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In this paper we study the two-body elastic scattering process in p' theory, in the limit s ~ with t equal
to or near the threshold value 4, where the mass of the scalar particle is taken to be unity. For the scattering
amplitude corresponding to any ladder-type diagram, we Qnd that there is a promotion for the power of s
by —,'. For example, the scattering amplitude for the ladder diagram of n+1 rungs is promoted from 0 (s ' ln "s)
away from threshold to O(s '" ln" 's) at threshold. This means that, for small coupling constants, the
leading Regge pole is promoted from the neighborhood of /= —1 away from threshold to the neighborhood
of l= —

2 at threshold. There are, in addition, inanitely many Regge trajectories approaching l= —
& as t

approaches 4. The scattering amplitude for the n-rung diagram is explicitly given in the limit s ~oo, with
t at or near the threshold 4, and various scales for t—4 are pointed out. The two-rung and three-rung dia-
grams are especially studied in detail.

l. INTRODUCTION

GHT ) ears ago, Geil Mann and Goldberger sug-
~ - ~ gested that Geld theory may give rise to Regge

behavior s &'&, where as usual s is the square of the c.m.
energy and —I is the square of the momentum transfer.
In their work and subsequent analysis, attention is
concentrated on the ladder diagrams in the t channel.
By adding together the leading contributions from these
diagrams one Gnds, for q' theory, indeed the behavior
s ('& for large s. Since this is a perturbation calculation,
the n(t) thus obtained is proportional to g', where g is
the coupling constant. Higher-order terms in g' pre-
sumably have contributions from other diagrams.

It is realized in the original work' that the n(t) so
obtained has a singularity at the elastic threshold
t=4m', where m is the mass of the particle under con-
sideration. Furthermore, since such a singularity cannot
make sense physically, it must be attributed to the
inadequacy of the approximations used. More precisely,
in the analysis t is assumed to be fixed at a value away
from 4m' while s —&~, and hence failure near 4ns' is
not surprising. As a trivial example, consider

In view of the results of the preceding paper' for
quantum electrodynamics with a massive photon, it is
interesting to go back to the simpler q' theory and
study the properties of the matrix elements near the
elastic threshold. It is the purpose of this paper to carry
out this analysis. Compared with the early work away
from threshold, the present consideration is much more
involved, and many questions cannot be answered
without extensive additional work. In Sec. 2 we begin
with a detailed analysis of&the box diagram, shown in
Fig. 1, and in Sec. 3 we study the ladder diagram with
three rungs. In the latter case, enormous complications

appear because of the presence of two distinct scales
for 4m' —t, namely, s '~' and s '. Some of these results
are then generalized in Sec. 4 to ladder diagrams with

an arbitrary number of rungs.

2. BOX DIAGRAM

In this section, we discuss the box diagram of Fig. &

in the case where all the masses are equal. Since there is
one loop, we call this matrix element

dx e
—"". BRt —— ig'(2sr)-—' d'tft (rx g)' 1+ie7 '— —

For Gxed u) 0 with A —+~, this is approximately

(2)za) 'e "e

Xr (r,+q) '-1+ie?'E(r, —g)
2 —1yie)-'

Xf(rs+g)' —1+ieP', (2.1)

where we have taken the mass to be 1, and otherwise
which has a singularity at a=0 where the original

th th f S 2 f R f 3 If F
integral remains bounded.

parameters are introduced as usual, then
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sion under Contract No. AT(30-1)-4101.
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' M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters 9,

275 (1962).

Dlt' =g'(4zr) 'I&z (2.2)

~ H. Cheng and T.T.Wu, preceding paper, Phys. Rev. D 2, 2276
(1970).' H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969).
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x = $'t'(2n& —1) $"'(1—2n4) .
(2 g)

rI —q & Qg Qp)i rI+q
Therefore, in this limit of fixed T,

lim s'~ Iy
g~QQ

where

az
I g+q

FIG. 1. Box diagram.

2 p

do 3 dS

y (n, 'nz' T —nz —n —x'+—zc) '

I

Il ~ldnzdn8~4 ~(1 nz n2 nz n4)D1 p (2 3)
0

with

dnz' (—nz'+1 —zc) '(T+nz'+x"- —zc)

dx (T+1+x' ic) 'f—ln(T+—x-' i c)+i—m]

Dz Snznz+tnzn4+ (n&+nz) (n'+n4) —1+zc. (2.4)

We shall study Ij for large s.
The proper way to analyze the asymptotic behavior

is to use Mellin transformation, which has been pre-
viously used, 4 and hypergeometric functions. ' However,
since hypergeometric functions, unlike Bessel functions
for example, are not familiar to every physicist, we shall
avoid them in this section. The more systematic
development utilizing Mellin transformation and hyper-
geometric functions is to be found in Appendix A.

We erst review the case where s —+~ for fixed t&4.
This has been studied by Inany persons —for example,
Federbush and Grisaru. ' The result is

n(T+1——ic) t {InL(T—zc) 't

+(T+1—ic)'t') —.', ix) . (2.9)

In particular, when 3=4, T=0 and

I&~-,'zx's-'t" (2.10)

as s —+~ . A much more precise formula for I~ in this
case is to be found in Appendix A, Eq. (A22).

On the other hand, when T is large, we can neglect 1

in (2.9) to get

Iz~ —x$ '(4 —t —ic)"'{1nL$(4—t —ic)j—i~) . (2.11)

Ig =s ' lns

This is more precise than (2.6). Thus the asymptotic
behavior of Iz is given completely by (2.5) and (2.11).

(1—x) —1+ c) '+0( '). (2.5) We emphasize that, for the present problem, there is
only one scale for t 4, namely, $ —' as seen from (2.27).

The term of the order of magnitude s ' is also known.
In particula, r, if the axed t is close to 4, Eq. (2.5) gives rp+rI

Iz —~$ 'ln$(4 t ic) 't'—— (2 6)

t =4(1 T/$), —(2.7)

fix T, and let s —+~. The leading term in this limit is
easily obtained as follows from (2.3) by using the new
variables

Note that the right-hand side of (2.6) has a singularity
at t= 4; this singularity indicates that, at 3=4, the order
of magnitude of I~ is not s ' lns. Indeed, we shall see
that, at t=4, Iz is promoted to the order $ 't'.

To see this, let
q-q

Qp

y, t'r, +q

f2" rI+Q

4 J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 (1963}.' Bateman Manuscript Project, Higher Transcendental Func-
- tions, edited by A. Erdelyi (McGraw-Hill, New York, 1953),
Vol. I, Chap. 2.' P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 22,
263 (1963}.' T. L. Trueman and T. Yao, Phys. Rev. 132, 2741 (1963). I'IG, 2. Ladder diagram with three rungs.
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As we sha11 see in Sec. 3, the situation is much more where
complicated for the ladder diagram with three rungs.

D2
~

8=0 ~ (3.7)

With tA4, let f be small; then (3.6) gives approximatelv
3. LADDER DIAGRAM WITH THREE RUNGS

A. Formulation

We turn our attention to the next more complicated I2($) $ ' dpldP2dy, d» g(1 —P, —P, —~,—»)
diagram, shown in Fig. 2. Since there are two loops, we

call this matrix element

DR2=g'(22r) ' d' qd' q'f(r 2—q)' —1+i35 ' +P2»(Pl+71)5+(Pl+ri) (P2+») 36)

xl (ri+q)' —1+i35 'L(rl —q)2 —1+i~5 '

Xt (q q')—' 1+—i25 '$(rl+q')2 1+—i&5 '

XL(rl —q') '—1+i35-'t (r3+q') 2 —1+i&5-'. (3.1)

Again Feynman parameters are introduced, and

dx Ltx(1 —x) —1+i,5-1

Accordingly, as s ~~,

(3.8)

where

OR2= —g3(4n-) 'I2, (3.2) I2=-2's ' 1ns dx ptx(1 —x) —1+ie5 '
0

+O(s ' Ins) . (3.9)
I2 =2 dxxldxx2dxx3dpldP2d»d»

When the fixed t is close to 4, a comparison with (2.5)
Xb(1—nx —xx2 —lx3 —Pl —P, —yl —y2)AXD2

—', (3.3) and (2.6) shows that

with
I2 xlr2g 1(in@)2(4—t —j3)—1 (3.10)

+2 (Pl+ y1+XXi+&2)(P2+»+ XX2+XX3) XX2 (3 4)

D2 = SXX1XX2XX3+tDt171(P2+»+XX2+XX3)

jPg 2(P1+rl+xxl+xx2)+xx2(P1 r2+P2rl)5

+(xxl (Pl+ y 1)(P2+»+ xx2+ xx3)

+xx3(P2+ y2) (Pl+'yl+xxi+xx2)

+xx i&2(P2+72)+xx2xx3 (Pl+ r1)5

Ii(+1+xx2+xx3+Pl+P2+71+ r2)+«. (3.5)

In this section, we shall study I2 for large s.
As in Sec. 2, consider first the case where s ~~ with

fixed t/4. Mellin transformation applied to I2 of (3.3)
gives 4

It is interesting to speculate at this stage about the
order of magnitude of I2 at t=4. For I~, a comparison
of (2.6) with (2.10) shows that a factor (lns) (4—t —ie) 't2

away from threshold turns into —,'its't" at threshold. If
this is also true for I2, then it follows from (3.10) that
I2 is of order of magnitude 1 at 1=4. However, a
moment's reRection indicates that this is not possible
because of (3.3), where s appears only in the denomin-
a,tor. In fact, as we show below, at t= 4, I2 is of the order
of magnitude s 'I'lns. In other words, for I2 a factor
(lns) (4—t —ie) ' away from threshold turns into
constant s't". This implies that in the present case
there is a second scale for 4—t, namely, s '~'. It is this
presence of two scales for 4—t that makes the problem
both complicated and interesting.

ass &I2

B. Behavior at Threshold

1

=lr/(1+() csclr) dnldxx2dxx3dpldP24'ld"t28
0

X8(1 xx1 xx2 xx3 Pl P2 ri 72)

X(~1~2~3)-'+'&2D2' ' ', (3.6)

In this section, let 1=4 and study the behavior of I2
as s —+~. There are many different ways of analyzing
this case at threshold; one way is to use Mellin trans-
formation again and note that (3.6) also holds here. If
we set t = 4 in (3.7), then by (3.5) and (3.6) we need to
study explicitly
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($ de1dn2do'd d~ da2dpldp2d rl 7) g(1+/) CSC2r) &

—1+((a1+Q2++2X(n1~2~2

2)-r-»2L-(„+,+ )( + '

—1+5nl&2n3
'1 2 dn] (42 2~ ~,~(1-- -- —"

—1+5~2) (~1n2u2,—n2 —P1—'x&(1

+~,+o2) (P2+r2 +~ +o2) —Q2 jxt:(

( ~ y~2) L(81+'Y1

p-1/2XE(~1 ',
(( +,)(~,+12,)j)

,+a2) (n2+&2)3

x~(~--: &-'-"+""
1

d,dn2d 2&(1—~1Z

),2)+(P,—y1)X (P +y2+Q2+

—~2)'(P1+»+ 'X(P2+&2+ ' .,)+(
2-~. (3.11)2,(p, -y )(p -y')

)-1/2(0 —2)

(3.»)=-'l '(~—:)-'.
t e Mellin transformation,herefore, y ib inverting the Me in rT

we get

r e s. This ls the desired answer. 'Rlld fol 3=4 and large

(3.14)

,. ;„,t, the 11(8 o'tha, t of (3 g)'
I (p) ha, s a»ngu

er of magnitu e.
ation of inte-

the same or er o
k the approzlma lowem~ e e

tlrc real axis.

term near "=»
over the en 'r2

—72 .
c et

gra lng 1

o te rations are ca
P1» an

carried out, w g%Chen these two integra
'

1

ln 1dn2c43dx1lx2I2(() —zs'2r n1

X — — —a2 —X1—X2)X~(1 &1 ~2 ~8

~ )-1—r-'+&(n,++2+a,X &1&2o'2

x2 2
— ' r '/2, (3.12)n2 2 n2 n8 n2Xr:(x1+~1+ )

~
— ~~; ' — . Because of horn go eneity in

'1 reduced bth' bof 3.12, i s1g
r mento t echanging the argum

rt—4(1 6 /g
5'WO, this case js lnostCd Rnd s —+~. I Or Qwith 5' 6xe Rn

easily studied by R c zngc

n3 ——n, s-n2=n2 s-

1 2 'rl= 2 (x—y1$P1= 2(x+y1~, —-' — s
(3.16)

(1 x+y2s '")
~ y2~2 —— '/' .

into (3.3) then givesThe substitution into

&. behavior near ThrThreshold

to (3.14), we consider theI order to connect (3.10 toIn or

(3.15

case

s),

1

S'/2I2= 2 dXlIIl S
g ~00

0

AL dn2 ZG3 dg1dg2x(1—x

0
' ' ' —(~'+~1'+a2'+~2')x(1 —x—0 n] n2n3— (3.17)

se theul C Tlla CS Sure k ense becau
ent.

Note tha is
e

' - d
' 3.17) is convergen .

f 11 integral cann be
ntegrRl 0

As shown in Appen
reduce d to a single intcgra

the Mellin transforma-sorn. c use to have t eI't ls also of sonle
tion of the right-hand side o

d~' ~' & 11IQ S'/2I2
g-+o0

2lirn S'/2I2= m
2 —1/2 f g2 —1/2dx cos 'x)(LV2 —x') "'(1—x— -' ) -""'D'(-:r)1(-;--,~) .2

-' —-' '. (3.19)=22r (cos2'g

(3.20)

as 6'~~, and

(3.21)

Qf

in Appendix K.) This is derived 1n

0

It foHows from eitherrst
—' 26' ' ink')2

h mplete ellip t a
' tic integrah m
' t al of the6r

1 m S'/2I2lIQ

the corn

+~00

where E is h m
10

so e licitly, but vie

3 I-'iz In~

ent expression for
' .

inn s
g~QO

"Reference 5,
3&7. Note that E'(5' 1s e
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and hence

6'~ X/QX~nl/431' ——S'" (3.22)

as 6'-+0. Equation (3.20) agrees with (3.10); this
means that, for t —4, s 't' is the largest scale. On the
other hand, the right-hand side of (3.21) fails to make
sense for 6'=0; this means that s "' is not the only
scale for t —4.

A comparison with the case of I~ suggests that for I~
the two scales of t —4 are s '" ands '. There are many
ways to see this. For example, in (3.13) nl+ns and
432+ns act, respectively, as cutoffs for xl and xs. On the
other hand, from (3.17) with small 6', the largest
contribution comes from the region where n~', n2', n3',

and x'I' are of the same order of magnitude 6'. A com-
parison of these two cutoGs shows that

of n+1 rungs, as shown in Fig. 3. Unfortunately, the
present generalization is quite incomplete and a great
deal of future work is needed. The case of the box
diagram in Sec. 2 corresponds to the special case n= 1,
while that in Sec. 3 corresponds to the case n=2.
The matrix element for an arbitrary n is

gZ = i—ng sin+ 1)( 24r)
4n d4qldsqs . . ~ dsq

X((rs ql—) ' 1+—is) 'P(—rs+q„) ' 1+—is)

X~ rr r( +q) 1+'-»-

4 t =0(s—') . — (3.23) X( II L(rl —q;)' —1+i.j&-'

When (3.23) holds, (3.21) agrees with (3.14).

D. Summary

We summarize the asymptotic behavior of I2 for
s~4C and real t: Eq. (3.9) holds whe.". s'~2~4 —t ~))1,
Eq. (3.18) holds when 1))~4—t~&s ', where LV is
defined by (3.15), and Eq. (3.14) holds when s

~
4—t

~
is

not large. These formulas cover all the possible cases.
In Appendix F, we study in more detail the case
4—t=O(s ').

n—I
X( II L(q;-q;, .) 1+')-&-

In terms of Feynman parameters, this is

( 1)n+lg2(n+1)(4~) 2nl-

where

(4 2)

1

I„=rs! d431d432 dnn+ldpldps' dpndyldys dy„

4. GENERAL LADDER DIAGRAM

A. Formu1ation
n+1 N n

X8(1—P n; —P P,—g y,)A„" 'D„" '. (43)

We are now in a position to generalize some of the
results of the previous two sections to a ladder diagram In (4.3), A„ is the rsXrs determinant

pl�+�

'r l+431+432

0!2

0

0

P2+ Y2+&2+433

0

Ps+ 73+&"+434'
0

0
0
0

Pn+ rn+ 43n+ 43n4-1

(4 4)

n+1 n+1 n n

D„=Sg n;+(4t —1)t 2 g 434+nl'A„&" l+n„+,'h. „&""l—(nl+43„+,)A„j—( P n;+ P P,+g y;)h„

pl+ "rl+431+432

ps1"rs+&2+433

Ps+ys+433+434

—Pl+pl.

Ps+Vs-
—ps+ys

+is, (4.5)

Ps+Vs— ps+ys—
Pn+Pn+43n+43n+1 Pn+'rn

n

p+v 2-(p+v )

where 4 &i J) denotes the ijth minor of 4„.
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"2+ is given by4' ~

I =(e~) 's ' Jns dxL)x(1 —x) —1+i~) '

gi-gz

Q2

gz ga

a3

gn-a gn-t

Yi"'~+gi

y'2" t")+ qp

+Ops —'(ins)" '). (4 8)

In particular, when this fixed t is close to, but not equal
to, the threshold value 4, Eq. (4.8) implies that

(n') '(—~)~s '(lns)"(4 —t+ie) ~&' (49)

as s —+~. In general, therefore, I„is much larger than
s '(ins)" at t =4.

Since, at t=4, Il is of the order s '"while I2is of the
order s "'lns, it is reasonable to expect that I„ is of
the order s '~'(1ns)" ' We shall see shortly that this is
indeed the case. A comparison with (4.9) then shows
that, in the case of I„, one important scale for 4—t
must be s 'I". We shall return to the question of other
scales later in this section.

an-) B. Behavior at Threshold

r1 gn-1' Pn-1

gn-)-gn

7n-I rl+gn-1 I et t=4 and study the asymptotic behavior of I„
as s ~~ .At this threshold value, D„', as given by (4.5)
and (4.7), simplifies to

a„

l 3 —t'1

gn' Pn

a n+1

3+qn

Yn "r)+gn
From the experience we gained from Sec. 3, we can

use the approximation of integrating the variables
p;—y; from —~ to ~. Since

Pro. 3. General ladder diagram.
detA„&i &) =A„"—'

it follows from (4.6) that

(4.11)

With any fixed t, we write down the Mellin transform I (~) pg~) 1'(1 ~}f'(&~+~)q—~ & +ti
of I~ as

I (5)= ds s—&I„

= I'(1—
&)I'(n+&) dnid~2. da„+idPidP2 dP.

n+1 n n

where

&&( g &.)-&-~~2A -t—»2 (4.12)

x;=p;+y; (4.13)

where

D '= —D f,=o

(4.6) for i=1, 2, . . ., n Like (3.12),.(4.12) is valid near the
singularity at $= ~; thus the coeKcient in front of the
integral on the right-hand side of (4.12) can be replaced

(4.7) by

Equation (4.6) is the generalization of (3.6). When the
fixed t is not equal to 4, then the behavior of I„as s —+~

—2i(—1)"(-,'Q~) "+'1'(-',I+-,') .
The leading term in the vicinity of )=s can be
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obtained from (4.12) as follows:

1.(~)-2 (-!&)""F(!.+!)
1 00

~1~~2' ' ~n+1 d&ld&2 ' ' d&n

0 0

n+ I
X&(1—g a)(II ~) "'h~ & "'

1

2t'( ——,'Qm) "+'F(-,'e+-,') dngdn2 dn +g

Since we are unable to 6nd a generalization of (3.18),
we concentrate on the Mellin transform of (4.19) with
respect to 6'. This is carried out in Appendix 6, and the
result is

—Zr
im s~t2I —( x~~)ne'~(x t)t—n

S

-(1—P)~- — 1—
~ t1 1—t--

Xsec — — F F~ ——— — . (4 20)
rs e 'E2 e

In particular, it follows from (4.20) that

n+1 n+1
X~(1—Z;)( II;)-"' dg'&' &lim s't'I (——,'N4r)~(P —1+-,'44) ~ ' (4.21)

Consequently

dxdx dx„(II x;) & "'

(4.14)

as $~ (1—~~n)+, and hence

!im s't'I (e') '(——'e4r)~g' ~t (in/')~ (4.22)

for large 6'. Note that, by (4.16), the right-hand side
of (4.22) is

I =2i(——,'m) "+'L(n —1!))—'s 't'
(nt) '(——~)"s &/2(1 ——t) "/2{inLs(1 ——t)")}". (4.23)

X((ins)~ '+O/(ins)~ ')) (4 15)
Therefore (4.22) is consistent with (4.9). It also follows

valid for t= 4 and large s. When n= 1 and 2, Eq. (4.15) f«m (4 20) that
reduces properly to (2.10) and (3.14), respectively.

t=4(1 —6's ""), (4.16)

with 6' fixed and s —+~.For 6'/0, change the variables

by
(Xi= 0!i S

for i=1, 2, . . . , n+1,

P4= —,'Lx, +y;s 't& "&) and p;= 2Lx, —y;s 't&'"~) (4.18)

for i = 1, 2, . . . , n; then it follows from (4.3) that

C. Behavior near Threshold

The next problem is to generalize the considerations
of Sec. 3C. I,et

dh'LV &lim s'~'I —i7r( ——'~)"gz" '(1—P)
—"(4.24)

for small 6'.'

For n) 1, we cannot take the limit 5' —+ 0 in (4.25) to
recover (4.15). Instead, the right-hand sides of (4.15)
and (4.25) agree when

or

6'"=O(s
—')

4 t=0(s ""). —
(4.26)

(4.27)

as $~1—,and hence

»m s"'I —i~L(n —1)!) '
g ~o0

X(—-'3) "e" '(—Inh')" —' (4.25)

=m! dxgdx2 .dx„b(1—P xg)( II x;)"—'

dO, 1'dn2 ~ do.„+1dyldy2 ~ dy

S. DISCUSSION

The results in Sec. 4 are summarized as follows:
For t 4= 0, we have, fr—om (4.2) and (4.15),

n+1 n 01Z Q 01t„—,', ig4s —'t'+" &" & ', s~ ~. (5.1)
n=l

—Q y'II x,+ie) " '. (4.19)
i= 1 jAi

It is seen that (3.17) is a special case of (4.19).

Pro. 4. Lowest-order scatter-
ing diagram.
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and 5.1 isare of the same sign andNote that all Ill„are o
e as the attrac ive tealxactly the same as

, th cattering ampbtu eg
to the diagram in sg.correspond g' and does not contn u e.of s an

t —4&0. For t —4~0, we have

th box d&agrarn morewe shall in this appendix treat e
systematically in this way.

1. Mellin Transform

bthe Mellin transform of I& yLet t be axed and de6ne t e e

where

2 —1+a (t)5R~ g OR„~ —g s
n=O

(5.2) I (&) = ds s—&I1,. (A1)

()

matloll lI1 (5.2) starts from zz =0. 1&($)—zrN t that the sum

mg ——as t approac es

The right-hanh fll
fo

dsscusse
h t is near the

lt. However we observe
that at high eue g

s u

X
l t s~~, there ls no

0

L de eneral diagrams. e
o-body interme edi

h b
g

channel. As s —+

h two particles carry
)z h, cl

here t ese wrom
. A t=s( ,zzzzzzgverse m

ese two interme ia e-

r p y pe ropagators or es
bio up simultaneo yousl an a sq
occurs. is. Th meansthatatt, = m mg

1

e- article threshold it appears
is romote y ~.

s thatWhen t is at a three-partic e r
or the high-energy amgo, l be logarithmic; anoccurs, can on y e

tion at this point.

1

dO!1d&2dQ3dO, '4

—o. n —'+4 —'+&X6(1 nl nz —nz —n4)ny

—1 ze -'-&. (A2)X tn2O, 4 O.1 O, 3 ~2 ~4 —]. Z~

side of (A2) can be reduced
'

gd to a single
llows, wit e

'
h th obvious changes of

dO!2 Oz1-'+~ -'+~Ltnz(1 —n~ —n, —n, )

1—$+(ng+nz) (1—ng —n, ) —1+z&

d dxng '+&(y n,)—=zr$ csczr$ dn& y
0 ag 0

1 y —1 zeX 1—y) Lt(1 —y)'*(1—)+y(1—y —1(

x d —'+'&csczr LF($)jzLF(2$)3-' dx dy y-

X 1—y)Lt(1 —y)'x(1 —x)+y(1 —y)-1 — -1+zap—'—&

= ~- ~Ll'(~)3'Ll(2~)3-'
og

X dx dy' y'Ltx(1 —x)y '

—y"+y'+1)+zing ' ~. (A3)

then it follows kom 2.3 that)-' d Ltx(1 —.)—1+z. -'.ze
—'. (5.3)n t = —g'(4zr

APPENDIX A

cuss the asymptotic behavior as
of the box d agram.0

s that the la er iagra
S 4'

cussed by means o
umber of years t a

f Mellin transforms,convenien ytl dis

P . .D2 2298.T. Ku, followingpaper, P y,Ph s. Rev."H. Cheng and T

h s. Rev. Letters 9, 2d I. Pomeranchuk, P ys."V. Gribov and . o
(1962}.

I ate the integral ove y',r ' considerIn order to evaua e

J"(~)= dy'y'"L~y"+y'+11 ', (A4)

A)

(A5)~ ~ =2"+'&(1+}I)1'(2r—X—1)/r( r

0

1)0 and A)0. Noteh convergent for 2~&g
that &( is analytic at A = ~, w
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the d ordinary is given bythe second-order or inMoreover, F(A) satishes the
'

l e uation
differentia

q

li —r+2 —2A(2K+5))A (1—4A)F"(A)+ P.
XF'(A) —(X+1

—ie ' (A12)Ii($)-i — ' dx LI —tx(1 —x) —ie)-,

1
~ ]dxgtx(1 —x) —1+ )- .I~ s 'lns

0

q(
r(1+X)r(2r —X—1)

F(A) =2"+'-

X — —,'; —' —' r; 1 —4A).XF(—+—'X 1+2K; 2+r;

(A'13)

ttention to the case whe. e t
as 2.5

the

(A7)
he i

, f —+~ with 6xed t&4,and hence, for s —+~ w'
A6) that F(A) is aIt therefore followsws from (A5) and

E . (1) on p.. 56 andeometric function see q.
K . 5) on p. 105 o e .

rmula for thethe Legen re ud duplication formuFinally, by e
A8 can e puI' function, ( )

-'.««)Lr(!+~))-Iig =—2' 24.2/2csc2r e

result (A7) to (A3) givesA lication of this resultpp'

*'Lr(k))'Lr(2+2k)) 'Ii(&) = —42rp CSC2r e—'

—3 ie . (AS),
-'. -'+$; 4tx(1 —x) —3+ie .dxF(1, —,'; —,

t=4(1-S);

then, for small 8 and (,

Ii(p = —' 24'/2CSC2r e= —' '4'" csc2rp e—*'

&r(g)Lr(,'-+())-2

1 -''-'+$ t(1 —x') —3+ie)i2i2 )

0

——2'-" "'-
& -"r«)f:«-,'+~))-

(A14)

-' -'+&; 4tx(1 —x) —3+2eX Ch F(1, -„—,
0

I-' &F dx= —2 &+2/2 i/2 csc2rp e r
0

——i/2 22 1)-(1+2(i/422 (A9)

where
(A10)—1/2s= -'L1 —tx(1—x) —2e)

d oitd Lg functions an a I e e

t=4, ho, th
f ction reac es imetric un s i0

are additiona sid th
d in detail in Sec. A3 o

ap roximation as eep

from Threshold2. Behavior away rom

zero. Sinceand A9) for $ near zero.Let 3~4, and expand

F 1, —,', 22+); 4th(1 X)—3+2e- —
={43—t*(1—*)—'.))-

4tx(1 —x) —3+ie~

function nearion of this hypergeometric rthe e pansion
(=0 is straightforwar . or

1 -'-'+g 1—4~-4x2+ie)ZSE 72r 2 p
— ZE

=-2'-" "'- -& -'.«(~)Lr(!+~))-

, -' 2 —$' 46+4x' ie)—Cx — —F(1, —,';
2(1—5)

4x' —ie '+&+22r »'r( ;-+g) r-(1 g)(48—+4x

XF(-'+$' f —I+/; ' 4814 '—

'—ie) '+&e " dx (6+x ie—~—m CSC X' 8

r(1-~)i/2 —2 g ie) t-1/2(] i P) r(+1 p)y
~ —2m'" ' 8 —2e

—2 ' —I/2——2~1 '

ln2 i2r . —(A15)XI I+/»(8 ie)+2(—1n2 i . —15

thresh

i —' ie '"s —'Lins+In4(B —ie) —i2r
= —n-s '/2L4s(B —ie)) "'{ln s

2.II .T 1S 1S

t-hand side o
Th'

0 e.
unction of sb. is

'
p

d dthnot s '. This is inmagnitude s, t ' This is in
already seen. in Sec. 2.

g ed t near, but not a,at the~~ with a xeTherefore, for s —+

old
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3. Behavior at ThrreshoM

i
'

s occur at the thresholdSirnplifications occur a

ofIl»gThe asymptotic behavior or s
(2.S), (A22), and (2.9).

n, bstitution into (A9) givesIn this case, su s i u
'

=- '-'& "'-- -'.«(~)D(-:+~)]-'I,($ = —'—'4"'csczr e

I

1—4x'X dxIi(1, —,'; —,'+$; 1—4x

= —'-'O'Iz csczr e-' «(&)Pi'(2+&)]-'

1—2g
X do (1+ox) 'F 2, —,—-$; —, ;

—
)

0

1+2(
= —' '4'Izcsczr/e ' «($)(1'(2+,")) '

(A17) APPENDIX B

3=4 A18)'pp
re directly from (A3). By setting =mo

Ii(f) =zrP csczrfgl'(()]' I''Li'(2f)] 's "

x'=y' 'b"+1)*" (B2)

so that
x"=y"'/(y"+1), (B3)

d ' '(xY'+y+1) (B1)
0 0

'
ht-hand side of (B )1te ral on the rigWe evaluate the sn eg

by the change of var'ariable

Xl~(1 2
—5 5+5'1 . 1 . 1)

—F(1, —,—$; —',+$; ——'

-'-«(f)LI (l+~)]-'
-'-&; l+&; --'.)].X(1—25) 'I:1—2J'(» 2 —,—.

1 oo

dx dy'y'(x'y" +y +

tz' + (x' +4z' ) I ] /2

dy'b ~+1)-F—i/z

X(*"+1)&-'
can also e obtained cbrect yl frm

BI th td
ad.e of the quadratic tranuse has been made otron, u

etric functions see,of hypergeometric u

( licitly that there is a

that follow from t is

"pression (2.22, as s

(a) For (near-„e

1.(~)=!' 't-'+0(1).

1+2 Lx"+(x"+4x")'i'] }—&+ii &=2(1—2$)-' dx' 1 —, x' '4 '»iz s+ i

X(x"+1)-&—'

=(1—2k) '
y y'd "b"'+2)b"'+y"+ )-'-&

' —3)]'+6(1+2() 'F(-„1;—
=l(1-2~)-'L~-'+4(1 +2&)-'J (1 -'-&; l+g; --.)]

-I+-:I'(I, l-r; —,'+&; —,')]2(1 =2k) '—f- '(1-+-~—
-' '1-»(1, !-~;l+g;—.')].

(A19)

(b) For $ near 0,

+|-L4/9+ /

eneralize oen
'

d. t other negative
1 discussed innd this gener

It follows from

I 'in's s ——'
2 2zr/43)

s 'L(5/3)(lns —i )+4/9 2

thatis uite different from thNote t aNo h t this behavior is quite i

L(A16), for example].with t/4

APPENDIX C

dix we derive (A19)-(A21) from (A18).In this appendix, we derive
(a) When $ is near —'„ let

= —n'i' i zr"' ——2 )-'Ii(&)= —~'"(—

= —',zzr'1 '+0(1) .
se the( ) is bounded because e

eometric function isingularity due to the hypergeorne ri

(C1)

=-1-2~) ~E3 'i' —i-,' )+0(1). A20zl

Iil t e a tionear —1, letear —, = 1+t and-

si 18 then follows rom
. ( p. q.

(c) For $ near —,

Qd
li ~t'o fo 1 .the Legendre up i(A21) with the help of the g.. .-(/. .]"
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g in the denominator. Moreis canceled by the I'(2+)~ m t e
'

ore
his holds for f near —n —» n=

(b) When g is small, we nee e

er ma be obtained by solving thisThe required answer may
linear difference equation oof 6rst or er.

and

where

0(1)= —v

P(-') = —y —2 ln2,

(C2)
APPENDIX D

is a e ', '
(3.18) from (3.17). First

1 c b idotti 11

is a endix, we derive
(C3) the y& and y2 integrals can e carri

p( ) = r'( )/r( )

andy Lu er sE 1
' constant. Moreovver for small $,

(3.17)= ——,'m
C4)

[x(1—x))"'dn(dn2dng

n n2na (&—+ni+n2+na)*(1 *)—+i~j'

is

= —[1+2X3 't' Q. (C5)

2 (C3), and (CS) into (A18)The substitution of (C2). . . an
gives

I(($) —2(1—2& l 2)(1—i
XP'(1+2$ 1n2)(1+2$)(——,

' —3 m

$ '[1+$(2—i~+2X3 "'n.)j. (C6)

—1 let $= —1+t and(c) For $ near —,e

(C8)

~ 1Z(1, —;—q; —',+~; —„

3 1 —I 3 3

X[1+-'F(1 'f. .+f-;--l—)3)

(C7)

Th substitution o (C2), (C3), and (C7) into (A18The substitution o
then gives

"' 1 2 ln2)~—8 1—2 ln2)n'"Q'(1 —imi)m "'(1+ f' n

-(5/3) [|-2+1-'(4/15' 2 3~/5 —i~

re used to derive (C7) and (C8) can
f t'

b i do . If(i
o the vicinity o any n

We indicate bne y
'

fl how this may e
near —n, where n=1, 2, . . ., e ne

on the dummy vanables nn have beenp s o
omitte . e n. W ext carry out exp ici y
integrations to get

1

(3.17)= -,'n. dx
0

[x(1—x)P'~'dngdn2

[ngn2 x(1—x) +—i (j(a+ay+a,
Qo

dn(dn2 [nyn2(nyn2 ~ M

(3.17)=-,'s'
0

1 —1!2dn(dnm [n(ng(n(a2+ g

X[6+i(a(+n2)j-'. (D3)

and

then

xg= (n(+ng)/6

slllgy = (ny —n2)/(ny+n2);

(D4)

(DS)

X (6+ng+n2) —'. (D2)

'ent to shift the contoursrid of the i e, it is convenien o
h ~ g .yof integration to the posi ive

'

x/2

(C9) (3 17)= d j dxg(1+6'xP cos'Pg) '"

X(1+ix()—'. (D6)

Equation (3.18) follows from (D6).

APPENDIX E
and

define

a„=z(1, '+I f; ,' n+1-;-—', —. ——

to a„1.For this purpose, we use
between contiguousGauss's relation
s. ,37, and onfunctions [see Eqs. ,

n -' .——' —n, ,—2n —2t.)
XF(1 '+n f;——,

' —I+t—;
—', =0

—-') —1——,a„g=2 04P(1 —-'-+ n —|.; , n+f; ———, ———

It follows from (C10) anand (C11) that

a-=-; ~—:—f)-'[l(~—1—f)+(~—f)a--~ .

(C11)

(C12) n;= [x(1—x)j'~'n;. (E1)

3.17). It isendix we obtain (3.19) from
ke the Mellin transform of (D1) andconvenient to take the Me in ran

define, for i= 3
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The result is then Accordingly, for axed T/0,

dA'6' &lim s'~'I2
BI2

lim s-l~2

= —42r $ cscsrp dx dnldesdQ3 t x(1—x)]~1/
0 0

Xt —
Q 1Q2Q3+ (Ql+Q2+cx3) x(1 x) $3?

= —ssr'$ cscsr/LI'(2 —2$)]2)1'(1—$)?' dQldQsdQ3

XL
—Q1Q2Q3+(Ql+Qs+Qs) —23?' '

dQ1'dns'dns'dP1'dpi'dy (Pl'+pa'+Ql'+&2')'

XL &1&2 &3 +@+&1+Qs +&3 )

X(P1 +rl +&1 +&2 )+(Pl 71 )

+x (Pl + Y1 +Ql +Q2 ) $3] ~ (F5)

For this sixfold integral, four of the integrations can be
explicitly carried out: ns', x, Pl' —yl', and nl' ns—' Le.t

=-,'~2 csc~~pI'(2 ——,'~)] Lr(1 —[)]-e-*.3~ dQ, dQ2
ens

xl Pl + rl and x2 &1 +&2 j (F6)

X(1+Q1Q2) '(Ql+Qs) ' BI2
»m &-i&2 dxldxsxl(xl+xs) "'(T+xs) '

=l '( -' k) ""LI'(-'5)1'(-'—l()]'. (E2)

XL2xl'+3(T'+ x2) (xl+x')]Lxl'+ P'+xs) (xl+xs)] "'
XL4(xl+xs) —x22]-'~2 sin-'(-,'xs(xl+xs)-'I')

APPENDIX F

We study further in this appendix the behavior of I2,
as given by (3.3), when 4 t is of the o—rder of s '. More
precisely, we consider

BIg 1

= —6 dQldr32drssdpldP2d'rid rs
8$ 0

X&(1—Ql —Qs —Qs —Pl —Ps —Vl —ys)~

X+171(P2++2+&2+Qs)+P2rs(P1+r 1+&1+&2)

+&2(P172+P2 Y1)]D2 (F1)

in the limit of large s with fixed T, where T is dehned
by (2.7). Note that this integral fails to converge when
T=0. We shall therefore assume throughout this
appendix

(F2)

The leading contribution to the right-hand side of (F1)
comes from two distinct regions: (i) Ql, Qs, Pl, yl, and
Ps rs are all small; and (ii) Ql, Q2, Qs, Ps, 72, and Pl —rl
are all small. By symmetry the contributions from these
two regions are the same, and therefore it is sufficient
to consider only the 6rst region. Let

+ dxldx2xl(xl+x2) p +x2)

Xpxl +3(T+xs)(xl+xs) ]Lxl +p +x2)(xl+x2)?

XLxss —4(xl+xs)? 'l2

Xf slisr co-sh —'(-'2x(—sx+lx)-s' )12] (F7)

where El and E2 are the regions where xl)0, x2)0,
and 4(xl+xs) —xs' is positive and negative, respectively.
For small T, the right-hand side of (F7) behaves

The meaning of this result is as follows: %hen 4—t is
of the order of s ', the leading term for I~, of order
s '~'lns, does not depend on 7', but the next term, of
order s 'l", depends on T in a complicated manner. It is
this term that rejects the complicated singularity of
Gribov type. '

APPENDIX G

In this appendix we derive (4.20) from (4.19). It is
convenient to carry out the y integrations erst:

1

lim s'~2I„= —(—-'2+sr) "I'(sin+1) dxldxs. dx„

and

Ql =Ql /S q
Qs= CX2 /2 q (Xs = CK3 /$ q

Pl Pl /& 'rl yl /&
n n

X&(1—Q x)( g x;)'"-'»' d 'd '".d . ,'

then

(F4)

n+ I

n~l i=l
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the variables fnr the rbz„(G2), ~e

2

I then givesation mth respect to dMellin transformation wi
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1/2aaf af-~lim S
g ~00

0

1

dX1&g2' ' 'dXn= ——-', Q~)-r(1 —p) r(-', e+ ~)

&. ~+~" 3)/2 ~1 d~2 ~ ~ .~n+1x~(1—g *;)(II *; ~+&"- ' '
~ ~ .d .+.

j~l then

n+1
II

p
i~1

II Il0!'=&i p )

n+1
p'=( II n*)""p";

i=1
(«)

n+1 n

n )+(g n,') II x;—se
n~li=1

1/2dh'6' &Iims
gmo0

00

II
G ~ CfQn+1x.) &I-&'("—1 dna n2 ~)&8(1—Q x;)(II x; n

g=l

1
Ifn4p BldO. 2

-.datn+jP

- r r(-,'~+])= —(—2v'~)" r

00

II If
d~2 ' ' 'den+1Ql

1
&+n/2 dBldB2 .do.„+1dp p

n" " -ie -&—"" (62)X — n'")+( Z n'") -&~3
e=li=1 X(1—p'" —ie) & ""

~) n aree the variables 0.;, i=,ln the above, e
defined by

n;"=( II xg)-'("n, .
j~1

I —)w 1—i) ( 1—)"


