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In this paper we study the promotion phenomenon in potential scattering. In Sec. 3 we give the general
formulas for the scattering amplitude at threshold, and show that the asymptotic form of the scattering
amplitude as the momentum transfer squared approaches infinity is determined not only by the right-hand-
plane Regge poles [« (0)>—137], but also by the left-hand-plane zeros of ¥'(A). In Sec. 3 we study the
leading Regge pole a (k) over the whole region — » <k2<0 for a weak and attractive Yukawa potential,
and find that it is indeed promoted from —1 to —#% within a small neighborhood of the threshold. We also
obtain the leading zero of ¥ () if the potential is repulsive. Together with the results in Sec. 2, we have,
therefore, the explicit asymptotic form of the scattering amplitude. In Sec. 4 we study a general »nth Born
term and find that its leading term is promoted from s (Ins)*! to sV/2(Ins)*~2 at threshold. Summing over
these leading terms, we obtain results in complete agreement with those in Secs. 2 and 3, both for attrac-
tive and for repulsive potentials, off or at threshold.
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1. INTRODUCTION

N the two preceding papers,'? we made a field-
theoretic study of the scattering amplitude in the
high-energy limit s — o, with ¢ near the two-body
threshold value. The cases examined included quantum
electrodynamics, scalar electrodynamics, and ¢* theory.
In all of the cases considered, we found that the power
of s for the scattering amplitude of a tower diagram or
a ladder diagram is promoted when £ is near the thresh-
old. Specifically, this power is promoted from 1 to § for
tower diagrams in both quantum electrodynamics and
scalar electrodynamics, and from —1 to —% for ladder
diagrams in ¢® theory. In this paper, we shall study the
promotion phenomenon in potential theory.

In contrast to the various field theories considered,
the potential-scattering case can be treated in a
rigorous way. We recall that when we studied the
promotion phenomenon in a field theory, we had to rely
on the method of perturbation. We extracted the leading
term from each perturbation order, and summed over
all orders. This process of summing leading terms is,
however, without justification, and on occasion is
known to lead to an erroneous answer. It is therefore
interesting to apply it to the Born series, and see if the
results agree with those obtained by the rigorous
method. As it turns out, there is complete agreement
between the results obtained by the two methods.

We shall adopt the units 2M =#%=1 in the Schréd-
inger equation, and denote the momentum as k,. The
threshold is therefore at £,=0. To be consistent with the
notation in the preceding papers, we shall put

s=—2k2(1—cosb), (1.1)
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where 6 is the scattering angle. Note that this designa-
tion of s is exactly opposite to the standard designation
in potential scattering. The potential V() shall be
taken to be a superposition of Yukawa potentials. We
are interested in the scattering amplitude in the limit
s— oo with %, fixed in one of the following regions:
(1) k2 is nonzero (this case is of course standard and
shall be mentioned only briefly); (2) £2=0; and (3)
k2 is very small.

In Sec. 2, we shall give the general asymptotic forms
of the scattering amplitude in the three regions listed
above. We shall find, to our surprise, that at the
threshold %,=0 this asymptotic form is not entirely
determined by the Regge poles. A discussion of the
Regge-pole behavior near the threshold is also given in
this section. In Sec. 3 we shall study the leading Regge
pole in the weak-coupling limit for al values of 2. This
study confirms that it is the leading Regge pole, located
near a=—1 if £ is not too small, which moves to the
right of = —% at k,=0 if the potential is attractive. In
Sec. 4 we shall extract the leading terms in the Born
series and sum them up, and show that they agree with
the results of Secs. 2 and 3.

2. GENERAL FORMS OF HIGH-ENERGY
AMPLITUDE

Let us denote the scattering amplitude by f(k2,s).
The Regge representation for f(k2,s) is

Js)= 32 Bulks?)

Rean (k2)>—i+e

XP(an(ktz)(—l —-%Skf2)/sin7ran(kt2)

1 —3+etio
dl(20+1)

2 —3e—i

X Py —1—Lski?) ALk /sinal, (2.1)
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2 HIGH-ENERGY BEHAVIOR NEAR THRESHOLD- ..

valid for £2>0 and for all 5. In (2.1), € is a positive
number and A(l,k?) is the analytically continued
partial-wave amplitude. We shall keep ¢>0 for reasons
that will become obvious. Also, a, is a Regge pole of
A2 and

Bn=—m(2ar+1) Resd (L,EE) J1ea,- (2.2)

For the convenience of later comparisons, we shall
give the well-known asymptotic form of f(%72s) in the
limit s — o with %22 fixed at a nonzero positive value.

In this limit, we have
T l+l —ime\ 1
D (- s). 23)
(VRTAHD\ ke

Py(—1—3ski )~

Thus we get
Bu(k AT (an(k?)+3)
f(ktzys)NZ (

n (V) T(en (k) +1) sinra, (k)

=T\ an (k¢2)
><< ) e
ki?

Although (2.4) is obtained by restricting 22>0, it can
be extended® to all complex values of k2. Also, the
summation over # in (2.4) can include all Regge poles,*
not only those in the right half-plane as indicated
by (2.1).

Next we shall consider f(k&2,s) as k2 — 0. Before we
do this, some properties of the functions A4 (%3,
an(k?), and B.(k?2) necessary for later discussions will
be listed.

A. Some Threshold Formulas

The S matrix can be written as®
Y(\Eo)+k e

S\k) = ———,
Y()\’kt) +kt2)‘e—ur)\

(2.5)

where A=/+%, and where Y (\,k;) is a meromorphic
function of A and an analytic function of &, regular at
the threshold £,=0, i.e., Y (\)=Y (A,0) is a meromorphic
function of A. From now on, the variable A will be used
instead of ! when convenient. We shall also use the
notation A, defined by

>\n=an+%,

where «, is the location of a Regge pole in the / plane.
Equation (2.5) can also be written as

A (l,ktz) =[S(}\,kg) - 1]/21kt
k2 sinwA
N Y (\ ko) +Eeim :
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Thus we have

’lcimo ALRDk 2 =(sinw\)/Y(\), Rex>0. (2.7)
>

When A=#, an integer, the denominator and the
numerator of the right-hand side of (2.5) become equal.
Since S(#,k;) cannot be equal to 1 for all 2,, we must
have® .

V(nky)= (=12, n=0,+1 42 ... (2.8)
and, in particular,
Y(k)=—1. (2.9)
By taking the limit 2, — 0 in (2.8), we find that
Y(n)=0, un>0
=0, n<0. (2.10)

Since ¥ (\) is a meromorphic function of A, (2.10) means
that ¥V (\) has zerosat \=1,2, ..., %, ..., and poles at
A=—1,—-2, ..., —n,....

From (2.6), we see that a Regge pole A\ (k%) =a(k?)+%
is implicitly given by

Y (k&) k) + (kPeim) B =0. (2.11)

By taking the limit 2, — 0 in (2.11), we find that if A (0)
is a Regge pole at threshold, we must have

Y(A(0))=0, Rer(0)>0

=, Re\(0)<O. (2.12)

Thus the Regge poles A(0)>0 are located at the zeros of
Y(\) and the Regge poles A(0)<0 are located at the
poles of ¥(\). The converse is not, however, necessarily
true. For example, the points A=#% (—#) are always
zeros (poles) of YV (A).

From (2.2) and (2.7) ,we have

lim B, (k%) ki 22n©
k>0

= —217,(0) sin[7\,(0) [/ Y’ (\.(0)) ,

Rer,(0)>0. (2.13)

There are also infinitely many poles approaching
A=0 at threshold.” From (2.9) and (2.11), they are
approximately given by

Na~2nmif/lnn?, m==£1, 2, ...  (2.14)
where
n= e‘*“/e te
Since
ki2en sin(\ )
ResA (k)| ican= (2.15)

OV (Anyke)/IN+n2n Inn2’
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the 8, functions for the poles given by (2.14) are
Bn~ 2imw2\2/n lnn?

= — 8in?r*/n(Inn?)3. (2.16)

B. Amplitude at Threshold

Let us consider the amplitude f(k2;s) at k,=0. We
set k;=0 in (2.1). Then from (2.1), (2.3), (2.7), and
(2.13), we get

f(O,S) = Z Cn(e“i""s)an(o)
Rean(0)>—3+e¢
J+etio P( __l) (e—""s)l
. di , (@217
i i (VWmT(—1—-%) TN (
with
en==2(/MT(—an(OI(=an(O—HF (O]

(2.18)

Note that (2.7) is applicable since,we keep >0, and
(2.3) is applicable since, in the limit 2,— 0 and s fixed,
the argument of P; is infinite. Note also that (2.17) is
exact and is not merely an asymptotic formula for
s— o,

Once we arrive at (2.17), we may now set ¢e=0. In
fact, from the asympotoic form of ¥ (\) in the left-hand
plane,® we may move the contour of integration in the
background term of (2.17) to the left, obtaining

fO,)= 2 caleims)on
ReAn>—L
——L-Hao l) (e—ifrs)l
(2.19)
+/ - wor( - T

where L is an arbitrary real constant and ¢, is given by
(2.18) with ,(0) replaced by a,. We observe that a, is
the same as a,(0) if Rea,>—%; however, if Rea,<—3%
then it is a zero of ¥ (A). In the limit s — o, (2.19) glves

F0,9)~22 cale i), (2.20)

|s]—w.

It is interesting that the asymptotic form of f(0,s) is
not entirely given by the Regge-pole parameters.

Finally, we mention that the background integral in
(2.19) does not vanish when L — o, and hence (2.20)
is an asymptotic series but not a convergent series.

C. Amplitude near Threshold

As long as k. is nonzero, f(k2s) is given by (2.1) for
E2>0 and the asymptotic form of f(k2s) as s— o is
given by (2.4) for all 2. On the other hand, when & is
very small, f(k?s) should approach f(0,s) and its
asymptotic form as s— o should approach (2.20).
Since (2.4) includes the contribution of an infinite

8 H. Cheng and T. T. Wu, Phys. Rev. 144, 1232 (1966).

H. CHENG AND T. T. WU 2

number of Regge poles approaching A=0, while (2.20)
does not, these two equations do not seem to be con-
sistent with each other at first sight.

We shall show, however, that the contribution of the
Regge poles approaching A=0 goes to zero as k,— 0.
From (2.4), (2.14), and (2.16), the contribution is
equal to

—4n%(Ing?) 2512 Y sk Dmwiinat, (2.21)
Since (2.14) is valid only if |A\,|<1, or
7] <K (2m) 7 Inn?] (2.22)

the summation in (2.21) should include only the poles
satisfying (2.22). Thus (2.21) vanishes as k,— 0.

3. LEADING REGGE POLE

It is well known that, when %2 is nonzero, the Regge
poles are in the neighborhood of I=—1, —2, ..., —n,

., if the potential is very weak. On the other hand, at
the threshold value kt— 0, there is always a Regge pole
on the right of /=—1% as Iong as the potential is attrac-
tive, no matter how Weak it is.? This promotion of the
Regge pole at threshold has the same origin as that in
¢% theory. In fact, in Sec. IV we shall see that the Born
series in potential scattering is in precisely the same
form as the perturbation series we investigated in 3
theory. For the sake of simplicity, let us from now on
restrict ourselves to the single Yukawa potential
—Ge™"/r, where |G|<1, so that the potential is very
weak. If G is positive, then there is always a Regge pole
on the right of /=—% at threshold. There are two
possibilities: (i) This Regge pole is the leading Regge
pole located near /= —1 for nonzero £2; (ii) this Regge
pole is not the leading Regge pole, in which case it must
be located to the left of /=—1 for nonzero %2 and
catches up with the leading Regge pole before k2
reaches zero. In this section we shall show that possi-
bility (i) is the correct one. In so doing we shall also
obtain the behavior of the leading Regge pole through-
out the range 0< < .

For small values of G, we have!®

1
A(l,kt2>~%ckr2gz(1+5k—tz)

G e—ihr 1
ol )
2 coslall &, 2k2

+/’”/2 cos[(2l+1)0]d0:”"
o (3+k2cos?0)l2

(3.1)

The Regge poles are determined by setting the de-

?R. G. Newton, J. Math. Phys. 3, 867 (1962).
10 H. Cheng, Phys. Rev. 130, 1283 (1963).
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nominator on the right-hand side of (3.1) equal to zero:

1 G l:.e—imr <1+ 1 )
2 cosarl. Py 0 2k
/2 2a-1)6]d6
+ / cos[(2a+1)01d0 }0. (3.2)
o (iFk2 cos?)t?

In the limit G — 0, the second term in (3.2) is in general
small compared to the first term and (3.3) cannot be
satisfied unless « is in the neighborhoods of —1, —2,
..., —n, where Q. has simple poles. Since

Qa(2) £a) latnt1]<l, n=0,1,... (3.3)
«(2)~ , n , n=01,... .
? atn+1 ¢
(3.2) is approximately
. GiP,(1+1/2k?) 0
2katnt1)
or .
an(k,2)~—n—1—GPn(1+—~) / 2k (3.4)
2k
and
1
Bn(kt2)~7r(n+%)GPn<1+ '2_k;‘_2>/kt2)
n=0,1,.... (3.5)

Equation (3.4) confirms that, if 2,740, there are Regge
poles in the neighborhood of I=—1, —2, ...,as G— 0.

Let us concentrate on the leading Regge pole a(k:?)
(n=0). We have

alkd)~—1—G/2k (3.6)

and
BkE~3nG/k2. 3.7)

The perturbation expansion (3.6) is meaningful only if
|G/2k;| is small compared to unity, or

|k [>%]G]. (3.8)

Thus (3.6) fails when || is very small, and, in particu-
lar, it fails at the threshold value %z,=0.

Since (3.6) and (3.7) are good approximations if
(3.8) is satisfied, it only remains to investigate the
region where |k;| is small. Let us consider (3.2) when
|k.|<<1. Since

Qu(z)~ (v/m) (22) T (14+1)/T (+-3),,
the Regge poles are given by the solution of

1—3(G/N[ =T (1= NT (3+N)e % A +1]~0.
(3.9)

|z|>>1

In particular, since

limk =0 if A>0,
k>0

2301

the limit of (3.9) as &k, — 0 gives

1—1G/A~0, (3.10)

which means that A(0), the Regge pole at threshold, is
given by
A(0)~3G. (3.11)

Equation (3.11) is consistent with (3.10) only if G>0.
This is in agreement with the earlier statement that at
k=0, there is a Regge pole on the right of /= —1 if the
potential is attractive. Comparing (3.9) with (2.11),
we get

Y(\)~—(1=22/G)x2/[T(1—-NT(G+N]. (3.12)
Equations (2.18) and (3.12) give
co~inGR. (3.13)

Note that, when G<0, the right-hand side of (3.11) is
still a zero of ¥'(\), although it is not a Regge pole.

Let us now consider the case G>0 so that (3.11)
holds. How does this Regge pole move when %, is small
but nonzero? Let us return to (3.9) and restrict our-
selves to the region 72> 0. As 7 increases, the Regge pole
retreats to the left. By setting A=01n (3.9), we find that
the Regge pole moves into the left half-plane Rex<0
as n>1n0, where

né~exp[—2/G+y—y () I~exp(—2/G). (3.14)

In (3.14), v is the Euler’s constant and y(x) is the

logarithmic derivative of the gamma function. Note

that 7o is an exponentially small number as G— 0.
When ) is very small, (3.9) is approximated by

A~ (0) (1—7), (3.15)

where \(0) is given by (3.11). Equation (3.15) is
consistent with the well-known threshold behavior of
\(k2). It appears unlikely that (3.15) can be explicitly
solved for A(%) as a function of k2. It is easily shown,
however, that (3.15) has one and only one real solution.
A graphical solution of (3.15) is illustrated in Fig. 1.
We see that the solution is near A=X\(0) of <o, and
moves to the left half-plane as n>7,.

As 7 increases further and becomes much larger than
n0, —A (k) also increases and at some point the approx-
imation (3.15) is no longer valid. We have to go back to
(3.9). We may solve (3.9) to obtain

n*={(1—=2)/G)x'?/[T1—-NT G+N ]} (3.16)

Equation (3.16) gives ? as a function of A(k2). It
remains now to investigate (3.16) when A (k2) is nega-
tive. We shall put

A= —\(kd) (3.17)
in (3.16). Then (3.16) can be written as
1=7X(1427/G)x' /[T 1+NT (3—N)]. (3.18)

Graphic solutions of (3.18) for various 7 are illustrated
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F1c. 1. Right-hand side of (3.15) plotted as a function of \ for
various values of 5. The intersections with the straight line give
the locations of the Regge poles.

in Fig. 2. We note that the right-hand side of (3.18),
considered as a function of X, is equal to 1 at A=0, and
is increasing at A=0 if 7>no. On the other hand, the
right-hand side of (3.18) vanishes at A=2. Thus (3.18)
always has at least one solution. This solution is seen
to approach A=1%, or /= —1 as 5 increases. Thus this is
indeed the leading Regge pole given by (3.6).

Finally, we must show that (3.18) has only one
solution. Now the logarithmic derivative of the right-
hand side of (3.18) is

2 (211+ (1=N)—yG—N)
1+28G-1 . v v
d sin(Ar)
= —in—- ) (3.19)
dA AT

For $>\>0, the first term in (3.19) is a decreasing

A
T2 >

M\\72"

>V

[MES

F16. 2. Graphic solution of (3.18). The right-hand side of (3.18)
is plotted for two values of », and the intersections with the
horizontal line give the locations of the Regge poles,
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function of A, and the quantity in large parentheses in
(3.19) is an increasing function of A. Thus (3.19) can
vanish only once, and the right-hand side of (3.18) has
only one maximum as plotted in Fig. 2. Thus (3.18) has
only one solution.

In summary, we have followed the movement of the
Regge pole given by (3.11) at threshold. When 7 is of
the order of or smaller than 7o, it is given by the solution
of (3.15) and illustrated in Fig. 1. This Regge pole
moves very rapidly into the left half-plane as  increases,
and when 7 is of the order of G*, it arrives at the neigh-
borhood of A= — (2x)~* [see (3.16)]. The precise form
of A(k?) is determined by (3.18) and illustrated in Fig.
2. As 7 continues to increase, it is given explicitly by
(3.6). Thus the Regge pole (3.11) is also the leading
Regge pole (3.6).

It is interesting to note that a(k2) has perturbation
expansion both when & is away from threshold [ (3.6)]
and when %, is at threshold [(3.11)], while the two
expansions do not join into each other. This is not
inconsistent since a (k) has no perturbation expansion
when %, is near threshold, and its form can be given only
implicitly. The fact that «(k?2) has no perturbation
expansion near threshold is probably not surprising,
since it must satisfy the well-known threshold behavior

a(k)~a(0)+ak PO (3.20)

which cannot be expanded as a perturbation series near
threshold if A(0)~3G.

4. BORN SERIES

In the preceding two sections, we have established
the asymptotic form of f(k2s) as s— o, with &2
especially in the region near or at the threshold. For the
purpose of testing the legitimacy of summing leading
terms of the perturbation series when s and %2 are in the
region mentioned above, we shall, in this section, apply
this method to the Born series of potential scattering,
sum them up, and compare it with the results in the
preceding sections.

The potential is again taken to be —Ge="/r, where G
can be either positive or negative. Then the #th term
in the Born series is

fa=(4m)" G, (4.1)

where

n—1

Ju=| II [@3k: 2nx)-3(k2—k2—ie)~1]
Xf:[ [(ki—k;2)* 1771 (4.2)

In (4.2), koand k, are the initial and the final momenta,
respectively, i.e.,
k=k. =k?,



2

and

s=— (k,—ko)?.
By introducing Feynman parameters, (4.2) can be
written as

1 n
Jn=F(2n—1)/ 11 de
¢ 1

n—1

III dB:

n—1

X5(1 *Zj ai——%l,&-) III [d3k,’ (211')_3]
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Since
n—1 n--1
I Lotk o) £ hoba)
1 =1
fn—D—mP(—3(p—1 -+
_ (—3(r—1) M), (44)

(4m)} =T (m)
(4.3) is equal to

1 n—1
Ju=TGn+35)@m) =0 | I] da: T dB:
0o 1 1

n—1
X P kZZ_k 2 n n—1 .
l . Xo(1—% ai— & BID-1rH0NI-1 (45)
n 1 1
{ (Ri—ki1)?+1]—idep 2nt1 (4.3
+Z1: ol ( V] ze} (3) In (4.5), A is the (r—1)X (n—1) determinant
a1tas+pB1 —az 0 0 0
—ay astas+0B2 —as 0 0
0 —as aztaitfBs —as 0
0 . 0
A= 7 o ; (4.6)
0 0 an_1tant+PBa
and D is the #X#% determinant
artae+B41 —az 0 0 —azk,
02 C!2+013+62 —ag 0 0
0 —az aztas+Bs —ay 0
0
D= 4.7
—anky
n—1 n
—alko 0 —ankn (a1+an— Z ﬁi)kt2+z oy
1 1
The determinant in (4.7) is equal to
=—s]] a;+A X as+Dik2, (4.8)
1 1
where
Ol1+0£2+ﬁl —Q2 0 0 —Q3
—az astaz+B; —as 0 0
0 —a3 aztas+B; —a 0
0
Dk =
e —0n
: n—1
—a 0 —an  a1to,— Z Bi
1




2304
artas+B/1 —a 0
—ay astasztB2 —ag
0 —a3 aztas+Bs
B1 B B3

In the above, A(3,7) is the determinant (4.6) with the
ith row and the jth column deleted. A few examples of
Dy, are

Dy=—BZ, n=2
= —[B3(aetas)+B(artaz)+ 2058182
+ (B1+82)81821,

n=3. (4.10)

From (4.5)-(4.9), we observe that J, is equal to, aside
from a multiplicative constant, 7,1 in Ref. 2.

Let us now consider the limit of J, as s — «. For
this purpose, we make a Mellin transform of (4.5). We
have

7n($)=/ Jasds
0

n—1

1 n
T Gn—3+ I (1 —E)(dr)H D / 1 des IT
0o 1 1

X% ai—"z:‘,l 8(—TTae

X (Dikld+A 3 a)#=D=Epin—1 - (4.11)
1

A. Away from Threshold

If %2 is nonzero, the calculation is standard. The
integral (4.11) has a singularity of £=0. The integration
region which gives the dominant contribution is in the
neighborhood ;=0, =1, ..., n. Thus

|

Tu(&)~—T(Gn—3)(dm)-i g I1I B
0

n—1 n—1

Xo(1— Zl: B:) (e~ k) ‘”‘U(III B2 (4.12)

H. CHENG AND T. T. WU

I°
B
—Qg e e e B3
==X 8B8AGH).  (49)
ten—l
Bn—l 0
Now
1,1 n—1 n—1
III dB; 6(1— 2 Bs) (11 B2
0 1 1
1 bl © n—1 n—1 n—1
=— | dx e”/ exp(—ix 2 B:)(I1 B2 I] dB:
2w J_ 0 1 1 1
—_— dx 6ia;[e—i7r/27r(x_ie)—1](n~1)/2
2 J_o

=r DA D(n—}) ]
Thus as s — o, { nonzero, we have
Jn~— (8we ™2 )77 (lns)» 7/ (n—1)! (4.13)

and

Fls) =§ fn=§ (4m)—iGnT,

= —Gs— Gk,

(4.19)

Equation (4.14) agrees with (2.4), (3.6), and (3.7). Note
that this agreement is independent of the sign of G. This
is quite impressive as successive leading terms in the
Born series alternate in sign if G is negative and 7 is
real, and the sum (4.14) is smaller than any individual
term in the series.

B. At Threshold

If £2=0, then (4.11) gives

Tu(®) =T (Gn—3+HT(1—&) (dx) D
1a n—1 n n—1
X/ H da; I_i[ dB; 5(1—2 a;— Z 89
o 1 1 1

X (=TT sy (3 )t DA€, (4.15)
1 1
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The integral above is already divergent at =% if n> 1.
To see this, we make use of the identity

1 n m n m
/ II de; IT dB: 6(1—3 i =3 B)
o 1 1 1 1
XF(O!], cee ,an,ﬂl,. .o ,,Bm)

1, n ®© m
= | Ilda;s(1—3 ﬂi)/ IlIdﬂi
¢ 1 1 0

XF(ay,. o y0n,Bye - sBm), (4.16)
where F(az,. . . ,0m,01,- - - ,8n) satisfies
F(aay,. . .,aan,aB1,. . . ,aBn)
= a‘"""F(oq,. o snyB1ye o o yBm)

Thus (4.15) can be written as

T o9~ D(m)T(3) (dr)- 10 / I des1-E )

0

n n—1
Xem ([T a2 | I dB:A—¢, t~%. (4.17)
1 1

0

The divergence at £=3% comes from the region 8>1,
1=1, ..., n—1. Thus we may make the approximation

n—1

ANI;[ Bi,

2305

and (4.17) becomes
Tu())~iT(Gn) T (R) (dr)} D

1 n n n
X | I des 5(1 =3 @) (1T aa)~V/2(g~5)—+
0o 1 1 1

=ir(8m)~ =D (g—L1)~n+l,  (4.18)
Thus at 22=0, we have, as s — o,
Ju~iw (8r)~ D (Ins)» 25712/ (n—2)!, #>1 (4.19)

while J; is of the order of s and will be neglected.

Hence

FO)~Y (4m)1G T, =}irGiHHE | s—oo. (4.20)
2

Equation (4.20) agrees with (2.20), (3.11), and (3.13).
Note that when G<0, A\(0) (=3G) is no longer a Regge
pole. However, it continues to be a zero of ¥ (\). Thus
(4.20) is still correct and summing the leading terms in
the Born series is legitimate even for a repulsive poten-
tial, despite the fact that successive terms in this series
alternate in sign and the sum (4.20) is smaller than any
individual term.

C. Near Threshold

The behavior of the #th Born term in the limit s — «
with k2 near the threshold is quite complicated. A
discussion has been given in Ref. 2 and will not be
repeated here. It suffices to say that there are infinitely
many scales for 22 This complicated behavior is related
to the existence of infinitely many Regge poles in the
neighborhood of A=0 as k2— 0. The precise relation-
ship between the Born series near threshold and (2.21)
appears to be quite difficult to establish and is beyond
our power of analysis.



