.14)

and
n (k,')——1—G/2k, i (3.6)

p(k P) -', m G/k P. (3 7)

The perturbation expansion (3,6) is meaningful only if

~
G/2k,

~
is small compared to unity, or

(3.8)

Thus (3.6) fails when
~
k,

~

is very small, and, in particu-
lar, it fails at the threshold value k&

——0.
Since (3.6) and (3.7) are good. approximations if

(3.8) is satisfied, it only remains to investigate the
region where ~k,

~
is small. Let us consider (3.2) when

~k&~&&1. Since

Q (s) (g~)(2s) ' 'I"(i+1)/r(l+-,'), ~z~))l

the Regge poles are given by the solution of

1——,'(G/X)P —vr '"I'(1—X)r(-', +X)e ' 'kP'+1j 0
(3.9)

In particular, since

lim kg'"=0 if ~&0,
kg~0

n =0,1,. . .. (3.5)

Equation (3.4) conf'irms that, if k&&0, there are Regge
poles in the neighborhood of l = —1, —2, . . ., as G ~ 0.

Let us concentrate on the leading Regge pole n(kP)
(e=o). We have

X—=—X(k P) (3.17)

in (3.16).Then (3.16) can be written as

1=~»(1+2K/G) '~'/Pr(1+X)r(-', —$)j. (3.18)

Graphic solutions of (3.18) for various g are illustrated

In (3.14), y is the Euler's constant and P(x) is the
logarithmic derivative of the gamma function. Note
that go is an exponentially small number as G-+ 0.

When X is very small, (3.9) is approximated by

X-X(0) (1—g'"), (3.15)

where X(0) is given by (3.11). Equation (3.15) is
consistent with the well-known threshold behavior of
X(kP). It appears unlikely that (3.15) can be explicitly
solved for X(kP) as a function of kP. It is easily shown,
however, that (3.15) has one and only one real solution.
A graphical solution of (3.15) is illustrated in Fig. 1.
We see that the solution is near X=X(0) of g«go, and
moves to the left half-plane as q&qg.

As g increases further and becomes much larger than
qo, —X(k P) also increases and at some point the approx-
irnation (3.15) is no longer valid. We have to go back to
(3.9). We may solve (3.9) to obtain

g = f(1—2x/G) ' /Lr(1 —x)r(—+x)))'~". (3.16)

Equation (3.16) gives g2 as a function of X(kP). It
remains now to investigate (3.16) when X(kP) is nega-
tive. We shall put
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increoses

Fro. 1. Right-hand side of (3.15) plotted as a function of X for
various values of g. The intersections edith the straight line give
the locations of the Regge poles.

in Fig. 2. We note that the right-hand side of (3.18),
considered as a function of ), is equal to 1 at X=0, and
is increasing at X=0 if q&gp. On the other hand, the
right-hand side of (3.18) vanishes at X= rs. Thus (3.18)
always has at least one solution. This solution is seen
to approach ) = —,', or /= —1 as q increases. Thus this is
indeed the leading Regge pole given by (3.6).

Finally, we must show that (3.18) has only one
solution. Now the logarithmic derivative of the nght-
hand side of (3.18) is

n(kP) n(0)+akP" &'&, (3.20)

which cannot be expanded as a perturbation series near
threshold if X(0) —',G.

function of X, and the quantity in large parentheses in
(3.19) is an increasing function of X. Thus (3.19) can
vanish only once, and the right-hand side of (3.18) has
only one maximum as plotted in Fig. 2. Thus (3.18) has
only one solution.

ln summary, we have followed the movement of the
Regge pole given by (3.11) at threshold. When rf is of
the order of or smaller than pp, it is given by the solution
of (3.15) and illustrated in Fig. 1. This Regge pole
moves very rapidly into the left half-plane as q increases,
and when q is of the order of 6", it arrives at the neigh-
borhood of X= —(2e) ' Lsee (3.16)].The precise form
of X(k, ) is determined by (3.18) and illustrated in Fig.
2. As g continues to increase, it is given explicitly by
(3.6). Thus the Regge pole (3.11) is also the leading
Regge pole (3.6).

It is interesting to note that n(kP) has perturbation
expansion both when k P is away from threshold L(3.6)$
and when k, is at threshold L(3.11)j, while the two
expansions do not join into each other. This is not
inconsistent since n(k P) has pro perturbation expansion
when k & is near threshold, and its form can be given only
implicitly. The fact that n(kP) has no perturbation
expansion near threshold is probably not surprising,
since it must satisfy the well-known threshold behavior

d sin(4)&——In—— — —
~
. (3.19)

dX 4
For -', )X)0, the first term in (3.19) is a decreasing

4. BORN SERIES

In the preceding two sections, we have established
the asymptotic form of f(kP, s) as s —+ eo, with kP
especially in the region near or at the threshold. For the
purpose of testing the legitimacy of summing leading
terms of the perturbation series when s and k &2 are in the
region mentioned above, we shall, in this section, apply
this method to the Born series of potential scattering,
sum them up, and compare it with the results in the
preceding sections.

The potential is again taken to be —Ge "/r, where G
can be either positive or negative. Then the eth term
in the Born series is

where
(4.1)

2 n—1
J' = II Ld'k; (2s)—s(k;s —kP —se)-')

FIG. 2. Graphic solution of (3.18).The right-hand side of (3.18)
is plotted for tv' o values of p, and the intersections ~it& the
horizontal line give the locations of the Regge poles,

In (4.2), ks and k„are the initial and the final momenta,
respectively, i.e.,

k2 g2 $2
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s= —(k„—kp)2.

By introducing Feynman parameters, (4.2) can be
written as

n n—1 n—1

Since

(4.3) is equal to

al &"—'~—"I'(—-23-(23 —1)+m)
(4.4)

(4z)'&n "I'(332)

n—I
1 1 J„=I'(-,' +,')(4 -) i'" " Pdn;g dP,

p 1

X p p.(k —k,s) n

1 1

+P n;L(k; —k; 1)2+1)—ip ~2"+'. (4.3)
1 In (4.5), h. is the (23—1)X (23—1) determinant

nl+n2+Pl
G2

0
0

—0,'g

n2+n3+P2
Q3

0 0
0

n3+n4+p3 n4

0
0
0
0

(4.6)

0

and D is the e)&e determinant

nl+n2+Pl

ns+ns+P1

0

0 0

0

nn 1+nn+Pn —1(—
0

0 ns+n4+ps n4 0

0

(4.7)

—n1kP 0

A
n—1

(nl+n„QP, )—k22+g n;
1 1

The determinant in (4.7) is equal to

where

D= s g n4+A Q n4+Dsk4
1 1

(4.8)

nl+ns+Pl

ns+ns+Ps

0 0

0 0

0 n3+n4+ps n4 0

0

0

CX

n—1—n nl+n —g p
1
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0 0

0

~2+&s+p2 0

&3+i)(4+p3 &4

~" "- " " = Z-p;p, ~(i,j) (4.9)

0

In the above, A. (i,j) is the determinant (4.6) with the
ith row and the jth column deleted. A few examples of

D~ are 1 n—I n—1 n—1

Dg= —p(2, e= 2

pl ((r2+&8)+p2 (&1+G2)+2&2p+2

+(p+p )pe 3, =3 (4.10)
dx e'*

n—1 n—1

-p(- *2p')(lI p')-"' lI dp;
1 1

From (4.5)—(4.9), we observe that J„is equal to, aside
from a multiplicative constant, I„1in Ref. 2.

Let us now consider the limit of J„as s~ ~. For
this purpose, we make a Mellin transform of (4.5). We
have

dg gix$g iw/2%—(g iE)
—1](n—()/2

=~("-»/'Lr(-,'n ——,')j-&.

Thus as s —+ ~, 3 nonzero, we have

J.(~) = J„s-&ds J~~—(g~e '~ "ki) "+'(ins)" 's '/(e —1)! (4.13)

=I'(! -l+&)I'(1-&)(4 )-- "-" IId 'lI dP;
and

f(P 2 s) Q f —Q (4~)m—1GnJ'
1 I

1 1 G&
—1+-,'Gi/kg (4.14)

X (D P 2+/l g & .)
—z' (n » $g—', n 1—— —

1

A. Away from Threshold

H k&' is nonzero, the calculation is standard. The
integral (4.11)has a singularity of )=0.The integration
region which gives the dominant contribution is in the
neighborhood n;=0, i=1, . . . , e. Thus

J.(k)- I'(2l k)(—4~) **'—"E " II &p'
o

n—1 n—1

x8(1—g P;)(e ' k ')=*'" "(IIP';) '". (4.12)

Equation (4.14) agrees with (2.4), (3.6), and (3.7).Note
that this agreement is independent of the sign of G. This
is quite impressive as successive leading terms in the
Born series alternate in sign if G is negative and q is
real, and the sum (4.14) is smaller than any individual
term in the series.

B. At Threshold

If kP=O, then (4.11) gives

J.(k) =I'(-:~ :+k)I'(1—k)(4)- "—

n—1

x II«;II dP;~(1-Z ~;-Z P;)
1 1
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The integral above is already divergent at $= 2 if /2& 1. and (4.17) becomes
To see this, we make use of the identity

1 1 p 1 1 1

=iir(82r)-'" '&((—-')-"+'. (4.18)

1 n

Thus at k&' ——0, we have, as s —+ ~,
J„ in. (8n-) &" '&(lns)"—'s '"/(22 —2)!, 22) 1 (4.19)

while J1 is of the order of s ' and will be neglected.

XF(a, ~„,p„.. . p„,), (4 16) Hence

where F(ui, . . . ,n, pi, . . . ,p ) satisfies

F(ani, . . . ,ae.,api, . . . ,ap„)

Thus (4.15) can be written as

f(0 s) Q (42r)"—'G"J„=-,'iirG2s-l+'g s~~. (4.20)
2

Equation (4.20) agrees with (2.20), (3.11), and (3.13).
Note that when G(0, X(0) (=-,'G) is no longer a Regge
pole. However, it continues to be a zero of P'(X). Thus
(4.20) is still correct and sununing the leading terms in
the Born series is legitimate even for a repulsive poten-
tial, despite the fact that successive terms in this series
alternate in sign and the sum (4.20) is smaller than any
individual term.

II dp. /l. ' & (~— (417)

The divergence at $= —,'comes from the region p;))1,
i = 1, . . ., e—1. Thus we may make the approximation

C. Near Threshold

The behavior of the eth Born term in the limit s —+ ~
with k&' near the threshold is quite complicated. A
discussion has been given in Ref. 2 and will not be
repeated here. It suKces to say that there are infinitely
many scales for k &'. This complicated behavior is related
to the existence of infinitely many Regge poles in the
neighborhood of A. =O as k&'~ 0. The precise relation-
ship between the Born series near threshold and (2.21)
appears to be quite dificult to establish and is beyond
our power of analysis.


