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In this paper we derive bounds on the nucleon form factor, the anomalous magnetic moment of nucleons,
and the pion form factor. By using sidewise dispersion relations and the Schwarz inequality, we are able to
bound the elastic nucleon form factors F1(¢?) and F.(¢% by integrals over the structure functions for in-
elastic electron-nucleon scattering, Wi,2(¢%»). At ¢*=0, we then use unitarity to bound the anomalous
magnetic moment by an integral over the nucleon propagator spectral function. Finally, by dispersing in
¢%, the photon virtual mass, we are able to bound the pion form factor F,(¢%) by an integral over the total

electron-positron annihilation cross section.

I. INTRODUCTION

HE absolute bounds on strongly interacting
collisions of hadrons are derived primarily from
the nonlinear character of the unitarity condition on the
amplitude along with the usual assumptions of Lorentz
invariance and the causality requirement as embodied
in analyticity properties of the scattering amplitude.
Collision amplitudes of weakly interacting particles
such as the photon or lepton are also subject to unitarity
restrictions. However, if one considers these amplitudes
as a perturbation series expanded in the weak coupling
as is done in practice, then the unitarity conditions will
connect different order terms in the series so that order
by order there are no useful bounds. For example, to
first order in the perturbation parameter the unitarity
condition is linear (with the exception of purely weak
processes) and hence provides no restrictions on the
magnitude of the amplitude; only the summed series
is bounded. Although unitarity provides no absolute
bound to first-order weak processes, it is possible to
establish relative bounds of one weak process to first
order in the coupling by another. It is this latter kind of
bound that we consider in this article.

We first will study the nucleon form factors Fy (g%
by utilizing sidewise dispersion relations for the photon-
nucleon vertex. This allows us to express the elastic
form factors in terms of an integral of the absorptive
part in the virtual nucleon mass W. The square of this
absorptive part can be bounded from above by using
the Schwarz inequality on the sum of states with positive
norms in the Hilbert space, in which case it is bounded
by pr(WHW1,2129 (g2, W?). Here py(W?) is the first
nucleon spectral function and W1 ,/29 (g2 W2) are the
inelastic form factors with the final states restricted to
the quantun numbers of the nucleon J?=*. Using the
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Schwarz integral inequality, we then obtain for ¢2<0

— g | Falg?) |2< 32042571 1)

0

X/ dy WP (g2w),  (1.1)
QpM+p’—q®) 2M

| Fi(g®) —e|*<32e2(Z51—1)

0

X/ dv W>*0 (g%)
2pM+p’~q®) /2M

v=W?2—=M?*—¢»/2M, Z;*—1= fps(W?dW? and u
is the pion mass. The inequalities are valid for all space-
like ¢2<0. One may further use the inequality
W10 (g% ) <Wy2(g®p), where Wia(gp) are the
inelastic form factors into any hadronic final state.
However, this procedure considerably weakens the
bounds (1.1).

This method of the Schwarz inequality also allows
us to place an absolute upper bound on the anomalous
moment of a spin-3 particle. If we assume that the mag-
netic form factor Fot(IW?) obeys W2 —w, Fy*(W?) — 0
[this assumption can be proven if p1(W?) — 0, W2 —w |
where p1(W?) is the spectral function for the propagator
computed in the radiation gauge], then the anomalous
moment is bounded by

e
K——

2M

o AW?  /8py(W2)W2\ 12
<8 f ( ! ) . (12
Oruy W2—M?*\ W?—M?*

We also examine the pion form factor F(¢?) by using
dispersion relations directly in the ¢* variable. If we
assume the Lehmann representation for the photon
propagator exists, then Fz(¢?) obeys a dispersion relation
with no more than one subtraction required. We then
establish from this dispersion relation the inequality

228



2 BOUNDS ON ELASTIC AND INELASTIC FORM FACTORS: - 229
valid to first order in a=e?/4x for ¢*<0: 4
F” 2 —e ) d /2
(@) < / q o
¢ w g +¢) (p*=W?) Co2 2
4g'r \¥473¢ %are e (N V2 P (p =M)
X( B > < ) , (1.3) I16. 1. Photon-nucleon vertex.
q'?—4u® e
where o7 (¢’?) is the electron-positron annihilation form factors:
cross se.ction foy c.m. energy (¢®HY2 In pa'rticular, this ‘ 1 o TmFa(g?, W)
inequality requires for the pion charge radius Fa(g®) = — awl —
©dg*r 4g* \**/3¢%er T (gP\"? T W=
(r,2)<6/ ——( > < > . (14) [mFala®. —W)-
S w? ¢4 \g*—4u? e'r -er a ,——)J
wW+M 2.3)
II. BOUNDS ON NUCLEON FORM FACTORS Fig)—e 1 = . I Za(gt W) K
In this section we derive our bounds on the nucleon __"(_12__ T ]; rn d |:_([;/_ A?)';

form factors. Following Bincer,! we define the off-shell
photon-nucleon vertex as follows (see Fig. 1):

a(p's)Ty=u(p’s’)

Vg , . .
X {87#+|:<QM+EI*~EV~>I;3((]Z’W) — 10w 2((12,W)]

'Yuqz

Wp L
X(_ZW >+[<q"+M+'W>I'3(q' W)
wnFalet, -0 [ ? )} (2.1)
—10wq 2(9 y )]( W . .

Here p=p'+q, p?=W?2 p'*=M?2, and ¢* is the virtual
photon mass. In obtaining this general result, use has
been made of the invariance of the theory under T, C,
and P, and gauge transformations which implies the
Ward-Takahashi identity g¢#a(p’s’)T,=en(p’s’)q. The
usual charge and magnetic form factors can be identi-
fied as

Fi(g?) =e+¢’Fs' (g%, M),
F2(q2) =F2(q2’M)y F2(0)=Ke/2M )

where the prime denotes differentiation with respect to
W and « is the anomalous moment.
One can rigorously prove that

FH (g2 WA =5[F¢>W)+Fig*, —W)]

2.2)

and
Fi (AW = (1/2W)[F«(¢* W) —F(¢* —W)]

are analytic functions in the cut W2 plane,! so that one
can establish dispersion relations in W2 These analy-
ticity properties in W? can be transcribed to the W
plane and if we assume that no subtractions are
required for Fy(¢% W) and one subtraction for F3(g%, W),
then we have the following representation for the elastic

L A. M. Bincer, Phys. Rev. 118, 855 (1960).
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It is important to remark that the subtraction as-
sumptions we have made are crucial to the bounds we
will derive. Although we can bound ImF2 3(¢%,W) for
|W| —c in terms of other functions and even if the
asymptotic behavior of these functions imply the inte-
grals in (2.3) exist, this is not sufficient to guarantee the
|W| —< behavior of Fs 3(¢%,W) required for the valid-
ity of (2.3). It is always possible that ReFs 3(q%W)
contain polynomials in W which are independent of the
imaginary part and hence not specified by (2.3). In
deriving our bounds, we explicitly assume the absence
of such polynomial pieces in Fj, 3(¢% W), so that if the
integrals in (2.3) exist then they specify F1,2(¢?).

Our project is now to bound the imaginary parts
appearing in these integrals using the method of the
Schwarz inequality.? The absorptive amplitude is

a(p's)Tut =u(p',s')

'Yuq2
X [<9u+ e W) ImF3(g*, W) —iowg” lml"z(tﬁ,W)]
W+p 7#‘]2
X (——>+[<qu+ ~——> Im#s(g% —W)
M M+W

W—p
2M

The unitarity condition on this amplitude is then
a(p's)Tut =3 322 (2m)*6%(pa—p)

X {(@'s'| 1u(0) |)(n | j5(0)[0),  (2.5)

2See S. D. Drell and F. Zachariasen, Phys. Rev. 119, 463 (1960)
for an earlier application of the technique.
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where ju(x) is the electromagnetic current and jy(x)
= (iy,0*—M)y(x) is the nucleon source current.

Instead of (2.5) we consider the positive energy
W >0 projection

e VD
a(p's’)1 MA<“W>:% 2 @b,

. W+p
0w =[m) 8 (pa—p)(n | j(0) ,0><___>, (2.6)
2W

bot =[(2m) 464 (pn—p) JVX's'| ju(0) [n).

Since we assume the states |#) have positive-definite
norm, we may apply the Schwarz inequality to (2.6):

W+p\ |2
ﬁ(p's')P,‘A(~—)
2W

It is straightforwardto show that

5l ,_ AmpM =)
w

z

s’

<iX ldn|2):.>: |bn"l2'(2-7)

Los(WHW+p(W?)],  (2.8)

where p1,5(IW?) are the nucleon spectral functions as
defined in the representation

M AW?
Su=- /

X[or(W2)p+p:(W?)]. (2.9)

For positive-norm states, p1(W?2) >0, Wpi(W?2) > po(W'3),
and so

S [an|2< 8mpo(W — M) 201 (W?). (2.10)

The inelastic structure functions® Wy s(¢%p'-q) are
defined by (¢2<0)
W= (2m)%% 3 54 (pn—p)(p's'| ju(0) )
X(n|5.,0)1p's"),
e*/dr=a=1/137,
where W, has the decomposition

W= Wl p' - @) Fdu?W (g% p' - )/ M,

‘ g ?'q
A =quq/ *—Guv, du® (Pu - ‘—‘1#>(Pv’ - ‘IV) .
¢ q
Hence
2 [0t | 2=4me’[du'Wa(g%p" - 9)
(» not it?mmed)
+duu2I/V2(q2;P’ : Q)/M2] . (2~11)

3 See, e.g., S. D. Drell and D. Walecka, Ann. Phys. (N. Y.) 28,
18 (1964) P J. Gilman, SLAC-PUB 674 1969 (unpublished).
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At this point we remark that in the original unitarity
sum (2.5) the state |#) must have the quantum num-
bers of the nucleon (although the nucleon state itself
is not in this sum) in virtue of the projection performed
by (n] 75(0)|0). Consequently, the sum (2.11) is also
over this restricted set of states with J?=3* and we
can write instead

> |67 2=ez47rdun1W1(1/2+)(q2’p"9)

s'n
(1 not summed)

Fdu W2 (g q)/ MP, (2.12)

where W1,/29(g%p"-q) are the inelastic structure
functions for final states with J”=7%* and hence repre-
sent the contribution from a few partial waves only.

For ¢><0, W1,5(¢%2’ - q) and W15/79(g%,p’ - g) can be
shown to be positive definite, related as they are to the
transverse and longitudinal cross sections®

W1(92,V) = (k/41r2a) 67'(qu2) )

(2.13)
k —¢?
Wa(g*v) = (——)[a, (v,¢)+0r(r,¢)],
4ra q°
with »=p'-g/2M=(W2—M2—¢*)/2M, k=v+q*/2M

= (W2—M?)/2M. Of course, the partial cross sections
are bounded by the total cross sections

W12 (g2 ) < Wi a(g2y) . (2.14)
We will now look in the rest frame of the nucleon, i.e.,
Plz (MaO;OJO): q= ((10;0»0793)

and evaluate (2.7) for the cases u=3 and u=1, which
are related to longitudinal and transverse cross sections.
Using (2.7), (2.10), and (2.12), we obtain for (¢*<0),
k=3,
)22
Wt i

MW

+M :
) Im£3(q?, W)]
M

w
X [Im[f‘g(cﬁ, w)— (
w

< p°<W—M>2e2(47r>2m<wﬂ>(—”~>
.._q?

—?

X[~;,1_”/2(1/z+)((1 ) — W1<”2+’((1 ,,):I (2.15a)
—¢*

and for p=1,
W=M)—g
2MW2

2

q 2
Y| (W+M) ImFa(g2, W) — ——— ImF Q,W)]
[( )ma(q)WMms(q

< PO — M) 2e2(dm) on (WA W29 (g2p) . (2.15b)
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Multiplying (2.15a) by —¢?/»*>0 and adding the
result to (2.15b), we get

2

—q;llmm(qz,ww

Im ‘2 2,W 2—
| TmFa(g2, W) | i

(W —M)?2 ypy(W? W2, (/25 %)
< (&) (m)? (p ) (¢ )
M —q?

Since each term on the left is positive,

ImPFs(g%, W)
S
< dme| W] I:pl(Wz)Wz(”m(qz,v)]” 2’ (2.162)
—2¢°M
ImFs(g%, W)
' W—-M)*?

B 411'6{erpl(Wz)W2<1/2+)(qz,V)
- —q? I_ 2M

These two inequalities do not exhaust the content of
our original inequalities (2.15) but they will suffice for
our purposes here.

In order for the integrals (2.3) to converge, we
require from (2.16)

]m. (2.16b)

Wepr(WHW U2 (g2 ) — W,
W2—ow, >0.

(2.17)

We can consider under what conditions this require-
ment is satisfied. If we use W;1/2"(g%») <Wy(g%») and
assume the total cross sections in (2.13) are bounded
by constants, then (2.17) implies W2p1(W?) —W—¢as W?
—oo. Hence under these assumptions Zy;1—1= fp;
(W2dW < o exists.

We view this requirement that Z;7'<  as a rather
strong one on pi(IW?). However, use of the inequality
Wy 9% (g2,) <Wa(g%w) is probably very inefficient. If
the high-energy behavior of partial-wave amplitudes
for photon processes is anything similar to the bound
forced by unitarity on hadronic partial-wave ampli-
tudes, then we would expect W,/2"(g%p) — 1/W4,
W?—o. Then we need only require p1(W?) — W= to
satisfy (2.17). This assumption on the nucleon spectral
function is a much weaker assumption, the existence
of a Lehmann representation (2.9) for the nucleon
propagator.

We have not been able to establish any good relative
bound for W1,2/2" (%) in terms of the experimentally
measured Wy 5(¢g%v) other than the trivial observation
that W1,,1/29(¢%)<W1,2(g%») which, as has already
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been remarked, is inefficient. It would be generally de-
sirable to establish such a bound.

For the present let us assume Z; '< . Then the
integrals (2.3) and bounds (2.16) imply (¢*<0)

- or (W)W 50129 (g2,) 1112
| Palg)| < e f szl: ]
(M) —2Mq? ’
(2.18)
(el <t [ sz[Pl(W2)W2<1’2+>(qz,v):lm
1 —eé|S4€ .
(M+p)? 2M

Using the Schwarz integral inequality,

—¢*| Fa(g?) |P< 32*(Z57'—1)

X/ dv W2(1/2+)(q2,v), (2.19)
+2M ptp’—g%) /2M

| Fa(g?) —e]2<32e*(Z51—1)

00
"
Xf dv W20 (g% ).
HeMptp’—a®) /2M

In using the integral inequality on (2.18), we should
comment that if the functions W,1/2") (%) decrease
very rapidly in W2, then we can exchange a higher
moment of p(IW2) for a higher moment of W,/2) (g2 ).

It is interesting to examine the consequences of the
scaling hypothesis that »Ws(g%v) — Fa(w) as » —,
w= —q?/v fixed. Then we obtain from (2.19) and (2.14)
as —g?—o,

2 dw
—g?| Falg?) <3262~ 1) f Zr),
0 W
(2.20)
2 dw
|F1(q2)—elz_<_3262(Z2—1—1)/ —Fa(w).
0 W

Needless to say, with the measured nucleon elastic
form factors falling like ¢~ there is little danger that
(2.20) is violated.

III. ABSOLUTE BOUND ON ANOMALOUS
MAGNETIC MOMENT

From Sec. IT we can establish the following theorem:
If Fo(0,W)—0 as |W]| —, so that this function
satisfies an unsubtracted dispersion relation, then the
anomalous magnetic moment is bounded by

AW |‘8p1(W2)W2]1/2 )

e o0
<s |
(M4p)? Wz—le_ wW?2—M?

K—

where p1(W?) is the spectral function of the hadron.
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The result is established in the following way. If
Fs(0,W) —0 as |W| —w, then F(0,M)=«ke/2M is
specified in terms of the unsubtracted integral over the
imaginary part (2.3). Using the expression (2.13) for
Wa(g%p) in terms of the total cross section, we find

62W2<1/2+)(92,V) O.T(I/2+)(W2)
—2M g r(W2—M?)

lim
q2->0

Then (2.18) implies with ¢2=0,

00 p1<w2)o.T(1/2+) (W?) 1/2
_<_4/ dWQ[—-————“] .
(M4a)? w(Wi—M?)

e
—
2m

In this case we are dealing with physical photons
¢?=0, so ap2(W?) represents partial-wave projec-
tions of a physical S-matrix element (no such statement
can be made for ¢2%#0). Consequently, o729 (172) has
a unitarity bound given by

2 \?
UT<‘/2+)(I/V2)§81r(— ) .
W2—M?

However, as remarked in the Introduction, such a bound
need not be satisfied order by order in perturbation
theory. Using this bound, we have

dW2 1 W2 '[/]72 1/2
807 ] . (32

e 00
<8 f
e W=l W1

e

It is worth remarking that our method gives no such
bounds for quantities like the charge radius F.'(0),
since to obtain such a bound one must analytically
continue the unitarity condition into the unphysical
region ¢*#0 and we know of no absolute bounds on the
amplitude in this region.

We further remark that caution must be applied if
one desires to extend these results to all orders in the
electromagnetic coupling. In the case of quantum
electrodynamics, for example, for which the fermion in
question is the electron, it is well known* that the elec-
tron spectral function is gauge dependent and (depend-
ing on the quantization procedure for the photon field)
the norm of states containing photons need not be
positive definite, so we lose the positivity condition on
spectral functions. Also, the Schwarz inequality is not
valid for these states. If, however, we stipulate the
transverse gauge and quantize in this gauge, the norm
of states with photons is positive definite and these
results can be expected to apply. We also can show by
considering the one-photon-one-fermion contribution
to the spectral function p;(I¥?) in the transverse gauge
thatas W2—sco, py D (W2~ |e+ (W-+M)F(0,W) |2/ W2
Hence, if the Lehmann representation exists in this

4For a discussion, see L. Evans, P. Feldman, and P. T.
Matthews, Ann. Phys. (N. Y.) 13, 268 (1961).
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gauge, then F5(0,/W) — 0, |IW| — o, and our hypothesis
of an unsubtracted dispersion relation for Fy(0,I¥) is
justified.

IV. BOUND ON PION FORM FACTOR

Here we present some simple relative bounds on the
pion form factor in terms of the ete~ annihilation cross
section which, to our knowledge, have not been reported
in the literature. We will not follow the method of the
previous sections since in the case of the pion, owing to
the special circumstance that it is the lowest mass
hadron, we have found it useful to consider dispersion
relations in ¢?%, the photon mass.

We begin our discussion by considering the photon
spectral function

Jw=2 (21)%6*(pn—9)(0] 7u(0) [n)(n] 7,(0)|0)  (4.1)

= (Qug/ > —gw)J (¢*)

and assume that a Lehmann representation for the
photon propagator 7(¢?) exists:

1 * dg'%(g'%)
+ / -,
¢ Jar ¢*—q7?

m(¢) = — p(g)20 (42

where p(¢?) =J(¢%)/¢* The threshold 4u? in (4.2) corre-
sponding to production of pion pairs arises in the ap-
proximation of neglecting all but the hadronic contri-
bution to the states |#) in (4.1), which is valid to order
el

It is straightforward to compute the two-pion con-
tributions to p(¢?), with the result

]:,“1r 2)}2 2_4 2
pQW(C_,Q):LEL(q u

671.2q2 492

3/2

) o), @)
where F.(¢? is the pion form factor. Since each state
contributes a positive-definite amount to p(¢?), we have
o(g®)> pax(¢%). For the Lehmann representation (4.2)
to exist, we must have p(¢?) — 0, ¢> —« which implies,
from (4.3), that |[F.(¢®)|%/¢*—0 as ¢*—co. If we
postulate the usual analyticity properties of Fr(¢?),
this asymptotic behavior implies that we can write a
dispersion relation for F.(¢%) with no more than one

subtraction:
¢* [ ImPa(q"*)dg’
Frlg)=e+ — / e — 4.4)
T Js

W g —q%

Our interest is in establishing a relative bound to
first order in e for F(¢?) in the spacelike region ¢2<0.
From (4.4),

Fr(g®)—e
- -

1 = dg'?ImF.(¢'?)
< / 7 ws)

w ¢ gD

¢#<o T
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and from (4.3) and the positivity p(¢?)> p2x(¢%),
2

q 3/2
ITmF.(¢?)[2< 672(7;) q*(¢>).  (4.6)
q M

If we further use the relation valid to first order in
a=¢*/4m, between the photon spectral function and the
annihilation cross section p(g2) =o7°""(¢?)/87%, where
¢? is the c.m. energy of the pair, and combining (4.5) and
(4.6), we have our relative bound

Fa(g?)—e /“’ i (4 )3’4
¢ le<o Jurg?(g"* g 2)\9'2—4#2
3q’20.,1,e+e‘(q/2) 1/2
x[—m] . @

we?

There immediately follows from this expression valid
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for ¢<0 a bound on the charge radius of the pion:

6 dF.(¢ © do%s dg? \ 34
@ / _9_<_q )
2°=0 aw? g* \g*—4u?/

= o
x[iq—z@:]w. (4.8)

O
et

Also perhaps of interest is the observation that if
F(¢?) = 0, —g*>—o0, then (4.7) implies

0 dq’Z 4 ’2 3/4 3q/2o.1,0+e—(q2) 1/2
/ __< g ) [ ] >1. (4.9)
w @2 \g'2—4pu? et

The integral here probably diverges as is expected in
the quark-algebra estimate of o7°"¢7(g2), ¢>— <0, so the
inequality is trivial.
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Relation Between the Multi-Regge Model and the Missing-Mass Spectrum*
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The integral equation approach to the multi-Regge peripheral model is applied to give the missing-mass
spectrum with Regge behavior in s and 2. A simple factorizable model for the double Regge coupling then
gives the magnitude and ¢ dependence of the cross section. This model is found to be in reasonable agreement

with the backward 7=+p — p+ X~ data.

HE integral equation approach to the multi-Regge
production model for computing the contribu-

tion to the elastic absorptive part has recently been
formulated.=5 The approach has been used to predict
total cross sections at high energies with results that
are encouraging.® Recently, this approach has also been
applied by Caneschi and Pignotti’” to studying the
missing-mass spectrum at high energies. The importance
of the missing-mass experiments as a test of the integral

* Research sponsored by the U. S. Air Force Office of Scientific
Research under Contract No. AF 49 (638)-1545.
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equation approach has motivated us to examine this
relationship in more explicit detail. In this paper we
show how the integral equations may be readily applied
to give the missing-mass spectrum in high-energy
inelastic collisions in terms of the forward Reggeon-
particle absorptive amplitude @(¢; s). The Reggeon-
particle absorptive amplitude at general momentum
transfer, forward or nonforward, can be obtained by
solving a multi-Regge integral equation.>=5 The pre-
dicted missing-mass spectrum has characteristic proper-
ties which can be tested experimentally. Furthermore,
using the simplified model of a factorizable and w-angle-
independent double Regge coupling, we achieve an
expression of the missing-mass cross section entirely in
terms of two-body cross sections and coupling constants.
This allows us to predict not only the Regge behavior in
energy and missing mass, but also the magnitude of the
missing-mass cross section. The result is applied with
reasonable agreement to “backward” 7—+p — p+X—
reaction,® as production on the end of a multiperipheral
chain. In a later paper,? we will examine more explicitly
the formulation and results of the missing-mass con-
tribution from the particles emitted from the central

8 E. W. Anderson et al., Phys. Rev. Letters 22, 1390 (1969).
¥D. Silverman and C.-I Tan, Princeton report (unpublished).



