PHYSICAL REVIEW D

VOLUME 2,

NUMBER 10 15 NOVEMBER 1970

High-Energy Behavior near Threshold : ¢* Theory*

Hune CHENGYT
Depariment of Mathematics, Massachusetts Institute of Technology, Cambridge, M assachusetts 02139

AND

Tar Tsun Wu
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138
(Received 20 April 1970)

In this paper we study the two-body elastic scattering process in ¢* theory, in the limit s — with ¢ equal
to or near the threshold value 4, where the mass of the scalar particle is taken to be unity. For the scattering
amplitude corresponding to any ladder-type diagram, we find that there is a promotion for the power of s
by 3. For example, the scattering amplitude for the ladder diagram of #1 rungs is promoted from O (s~ In"s)
away from threshold to O(s™/2In""%s) at threshold. This means that, for small coupling constants, the
leading Regge pole is promoted from the neighborhood of /= —1 away from threshold to the neighborhood
of /= —3 at threshold. There are, in addition, infinitely many Regge trajectories approaching /=—% as ¢
approaches 4. The scattering amplitude for the #-rung diagram is explicitly given in the limit s —, with
t at or near the threshold 4, and various scales for /—4 are pointed out. The two-rung and three-rung dia-

grams are especially studied in detail.

1. INTRODUCTION

IGHT years ago, Gell-Mann and Goldberger! sug-
gested that field theory may give rise to Regge
behavior s*®, where as usual s is the square of the c.m.
energy and —¢ is the square of the momentum transfer.
In their work and subsequent analysis, attention is
concentrated on the ladder diagrams in the ¢ channel.
By adding together the leading contributions from these
diagrams one finds, for ¢® theory, indeed the behavior
s%® for large s. Since this is a perturbation calculation,
the a(f) thus obtained is proportional to g%, where g is
the coupling constant. Higher-order terms in g2 pre-
sumably have contributions from other diagrams.

It is realized in the original work! that the «(f) so
obtained has a singularity at the elastic threshold
t=4m?, where m is the mass of the particle under con-
sideration. Furthermore, since such a singularity cannot
make sense physically, it must be attributed to the
inadequacy of the approximations used. More precisely,
in the analysis ¢ is assumed to be fixed at a value away
from 4m? while s—, and hence failure near 4m? is
not surprising. As a trivial example, consider

00
/ dx e2a%,
a

For fixed ¢>0 with A — o, this is approximately
(2\a)~te™Na? |

which has a singularity at ¢=0 where the original
integral remains bounded.
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1 M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters 9,
275 (1962).

In view of the results of the preceding paper? for
quantum electrodynamics with a massive photon, it is
interesting to go back to the simpler ¢* theory and
study the properties of the matrix elements near the
elastic threshold. It is the purpose of this paper to carry
out this analysis. Compared with the early work away
from threshold, the present consideration is much more
involved, and many questions cannot be answered
without extensive additional work. In Sec. 2 we begin
with a detailed analysis of jthe box diagram, shown in
Fig. 1, and in Sec. 3 we study the ladder diagram with
three rungs. In the latter case, enormous complications
appear because of the presence of two distinct scales
for 4m?—1, namely, s~1/2 and s~1. Some of these results
are then generalized in Sec. 4 to ladder diagrams with
an arbitrary number of rungs.

2. BOX DIAGRAM

In this section, we discuss the box diagram of Fig. 1
in the case where all the masses are equal. Since there is
one loop, we call this matrix element

Ny = —1g*(2m)~ f d*q[(ra—g)*—1-+ie]™

X[ (r1itq)2—14-ie [ (r1—q)?—1+ie]™?
X[(rstg)*—1+iel™, (2.1)

where we have taken the mass to be 1, and otherwise
the notation is that of Sec. 2 of Ref. 3. If Feynman
parameters are introduced as usual, then

Ny= g4(47r)_211 , (22)
2 H. Chengand T. T. Wu, preceding paper, Phys. Rev. D 2, 2276

(1970).
3 H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969).
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fa=h r-q ra+ry
ay
r-q4a, air+q
Qa3
rz+r rz+q r3=ry

Fr1c. 1. Box diagram.
where
1
[1=/ daldagdoz;;da4 5(1 —0!1—012—(1‘3—014)171-2, (23)
0
with

D1: sa1a3+ tozzaﬁ— ((!1+0(3) (a2+a4) - 1+’L€ .

We shall study I, for large s.

The proper way to analyze the asymptotic behavior
is to use Mellin transformation, which has been pre-
viously used,* and hypergeometric functions.® However,
since hypergeometric functions, unlike Bessel functions
for example, are not familiar to every physicist, we shall
avoid them in this section. The more systematic
development utilizing Mellin transformation and hyper-
geometric functions is to be found in Appendix A.

We first review the case where s— for fixed {74.
This has been studied by many persons—for example,
Federbush and Grisaru.® The result is

(2.4)

I,=51 lns/ dx [ix(1—x)—14ie]4-0(s~Y).  (2.5)

The term of the order of magnitude s~ is also known.”
In particular, if the fixed ¢ is close to 4, Eq. (2.5) gives

(2.6)

Note that the right-hand side of (2.6) has a singularity
at f=4; this singularity indicates that, at {=4, the order
of magnitude of I; is not s7* Ins. Indeed, we shall see
that, at =4, I is promoted to the order s~'/2.

To see this, let

Ii~—nstIns(d—t—1e)~1/2,

1=4(1—TY/s), @.7)

fix T, and let s—. The leading term in this limit is
easily obtained as follows from (2.3) by using the new
variables »

4J. D. Bjorken and T. T. Wy, Phys. Rev. 130, 2566 (1963).

5 Bateman Manuscript Project, Higher Transcendental Func-
tions, edited by A. Erdélyi (McGraw-Hill, New York, 1953),
Vol. I, Chap. 2.

6 P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 22,
263 (1963).

7T. L. Trueman and T. Yao, Phys. Rev. 132, 2741 (1963).
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0,’1,—_—0115, (13’=(I3S,

and

(2.8)
x=s22ay—1)~s2(1—2a4).

Therefore, in this limit of fixed T,

lim s%/2[,

1 00 00 0
=*/ dal'/ dag’/ dx
2 0 0 —o0
X(eday = T—ay —ay’ —x*ie)—2
=/ dx/ day (—at +1—ie) "W (T+a) +x*—ie)?
0 0
=/ dx (T+1452—ie) [ —In(T+x2—ie)-+ir ]
0

= —n(T+1—ie)2{In[ (T —ie) /2

+(TH+1—ie)V?]—%in}. (2.9)
In particular, when =4, 7=0 and
I ~%ims—12 (2.10)

as s—. A much more precise formula for 7; in this
case is to be found in Appendix A, Eq. (A22).

On the other hand, when T is large, we can neglect 1
in (2.9) to get

I~ —ms Y (4—t—ie){In[s(4—t—ie) |—im}. (2.11)
This is more precise than (2.6). Thus the asymptotic
behavior of I; is given completely by (2.5) and (2.11).

We emphasize that, for the present problem, there is
only one scale for {—4, namely, s~! as seen from (2.27).

=N r2-q ra+n
ay
ro-a4B, Yitri+q
1
q-q
az
! 1
r-q Bz Y2Tn+q
Q3
1
rs+r, rs+q r3=r

F16. 2. Ladder diagram with three rungs.
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As we shall see in Sec. 3, the situation is much more
complicated for the ladder diagram with three rungs.

3. LADDER DIAGRAM WITH THREE RUNGS

A. Formulation

We turn our attention to the next more complicated
diagram, shown in Fig. 2. Since there are two loops, we
call this matrix element

oMy =g°(2)~° / d'qd'q' [(r—g)*—1+ie]*

X019 = 1+iel[(n—g)*—14ic]

X[(g—q)*—14iel ' [(rrtq")*—1+ie]™

X[(rn—¢)?—1+ie]'[(rs+q)*—1+ie] ', (3.1)
Again Feynman parameters are introduced, and

Ny= —g°(4m)~*12, 3.2)

where
1
I,=2 / dodosdasdBidBedyidys
0

X8(1—ar—az—as—B1—Le—y1—y2)A2Ds~3, (3.3)
with

Ar= Brtvitartas) Betvetastas) —as?  (3.4)

and

Dy= sarazas+1[ Bryv1(Batvatartas)
+B2v2(Bit+vitartas)+ax(BryetBry1) ]
FLa1(B1+71) (Batvatastas)
Fas(Batv2) (Brtry1t+artas)

F s (Bat-v2) +azes(Bitv1) ]

—A(ertantastBit-Betvitve)+ie.  (3.5)

In this section, we shall study 7, for large s.

As in Sec. 2, consider first the case where s —c with
fixed ¢5%4. Mellin transformation applied to 75 of (3.3)
gives?

72(£)=/ ds s,
0

1
=7£(14£) cseré / dondasdazdBidBady dys e *7¢
0

Xo(1—ar—az—az—B1—PB2—v1—72)

X (os0s) HEAD ¢, (3.6)
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where
D2/= —Dzl $=0+ (37)

With />4, let £ be small; then (3.6) gives approximately
_ 1
Iy(&)~ 5—3[ ABrdBadry1dys 6(1—B1—LBa—~1—72)

0

X (Brty1) Batr2){ — [ Bry(Ba+2)
FB2v2(B1+71) ]H+(B1+71) (Ba+y2) —ie)—2

1 2
=£~3{/ dx Dx(l—x)—l-{—ie]_l} . (3.8)
0
Accordingly, as s —0,
1 2
Iy=13s5"1 {lns/ dx [tx(1—x)— 1+i€]_1}
0
+O0(s'lns). (3.9)

When the fixed £ is close to 4, a comparison with (2.5)
and (2.6) shows that

Iy~ 3w (Ins)2(4—t —ie)—L. (3.10)

It is interesting to speculate at this stage about the
order of magnitude of I, at t=4. For I;, a comparison
of (2.6) with (2.10) shows that afactor (Ins) (4—¢—7e)—1/2
away from threshold turns into 4ws!/? at threshold. If
this is also true for 7, then it follows from (3.10) that
I, is of order of magnitude 1 at ¢{=4. However, a
moment’s reflection indicates that this is not possible
because of (3.3), where s appears only in the denomin-
ator. In fact, as we show below, at {=4, I, is of the order
of magnitude s~/2Ins. In other words, for I, a factor
(Ins)(4—t—ie)™* away from threshold turns into
constant s'/2. This implies that in the present case
there is a second scale for 4—¢, namely, s—1/2, It is this
presence of two scales for 4—¢ that makes the problem
both complicated and interesting.

B. Behavior at Threshold

In this section, let =4 and study the behavior of I,
as s—. There are many different ways of analyzing
this case at threshold; one way is to use Mellin trans-
formation again and note that (3.6) also holds here. If

we set =4 in (3.7), then by (3.5) and (3.6) we need to
study explicitly
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_ 1

IZ(E) =1r£(1+$) CSCTE e‘“"f/ daldag(iaadﬁldﬁzd71d72
0

X3(1—ar—ar—as—B1—B2—r1—72) (azas) 1+
XLBr+vitartaz) (Betryetaetas) —as?]
X{(artaztas)[(Bi+yitartas)

X (BeFryetaztas) —az?]+(B1—v1)?

X (Batvataztas)+(Ba—v2)*(Bityitertaz)

F205(B1—v1) (B2—v2)} "+ ¢, (3.11)

Unlike that of (3.8), but rather similar to the I;(£) of
(A18) and (A19) in Appendix A, I5(£) has a singularity
at £=3. This singularity comes from the region where
a1, az, a3, (B1—v1)% and (Ba—7v2)? are all small and of
the same order of magnitude. In order to get the leading
term near £=%, we make the approximation of inte-
grating Bi—v1 and B:—7v:2 over the entire real axis.
When these two integrations are carried out, we get

1
iZ(E)'\’ “’%11'2/ dodasdasdxdxe
0

X5(1 —-a1—a2—a3—x1—x2)
X (a0005) ¥ (aytFastos) ¢
X[ (@1tartas) (xetastas) —a2 512 (3.12)

where x;=B;+; for i=1,2. Because of homogeneity in
the integrand of (3.12), this can be easily reduced by
changing the argument of the § function:

H. CHENG AND T. T. WU 2

1 0
Iy (§)~ —'L%TZ/ da1dd2da3f dxrdzs 6(1 —a3— a2 —as)
) 0

X (o)~ (o +aptaz) ¢
X[(x1+a1+a2) (x2-}-a2+a3) —(122]_5*1/2

1
= -—7%1r2/ daldazdﬂlz 5(1 —al—ag—aa)(alagas)“HE
0

X[ (artas) (aztos) JEH172
XF(E—%, E—%: £+‘21‘, a22/E(a1+a2)(a2+a3)])

1
~ —’L‘%Tz/ daldagdaa 6(1 —Otl—az—aa)
0

X (aorgaes)=1/2(£— )2
= —ir(E—1).

(3.13)

Therefore, by inverting the Mellin transformation,
we get
Iy= —izm’ 1 Ins4+0(1)], (3.14)

valid for =4 and large s. This is the desired answer.

C. Behavior near Threshold
In order to connect (3.10) to (3.14), we consider the

case
t=4(1—A'/A/5), (3.15)

with A’ fixed and s—o. For A’#0, this case is most
easily studied by a change of variable:

- - -
ar=ai'sTV2, ag=ay/sTI2 ) ag=aylsTl2,

Bi=3(x+y1571%), yi=3(x—yis~114),

ind (3.16)
Bo=3(1—a+ys719), yo~d(1—z—yus~1/4).
The substitution into (3.3) then gives
2(1—x)doy'das’das' dy:dy,
(3.17)

1 00
lim s1/212=2/ dx/ .
a0 0 o [ao'ay’ — (A4 4 +ar' +ag )2 (1 —2) — (1 —2)y 2 —xys24-ie J?

Note that this procedure makes sense because the
integral on the right-hand side of (3.17) is convergent.
As shown in Appendix D, this sixfold integral can be
reduced to a single integral®

AI
lim s”212=1r2/ dx (cos™x)(A"2—x?) 131 —x%)~1/2
800 o
—4imK'(A"), (3.18)

where K is the complete elliptic integral of the first
kind.?®

8 The term of order s™12 can also be found explicitly, but we
have failed to find any elegent expression for it.

9 When A’ is negative, it should be interpreted as A’ —ze.

10 Reference 5, Vol. II, Chap. 13. See especially pp. 314 and
317. Note that K’(4’) is defined to be K((1—A'2)172),

It is also of some use to have the Mellin transforma-
tion of the right-hand side of (3.18):

8->00

/ dA" A'—¢lim s1/2],
0

=gm*(cosiTe T FHT (G151 (3.19)

This is derived in Appendix E.
It follows from either (3.18) or (3.19) that

lim §"27s~$rA"1(InA")? (3.20)
as A'—, and
lim s¥2[y~21473 InA’ (3.21)

8RN



2 HIGH-ENERGY BEHAVIOR NEAR THRESHOLD: ..

as A’—0. Equation (3.20) agrees with (3.10); this
means that, for 1—4, s71/2 is the largest scale. On the
other hand, the right-hand side of (3.21) fails to make
sense for A’=0; this means that s~*/2 is not the only
scale for t—4.

A comparison with the case of I suggests that for 7,
the two scales of {—4 are s7'/2 and s~1. There are many
ways to see this. For example, in (3.13) ai;+a. and
as+as act, respectively, as cutoffs for ; and «;. On the
other hand, from (3.17) with small A’, the largest
contribution comes from the region where oy, as’, a3,
and x'/2 are of the same order of magnitude A’. A com-
parison of these two cutoffs shows that

A'~x/a/x~ay /o =512, (3.22)

and hence
4—i=0(s"1).

When (3.23) holds, (3.21) agrees with (3.14).

(3.23)

D. Summary

We summarize the asymptotic behavior of I, for
s—» and real {: Eq. (3.9) holds when s'/2|4—¢|>>1,
Eq. (3.18) holds when 13>]|4—¢|2s, where A’ is
defined by (3.15), and Eq. (3.14) holds when s|4—¢]| is
not large. These formulas cover all the possible cases.
In Appendix F, we study in more detail the case
4—t=0(s7Y).

4. GENERAL LADDER DIAGRAM

2289

of n+41 rungs, as shown in Fig. 3. Unfortunately, the
present generalization is quite incomplete and a great
deal of future work is needed. The case of the box
diagram in Sec. 2 corresponds to the special case n=1,
while that in Sec. 3 corresponds to the case n=2.
The matrix element for an arbitrary # is

9N = — ingE+D) (2r)—tn / diqrdiqa- - -diqn
X[(ra—q0)?—1+iel [ (rs+qn)2—1+ie]!

X{ I=I [(ritg9?—14ie])1

X{ 1T [(rn—gd?—1+ic]j!

t=1

n—1
X{ IT [(gi—qisn)?—1+ie]}~1. (4.1)

i=1
In terms of Feynman parameters, this is

mnz (_ 1)1L+1g2(n+1)(4m.)—2n]’n , (4'2)

where

1
I,,=1’L!/ daldaZ' . ‘dan+1dﬂ1(iﬂz' . 'dﬂnd’)qd’)/z‘ . -d’y,.
0

n+41 n

A. Formulation Xo(1=2 a;i— 2 Bi— 2 v)A.," "D, "1, (4.3)
=1 =1 =1
We are now in a position to generalize some of the
results of the previous two sections to a ladder diagram  In (4.3), A, is the #X#% determinant
131+’Y1+al+az —aQg 0 R 0
—ay Bet+vatastas —as cee 0
A= 0 —a; 133"1")’34.-&'34-014 s 0 ; (4.4)
b 0 0 o ﬂn'f"')’n"".an""an—l—l
and
n41 n41 n+1 n n
Dy=sIT aitGt—1)[2 IT astar?An @V 4ani?n ™™ —(a1tan)An]—( X @it 2 Bit 2 vi)An
=1 =1 =1 i=1 i=1
Bityi1tartas —as 0 0 —B1t+v1
—ay Batyataztas —ag 0 —Batv2
0 —az Bs+vystastas - 0 —Bs+v3
+1 : : +ie, (4.5)
0 0 0 ﬁn+‘)’n+an+an+1 _Bn+7n
—B1t+71 —B2t+72 —Bs+7vs —Batva 2 (Bits)
i=1

where A, % denotes the 7jth minor of An.
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re—n r2—qy Fo+70y
ajq
r-q:48; Yitri+qy
qi-q2
ap
ri-q24 82 Y2ihitds
q2-Q3
=
qn-2-Qn-t
Qn-1
1 -dn-14 Bn-1 Yn-1fr+qn-y
dn-1=Qn
Qn
r1=Qnf By Yn{r1+qn
QAn4t
r3-ry rs+qn r3—r

F1c. 3. General ladder diagram.

With any fixed ¢, we write down the Mellin transform
of I, as

I.(%) =/ ds s,
0

1
=I‘(1—£)F(1’L+£)/ dalda2~ . ~da,,+idﬁld,82- . 'dﬁn
0

n+1 n n
Xdyidys: - dyad(1—22 ai—2 Bi— 2 yi)e im(ntd
=1 i=1 i=1

n41

X (I a)="A,"1D,~"¢,  (4.6)
=1

where

Dnl= —Dnl 8=0- (47)

Equation (4.6) is the generalization of (3.6). When the
fixed ¢ is not equal to 4, then the behavior of I,, as s —

H. CHENG AND T. T.
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is given by*67

I,=(n")y"1s"! { lns/ dx[tx(1—2x)— 1+ie]-1} "
+O[s~(Ins)"1].

In particular, when this fixed ¢ is close to, but not equal
to, the threshold value 4, Eq. (4.8) implies that

(4.8)

Ii~m ) Y(—m)ns(Ins) (4 —t+ie)™/2  (4.9)

as s—. In general, therefore, I, is much larger than
s7!(Ins)” at 1=4.

Since, at =4, I, is of the order s~!/2 while I is of the
order s7/2]ns, it is reasonable to expect that I, is of
the order s7/?(Ins)»~. We shall see shortly that this is
indeed the case. A comparison with (4.9) then shows
that, in the case of I,, one important scale for 4—i
must be s7'/». We shall return to the question of other
scales later in this section.

B. Behavior at Threshold

Let =4 and study the asymptotic behavior of I,
as s—>oo. At this threshold value, D,’, as given by (4.5)
and (4.7), simplifies to

n+1 n

D)'=(2 "‘i)A+.Zl B:=v) (Bi=v)A. P (4.10)

=1 1,=

From the experience we gained from Sec. 3, we can
use the approximation of integrating the variables
Bi;—v: from — oo to . Since

detA, D= A, (4.11)

it follows from (4.6) that
I—n(f)"’ GVm)"T(1 =T En—+£)e in(ntd

1
X/ donday: « - dagp1dxidxs - < dx,
8

n+1 n

Xo(1= 3 ai= 3 i)( T aget

=1

n+1

XX )y 20,12 (4.12)
i=1

where

x,—=/3,--|-'y,~ (413)

for i=1, 2, ..., n. Like (3.12), (4.12) is valid near the
singularity at £=%; thus the coefficient in front of the
integral on the right-hand side of (4.12) can be replaced

by
=2i(—=D)"GVm)" T (Gn+3).

The leading term in the vicinity of =% can be
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obtained from (4.12) as follows:

L()~2i(=5v/m) " T (3n+3)

dx1dxs: + +dxn
0

1
X/ dardas: « -dopy
0

n+1l n+1
Xo(1= 3 ai)(IT ad)= V24,812
i=1 i=1

1
’\’21(-%’\/#)"+1F(%7L+%)/ dOlldaz' . 'da,,+1
0

n+1 n+1
Xo(1— X ai)(II e~
=1 =1

X/ dxrdxs- - - dx, ( I] 2)~812
1

=2i(—3m) (=), (4.14)
Consequently
I,=2i(—4m)""[(n—11) ] L1/
X{(ns)*+O[(Ins)*%]}, (4.15)

valid for t=4 and large s. When =1 and 2, Eq. (4.15)
reduces properly to (2.10) and (3.14), respectively.

C. Behavior near Threshold

The next problem is to generalize the considerations

of Sec. 3C. Let
[=4(1—=A/s717) (4.16)

with A’ fixed and s — . For A’50, change the variables
by

’—
a;=0; § 1/n

fori=1,2,...,n+1,
Bi=3[wityis™/@] and yi=3[wi—yis™CM] (4.18)
for i=1, 2, ..., n; then it follows from (4.3) that

(4.17)

lim V27,

3>

1 n n
0 =1

=1

X/ dﬂqldaz/' . -doz,,+1'dy1dyz- . dyn
0

n+1 n+1 n
X[( I=Il ai’)—(A’-*-gl aif) IT #:

7=1

-—i yﬁn x;+ie 7L (4.19)

=1 7L

It is seen that (3.17) is a special case of (4.19).
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Since we are unable to find a generalization of (3.18),
we concentrate on the Mellin transform of (4.19) with
respect to A’. This is carried out in Appendix G, and the
result is

* —ir
/ dA" A lim sV, = ——(—3+/m)neim = Din
0

§->00
n

2]

In particular, it follows from (4.20) that

/ dA” A'-Elim sV~ (—3nm)»(§—144n)""1 (4.21)
0 8§>0

as £— (1—3n)+, and hence

lim sV~ (n!)Y(—2nm)"A—2(InA")»  (4.22)

for large A’. Note that, by (4.16), the right-hand side
of (4.22) is

(1)~ (—Fm)s (1 =12 (ins(1 37T}

Therefore (4.22) is consistent with (4.9). It also follows
from (4.20) that

(4.23)

/ dA’ A™#lim sV~ —ir(—%m) "1 (1—§)~" (4.24)
0

§->00

as £— 1—, and hence
lim s¥2[,~ —ix[ (n—1)!]!

X (—3m)mr1(—InA) =1 (4.25)

for small A’.°

For n>1, we cannot take the limit A’— 0 in (4.25) to
recover (4.15). Instead, the right-hand sides of (4.15)
and (4.25) agree when

Am=0(s1) (4.26)
or
4—t=0(s~2/m). (4.27)

5. DISCUSSION

The results in Sec. 4 are summarized as follows:
For t—4=0, we have, from (4.2) and (4.15),

0
M 3 M~ gyighs— 12070207 oo

n=1

(5.1)

F16. 4. Lowest-order scatter-
ing diagram.
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Note that all 97, are of the same sign and (5.1) is
exactly the same as the attractive case in potential
scattering.!! Note also that 917y, the scattering amplitude
corresponding to the diagram in Fig. 4, is of the order
of s7! and does not contribute. This is not the case if
t—45£0. For {—450, we have

oo
N~ Z M~ thS‘HLa(t) y §T>®

n=0

(5.2)

where

a(t) = —g*(4m)2 / de [tx(1—x)—14ic L. (5.3)

Note that the summation in (5.2) starts from n=0.
Equation (5.1) means that as ¢=4, there is a Regge pole
at I=—3+¢2(32m)"1. By (5.2), this Regge pole, for
1#4 islocated at —1+a(?#). Observe that if the coupling
constant g is very small, this Regge pole is “promoted”
from —1 to —% as ¢ approaches 4. This phenomenon is
discussed in more detail in the following paper.

Direct interpretation for the case when ¢ is near the
threshold value 4 is more difficult. However, we observe
that at high energies, the amplitudes 9, or, more
specifically, I,(£) as given by (4.12), are exacily the
same as the Born amplitudes f, in potential scattering
studied in the following paper. Thus in the high-energy
limit s —<o, there is no distinction between the ¢® case
and the potential-scattering case. The results in the
potential-scattering case therefore lead us to the con-
clusion that there are, in addition to the Regge pole
exhibited in (5.1), infinitely many Regge poles ap-
proaching /= —% as ¢ approaches 4.1

The promotion of Regge poles at threshold can be
extended to more general diagrams. Let us consider a
diagram with a two-body intermediate state in the ¢
channel. As s — there is, among others, a contribution
from the region where these two particles carry trans-
verse momenta only. As = (mq+my)? where m, and m,
are the masses of these two intermediate-state particles,
respectively, the propagators for these two particles
blow up simultaneously and a square-root divergence
occurs. This means that at t= (m,+m;)? the power of s
for this diagram is promoted by 3.

When {is at a three-particle threshold, it appears that
the divergence for the high-energy amplitudes, if it
occurs, can only be logarithmic; and there is no promo-
tion at this point.

APPENDIX A

In Sec. 2, we discuss the asymptotic behavior as
s— of the box diagram. Since it has been known for
a number of years that the ladder diagrams are most
conveniently discussed by means of Mellin transforms,*

11 H, Chengand T. T. Wu, following paper, Phys. Rev. D 2, 2298
(1970).

12V, Gribov and I. Pomeranchuk, Phys. Rev. Letters 9, 238
(1962).
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we shall in this appendix treat the box diagram more
systematically in this way.

1. Mellin Transform

Let ¢ be fixed and define the Mellin transform of I; by

T1(5)=/ ds s—ty; (A1)
0
then it follows from (2.3) that
B 1
I,(§)=mE csert [ dardasdasday
_ 0
X 5(1 —Q1—0e—0O3 "Oé4)al§l+€ashl+£
X[tasas+(ertas) (etad) —14ie ¢ (A2)

The right-hand side of (A2) can be reduced to a single
integral as follows, with the obvious changes of
variables:

1 lI—ay
I—I(E) = CSCWE/ da1/ das
0 0

X /0 l—m_azdaz oy oy oy (1 — a1 —ag—as)
+(ertas) (1 —ay—az) — 14ie -1+
=mf cserk f ldozl / 1dy / ldxar1+f(y~a1)—1+é
o Ja o
X A=A —y) w1 —2)+y(1—y) —1-+ie]+¢
=m§ cserf[ T(§) (28] / l dx f 1dy yorh
o Jo

X (1= =) 221 —2)+y(1—y) ~14ie ¢
=wf cserd[ () ]I (28]
1 o0
X/ dx/ ay’ y'[ia(1—x)y"?

— Oy )+ (A3)

In order to evaluate the integral over ¥/, consider

F(d)= / Y LAYy 1T, (Ad)
0

which is convergent for 27>A+1>0 and 4>0. Note
that F(4) is analytic at 4=%, where

F(3)=2T(1+MNI'(27r—\—1)/T(27). (AS5)
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Moreover, F(A) satisfies the second-order ordinary
differential equation

A(A—44)F"(A)+[A\—r+2—24(2\+5)]
XF'(A)—(\+1)(A+2)F(4)=0. (A6)

It therefore follows from (A5) and (A6) that F(4) is a
hypergeometric function [see Eq. (1) on p. 56 and
Eq. (5) on p. 105 of Ref. 57:

(14N (2r—\—1)
T (27
XFE G+ 138 3+7; 1-44).
Application of this result (A7) to (A3) gives
I(§) = —4mg cser e D(H LD (2+25)

F(4) =21

(A7)

1
Xf dx F(1, §; 3+4&; 4tx(1—x)—3+1ie). (A8)
0

Finally, by the Legendre duplication formula for the
T function, (A8) can be put in the form

(&) = —2""%x%2 cserrg e T (Y[ T (GHH T
1
X/ dx F(1, §; 3-+%; 4tx(1—x) —3+7¢)
0
1
= — 283121112 cseqr g D (E) / dx
0

XP_gyayi12(E) (3 —1)= 4200452, (A9)

where
z=31—ix(1—x)—1e]1/2, (A10)

In writing down (A9) we have used the relation between
hypergeometric functions and associated Legendre
functions [see Eq. (24) on pp. 128-129 of Ref. 5].

We see from (A9) that, for ££4,I;(£) has singularities
at £=0, —1, —2,.... For t=4, however, the argument
of the hypergeometric function reaches its maximum
at 1, and there are additional singularities to be dis-
cussed in detail in Sec. A 3 of this appendix. So far no
approximation has been made and (A9) is exact.

2. Behavior away from Threshold
Let %4, and expand (A9) for £ near zero. Since
F(1, 2;3+¢; 4tx(1—x) —3+ie)
={4[1—tx(1—x)—ie]}?
4ix(1—x) —34-ie

S e
Hart 412(1—x) —A+ie

), (A1)

the expansion of this hypergeometric function near
£=0 is straightforward. For example, the leading term
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is given by
_ 1
Ii(§)~— 5*2'/‘ dx[1—ix(1—x)—ie]™!, (A12)
0

and hence, for s— with fixed {44,

1
11~s‘11ns/ dx [tx(1—x)—14ie 1. (A13)
0
This is the same as (2.5).

We instead turn our attention to the case where the
Jfixed t is near, but not equal to 4. Let

1=4(1-6); (A14)

then, for small § and ¢,

I,(8) = 272732 cserrt e~ m¢0 (O[T (3+£) T
1
X/ dx F(1,%; 3+& t(1—2%) —3+ie)
0
~ 2112 cserg e (O[T (348 T
1 .
% / dx (1, §; 348 15— o Fie)
0
=—=2"%p3 csert e (O[T G+
1 142
X/ de:—
0 2(1—¢§)

+2m T (T (1~ ) 48+ dat—ie) 1+

(1, §; 2—¢; 46+-4x2—ie)

PG48 & —148 45+4x2——ie)]

1
~ —m?cscirg e‘i"sf dx (64a2—1e)~ 1+
0

~ =3 PEA(§—ie) (1 —im )T (3—£)/T(1—§)
~—irE(6—ie)~ /2
X[1+¢In(s—te)+2£In2—ixg]. (A15)

Therefore, for s— o with a fixed ¢ near, but not at, the
threshold,

I~ —37w(6—ie) V2% [Ins+1Ind(6—ie) —im
= —ms~ VY 4s(6—ie) | V/*{In[4s(6—ie) ]—ir}. (A16)

This is the same as (2.11).

Note that the right-hand side of (A16) is of the form
s~H2multiplied by a function of s6. This is an indication
that, if 6 is zero or of the order 1/s, I; is of the order of
magnitude s7/2, not s~L. This is indeed the case as
already seen in Sec. 2.
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3. Behavior at Threshold
Simplifications occur at the threshold
=4, (A17)

In this case, substitution into (A9) gives

I1(§) = =21 %x3/2 cserg e T (HITE+H T
1
></ dx F(1, §; 34§ 1—4a?)
0
= —29-2%g/2 cscrf oD (HLT (G 45T

1 1—2x
x/ dx (1+2x)*2F(2, i-53+¢& *———>
, 142

1+2¢
=—21rdlcsemg 6"”51“(5)[11(%"}‘2)]";—32

X[FQA, 3—&3+85 1)
—F(1,3—§3+§ —3)]
= —22%g3/2 cser e T (O[T (G+EH T
X(1—=28) ' [1-2F(1, $—§3+E& —5)]. (A18)

This result (A18) can also be obtained directly from
(A3), as shown in Appendix B. In the present deriva-
tion, use has been made of the quadratic transformation
of hypergeometric functions [see, for example, Eq. (26)
on p. 65 of Ref. 5].

Equation (A18) shows explicitly that there is a
singularity at £=%, which is absent when /74. We list
some of the properties of I3(£) that follow from this
exact expression (2.22), as shown in Appendix C.

(a) For & near %, let £=34¢ and

Iy(§)=$in%'+0(1). (A19)
(b) For £ near 0,
Li(®)= 24267 (14372 —idm)+0(1). - (A20)
(c) For £ near —1, let £= —1-+¢ and
L(9)=(5/3);
+ 1 [4/9+2x/V3—(5/3)ir ]+0(1) . (A21)

Equation (A21) can be generalized to other negative
integers and this generalization is also discussed in

Appendix C.
It follows from (A19)-(A21) that, for s —o with =4,

I=3%in% 1245~ (Ins —ir+ 2+ 27 /V3)
+5~2[(5/3) (Ins—iw)+4/9+ 2w /V3]

+0(s2%1ns). (A22)

Note that this behavior is quite different from that
with 7524 [(A16), for example].
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The asymptotic behavior for s—= of I is given by
(2.5), (A22), and (2.9).

APPENDIX B

In this appendix, we shall derive, for i=4, (A18)
more directly from (A3). By setting =4 in (A3), we get

I(§) =nt cserd [ T(8) LT (28) Tleimt
X/ dx/ ay'y' (e +y'+1)75. (B1)

We evaluate the integral on the right-hand side of (B1)
by the change of variable

w? =y (Y +1)a" (B2)

and

a?=y"/(y"+1), (B3)

so that

1 0
/ dx/ @Y’y (a2 2y 1)1
0 0

00 0
= / dx’ / dy' (y'+1)-8102
0 (o' % (o 4422 V2] /2

X (22161
=2(1-297 / " (13002 (o - da2) 2]y -e4172
0
X (/241)-¢1
=(1-25 /0 ) & (2 (" Fy" H1)1E

=3(1-207 [ +6(1+H297F (G, 1; 3+ ~3)]
=3(1-297 [ 4207 F (1, 3~ 3+ —)]
=3(1=207 1 (I3[~ 14H4F (1, 3 3+& —D)])
=—(1=297 [1-2F(L, 3= 3+& —D]. (B4)

In the above manipulation, we have used (A7) and also
Eq. (6) on p. 111 and Eq. (39) on p. 103 of Ref. 5. The
desired result (A18) then follows from (B1) and (B4)
with the help of the Legendre duplication formula.

APPENDIX C

In this appendix, we derive (A19)-(A21) from (A18).
(a) When £ is near %, let £=14¢ and
$1(§) = —m¥2 (=)t —2¢) !
X[1-2F(1,0; 1; —§)]40(1)
=g +0(1). (C1)

When E is near —1, I;(¥) is bounded because the
singularity due to the hypergeometric function in (A18)
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is canceled by the I'(3+£) in the denominator. More
generally, this holds for £ near —n—13%, =0, 1, 2, ....
(b) When ¢ is small, we need the relations

y(1)=—v (C2)
and
¥(3)=—v—2In2, (C3)
where
Y(2)=T"(z)/T(2) (C4)
and v is Euler’s constant. Moreover, for small £,
F(1,3—&3+¢& —5)=3F(1,285+& 1)
~3[1+EF(1,1;3; )]
=3[14-2X3%?r¢]. (CS5)

The substitution of (C2), (C3), and (C5) into (A18)
gives
()~ —2(1—2¢ In2) (1 —ir§)
X E2(14-2¢ In2) (1+4-28) (—3—37"?xk)
~ E 1 E(2 — i+ 2X 312 ],
(c) For £ near —1, let £= —1-+4¢ and

F(1,3—§3+& —3%
=F(1,3—¢; —3+¢5 —3)
=3G—=L(=3+O)—(—2+2)
XF(1,3=¢; —3+¢; —3)]
=4GE=O)"H(=3++3(1—9)
X[+3F(1,3—¢3+8 —91)
~3{ =340 +2X 37 ]}
= (9/8)[14+3- (142X 37r) ]. (C7)
The substitution of (C2), (C3), and (C7) into (A18)
then gives

I(&)~ —8(1—2¢ In2)wV/2%2(1 —im{)w/2(14-2¢ In2)
XA =5){1—=(9/D[1+3(1+2X31*r) ]}
~ (§/3)[E2+¢1(4/15+2V3m /5 —im) ] (C8)
(d) The procedure used to derive (C7) and (C8) can
be generalized to the vicinity of any negative integer.
We indicate briefly how this may be carried out. If £is

near —n, where n=1, 2, ..., define {&= —n+{. Also
define

(Co)

an=F(1,3+n—{; 5—n+¢5 —3). (C9)
We want to relate a, to @,—1. For this purpose, we use
Gauss’s relation between contiguous hypergeometric
functions [see Egs. (37) and (38) on p. 103 of Ref. 5]:
(=d+n=0tou—(—3—n+5)+(=21—2)

XFQ1, =3+n—¢;5—n+8; —3H)=0 (C10)

and

4F(1, —3+n—; 5—n+{; =3 —1—3a,1=0.

It follows from (C10) and (C11) that
an=3n—3—=0)"3n—1-5)+m—¢an1]. (C12)

(C11)
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The required answer may be obtained by solving this
linear difference equation of first order.

APPENDIX D

In this appendix, we derive (3.18) from (3.17). First
the y;, and y, integrals can be carried out trivally:

1
@Ba7)= -—%wf dx
0

)(/w [x(1 —x) ] 2dardasdas
o [iasas—(A+artastas)x(l—x)+ie]? ’

(D1)

where the primes on the dummy variables & have been
omitted. We next carry out explicitly the asz and x
integrations to get

1
(3.17) =%1r/ dx
0

X/w [x(l ——x):]_”?daldag
0 [Olwlz—x(l —-x)-{—ie](A-!—al-[—ag)
=%1r2/ dondas [cias(ariae—3)+ie 12

0

X (A+aytaz)t. (D2)

To get rid of the 7¢, it is convenient to shift the contours
of integration to the positive imaginary axis:

3.17) =%7r’/ dazdas [araz(cen+3) 12
0

X[A4i(artaz) Tt (D3)
Let
x1= (o1taz)/A (D4)
and
sing1= (a1 —a3)/(a1+as); (DS)
then
/2 L]
(3.17) =1rQ/ dd)l/ dxy (14A2x42 cos?py)~1/2
0 0
X(14ix)~t.  (D6)

Equation (3.18) follows from (D6).

APPENDIX E

In this appendix we obtain (3.19) from (3.17). It is
convenient to take the Mellin transform of (D1) and
define, for 7=1, 2, 3,

a;=[x(1—x)]"%a;. (E1)
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The result is then

8->

f dA" A™#1im sV,
0

1 0
= —%1;-22 cscrgf dx/ daydasdog [:)C(I —x)]5—”2
0 0
X[ —aiasast+(artaztas)a(l—x) —ie ¢
— et csnt PG —ROI(—0T | dadatsy
0

X[ —a@@as+ (a+astas) —ie ¢
dadas

=ircserd[T(3—36) P[T(1— g)]*-le—iﬂ/zj

0
X (14-a@s)~ (@ +as) ¢
=gm? cserf[ T(3—38) PLT(1—§) et
X[TGHPTA-39)[T(® T
=gm(cscymd)e [T GHT(G—3H . (E2)
APPENDIX F

We study further in this appendix the behavior of 75,
as given by (3.3), when 4—{ is of the order of s~1. More
precisely, we consider

ol 1
a— =—0 / dodandodBidBedydys
/2 0

Xo(1—ar—as—az—B1—B:—y1—72)A
X[Bryi1(Betv2tastas) +B2y2(B1+v1+ar+tas)
+a2(Brys+Bey1) D54

in the limit of large s with fixed 7', where 7' is defined
by (2.7). Note that this integral fails to converge when
T=0. We shall therefore assume throughout this
appendix

(F1)

T#0. (F2)

The leading contribution to the right-hand side of (F1)
comes from two distinct regions: (i) ai, as, Bi, v1, and
,82—’)/2 are all small; and (11) oy, ¢, O3, Bz, Y2, and 61—71
are all small. By symmetry the contributions from these
two regions are the same, and therefore it is sufficient
to consider only the first region. Let

ar=ar’/s, a=a)/s, az=ai/s,
Bl=,31'/s, ’)’1=‘)/1//S,
and
Be=3(1+y/4/s); (F3)
then
ve~3(1—=9/4/5). (F4)
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Accordingly, for fixed T'#0,

oI,
lim s=1/2—
e ot

=3 / day'day’das'dBydvi'dy (B) +v1 +ai'+ad’)?
0

X I: —C¥1’C¥2/013'+ (T+0£1,+C¥2, +013/)
- X By Fad o)+ (B —v1)?
+x2(ﬁll+’}’1l+a1'+a2') —i€]4 .

For this sixfold integral, four of the integrations can be
explicitly carried out: a3/, %, 81’ —v1', and o’ —ay'. Let

21=B+v1 (Fo)

(FS)

and Xo= a1’+a2' )
then®

ol
lim 8—1/2—‘2‘ =71‘7I' {/ dxldxle(xl—{—xg)‘”?(T—l—xz)_z
R

8—>0 at

X[ 20022 +3(T+22) (122 JLoea>+ (T+2) (wr+22) 5/
X [4(o14-2x2) — 22212 sin 1 (Gava(w1+22)~1/2)

+ / dxrdrawr (1 22) " V2(THx5)—2
R2

X [221243(T+x2) (x1+20) 2124 (T+22) (1Fx0) T3/
X2 —4(x1F20) [-1/2

X [ir—cosh~W(Exa(x1+x2)"12) ]t , (F7)

where R; and R, are the regions where x>0, x>0,
and 4(x1-+x2) —x2is positive and negative, respectively.
For small 7, the right-hand side of (F7) behaves
like 7172,

The meaning of this result is as follows: When 4—1 is
of the order of s7%, the leading term for I, of order
s7421ns, does not depend on T, but the next term, of
order s71/2, depends on 7 in a complicated manner. It is
this term that reflects the complicated singularity of
Gribov type.!?

APPENDIX G

In this appendix we derive (4.20) from (4.19). It is
convenient to carry out the y integrations first:

§->0

1
lim sY20, = — (—3v/m) "I (Gn+1) / s - - dac,
0
=1 =1

Xo(1—=2 %) (I =) (”—1)/2/ da'doy’ + - - donid
0

X[—( ﬁlat')‘*‘(A"*‘%lai') fI xs—ie ]~ D12 (G1)

=1 n=1 =1
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Mellin transformation with respect to A’ then gives

f dA’ A™—#1im s'?T,
0 8->
1
= —(—%\/w)"I‘(l—g)F(%n-l-E)/ dxydzy- - - dxy,
0

Xo(1= 22 i) (IT as) e+ 222 / day'day’ -+ - danys
i=1 o

7=1
n+1 n+1 n
X[—=(II &)+ ( X o) IT #i—ie]-tn/2
=1 n=1 i=1
1
(IR TA= TG+ [ dnde s,
0
Xs(l——i x;)( f[ x;) (I—é)/n—l/ day”day” - - - datnyr”’
i=1 i=1 0
n+1 nt+l
X[=(IT a)+( Zl a’)—ie]En?
=1 n=

=t (=) [rento

n

00
Xf dozl'ldaz”- . 'dan+1”
0

n+1 n+1
X[=(IT e)+( Zl af)—ie]+rE (G2)

=1 1=

In the above, the variables o/, i=1, 2, ..., n, are
defined by

o= ( H xi)‘l/"a{ . (G3)

=1
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In (G2), we change the variables further by

and

then

n+1
”"_. ”
P = Zai ’
=1

— _ mn
a;=aoi'/p",

3->0

n+1

o =(II ad)/n’;

/ dA’ A—¢lim sV2T,
0

=1

—~ -ty r(=) [rante

X6(1— é a){p"[1—p""(

n

(G4)

(GS)

(G6)

0 1
X / dp”’ / da@d@s- + +dan 10"
0 0

n+1

=1

=—<—%\/w>n[r(1;)]”r<%n+s>

n+1
H &i) — iej}—f—nm

0 1
X/ dp’ P"H"’?‘/ daidds: + +d@nyy
0 0

n+

=

1 n+1

X,E(l'-z, &) ( I1 &)~ trrtniain

1

v=1

X (1—p/n—iey—t-n/2

1
= —j(—i/m)n—eim (=D Ing

Xsec[

n
(1—-9=

n

Ix(

1-¢

n

i

1 1_-%

2
n

):l (G7)



