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In this paper we derive bounds on the nucleon form factor, the anomalous magnetic moment of nucleons,
and the pion form factor. By using sidewise dispersion relations and the Schwarz inequality, we are able to
bound the elastic nucleon form factors F&(q') and F&(ft') by integrals over the structure functions for in-
elastic electron-nucleon scattering, 8'1,&(q', v). At q'=0, we then use unitarity to bound the anomalous
magnetic moment by an integral over the nucleon propagator spectral function. Finally, by dispersing in
q', the photon virtual mass, we are able to bound the pion form factor j (g') by an integral over the total
electron-positron annihilation cross section.

I. INTRODUCTION

I
'HE absolute bounds on strongly interacting

collisions of hadrons are derived primarily from
the nonlinear character of the unitarity condition on the
amplitude along with the usual assumptions of I.orentz
invariance and the causality requirement as embodied
in analyticity properties of the scattering amplitude.
Collision amplitudes of weakly interacting particles
such as the photon or lepton are also subject to unitarity
restrictions. However, if one considers these amplitudes
as a perturbation series expanded in the weak coupling
as is done in practice, then the unitarity conditions will

connect different order terms in the series so tha, t order

by order there are no useful bounds. For example, to
erst order in the perturbation parameter the unitarity
condition is linear (with the exception of purely weak
processes) and hence provides no restrictions on the
magnitude of the amplitude; only the summed series
is bounded. Although unitarity provides no absolute
bound to first-order weak processes, it is possible to
establish relative bounds of one weak process to first
order in the coupling by another. It is this latter kind of
bound that we consider in this article.

We first will study the nucleon form factors F~,~(q')

by utilizing sidewise dispersion relations for the photon-
nucleon vertex. This allows us to express the elastic
form factors in terms of an integral of the absorptive
part in the virtual nucleon mass tV. The square of this
absorptive part can be bounded from above by using
the Schwarz inequality on the sum of states with positive
norms in the Hilbert space, in which case it is bounded

by p&(lV )Wz z& ~~+~(q W ) Here pr(lV ) is the first
nucleon spectral function and Wr &""+&(q',W') are the
inelastic form factors with the final states restricted to
the quantun numbers of the nucleon J = —,'+. Using the
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Schwarz integral inequality, we then obtain for q2&0

(2u~+f '—q') /2~
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We also examine the pion form factor F (q') by using

dispersion relations directly in the q2 variable. If we

assume the I.ehmann representation for the photon
propagator exists, then F (q') obeys a dispersion relation
with no more than one subtraction required. We then
establish from this dispersion relation the inequality

28

v
—(W2 ~2 q2)/2~ g2 ~ 1 Jpl(W&)dW2 an

is the pion mass. The inequalities are valid for all space-
like q2& 0. One may further use the inequality
W&, ""+&(q',v) & W& 2(q', v), where Wr, ~(q', v) are the
inelastic form factors into any hadronic 6nal state.
However, this procedure considerably weakens the
bounds (1.1).

This method of the Schwarz inequality also allows
us to place an absolute upper bound on the anomalous
moment of a spin-2 particle. If we assume that the mag-
netic form factor F~+(W') obeys W' —&~, F~+(W') —+ 0

I
this assumption can be proven if pr(W') ~ 0, W' —+~,

where pr(W') is the spectral function for the propagator
computed in the radiation gaugej, then the anomalous

moment is bounded by.
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valid to first order in n =e'/4zr for q'&0:
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FIG. i. Photon-nucleon vertex.

where O.i'+' (q") is the electron-positron annihilation
cross section for c.m. energy (q")'i'. In particular, this
inequality requires for the pion charge radius

oo dqz 4qz 8/4 3qz~ e+e (qz) liz

(1 4)
4„2 g g

—4p, e4X

II. BOUNDS ON NUCLEON FORM FACTORS

In this section we derive our bounds on the nucleon
form factors. Following Bincer, ' we dehne the off-shell
photon-nucleon vertex as follows (see Fig. 1):

zz(p's') I'„=zz(p's')

00

F (q') =—

1"i(f') —e 1

ImF z(q', W)d8"—
t/t/ —M

ImFz(q', —W)

8'+M

ImFz(q', W)
dB' ——

(W —M)'

ImFz(q', —W)-+—
(W+M)'

(2.3)

X ey„+ q„+ F(zq , zW) zo„„q"Fz—(qz, W)
M —8'

X — q, —&'3 q'. —~'

W —p
za„„q"Fz(q',——W) — — . (2.1)

28"

Fi(q') =e+q'Fz'(q', M),
Fz(q') =Fz(q', M), Fz(0) =ize/2M,

(2.2)

where the prime denotes differentiation with respect to
8' and ~ is the anomalous moment.

One can rigorously prove that

F,+(q', W') =
I 2F( ',qW) +F( ,qz—W)]

Here P= P'+q, P'= W', P"=Mz, and q' is the virtual
photon mass. In obtaining this general result, use has
been made of the invariance of the theory under T, C,
and I', and gauge transformations which implies the
Ward-Takahashi identity qi'N(p's') I'„=ezz(p's')q. The
usual charge and magnetic form factors can be identi-
6ed as

It is important to remark that the subtraction as-
sumptions we have made are crucial to the bounds we
will derive. Although we can bound ImFz, z(q'", W) for

I WI ~~ in terms of other functions and even if the
asymptotic behavior of these functions imply the inte-
grals in (2.3) exist, this is not sufhcient to guarantee the

I
W

I
~~ behavior of Fz z(q', W) required for the valid-

ity of (2.3). It is always possible that ReFz, z(q', W)
contain polynomials in H/ which are independent of the
imaginary part and hence not specified by (2.3). In
deriving our bounds, we explicitly assume the absence
of such polynomial pieces in Fz, z(q', W), so that if the
integrals in (2.3) exist then they specify Fi z(q').

Our project is now to bound. the imaginary parts
appearing in these integrals using the m, ethod of the
Schwarz inequality. ' The absorptive amplitude is

zz(p's') I'„"=zz(p', s')

pp, g
X q„+ ImFz(q', W) zo„„q"ImFz(q', W—)

3E—8"

p1 2 P7

F (q' W') = (1/2W)LF;(q', Wl F(q' —W)j—
are analytic functions in the cut 8"plane, ' so that one
can establish dispersion relations in 8".These analy-
ticity properties in 8" can be transcribed to the 8'
plane and if we assume that no subtractions are
required for Fz(q', W) and one subtraction for Fz(q', W),
then we have the following representation for the elastic

' A. M. Bincer, Phys. Rev. 118, 855 (1960).

W —p
zo„„q"Im—F,(q"', —W) — . (2.4)

2M

The unitarity condition on this amplitude is then

z7(p's')I'„"=-', Q (2 )'8'(p„—p)

X(P'~'
I j.(o)

I
zz&(zz

I jN(o) I o&, (2 3)
' See S. D. Drell and F. Zachariasen, Phys. Rev. 119,463 (1960)

for an earlier application of the technique.
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where j„(x) is the electromagnetic current and j~(x)
=- (iy„8" —M)IP(x) is the nucleon source current.

Instead of (2.5) we consider the positive energy
8'& 0 projection

W+p
u(p's') I'„~ — =-', Q a„*b„',

2W

At this point we remark that in the original unitarity
sum (2.5) the state ln) must have the quantum num-

bers of the nucleon (although the nucleon state itself
is not in this sum) in virtue of the projection performed

by &nl j~(0) lo). Consequently, the sum (2.11) is also

over this restricted set of states with J~= ~+ and we

can write instead

W+p
a.*=I (2~)'b'(p„—p) j'/'&~

I j&(0) lo& —,(2.6) („„„',„"„, ,e)28"

nl 2 —e24xd IW (I/O+)(q2 p~. q)

+d„„'O',II/'+I(q', p' q)/M', (2.12)

b, =C(2 ) b'(p„-p)j"'(p" Ij,(0)l &.

Since we assume the states In& have positive-definite
norm, we may apply the Schwarz inequality to (2.6):

Iv+p
g ~(p's') F." — & l 2 I

a- I' 2 2 lb-" I' (2 7)
8 2P n s' n

where W1,2'"' '(q', p' q) are the inelastic structure
functions for 6nal states with J~= 2+ and hence repre-
sent the contribution from a few partial waves only.

For q'(0, W1,2(q', P' q) and WI/2&'/'+I(q', P' q) can be
shown to be positive definite, related as they are to the
tr ansverse and longitudinal cross sections'

It is straightforward to show that

4xpo(M —W) '
LPI(W') W+p2(W') ),

WI(q', v) = (k/4x'n) o r(v, q'),

W2(q', v) = — —Ler(v, q')+«(v q') j ~

4X20; V2 —q2

(2.13)

Q Ia. I'&g p, (W —M) „(W ). (2.10)

The inelastic structure functions' WI, (q', p' q) are
defined by (q'&0)

"W"=(2~)'l «'(P.—P)&P"'I j.(o) l~)
n, s'

x& I
j„(0)!p"'&,

e'/4Ir =u = 1/137,

where 8'„„has the decomposition

W„,=d„„'WI(q',P' q)+d„,'W2(q', P' q)/M',

where PI, 2(W') are the nucleon spectral functions as
defined in the representation

P+M d W'
5'~(P) = — +

p' —M' W' M2—
xl PI(w')P+P2(II")3 (2 ~)

For positive-norm states, pI(W') &0, WPI(g")) P2(I '),
and so

with v= p' q/2M= (W'-M' q')/2M) —J'e=v+q'/2M
= (W' —M')/2M. Of course, the partial cross sections
are bounded by the total cross sections

W1,2""+1(q',v) (WI, 2(q', v) . (2.14)

H/"+M
ImF2(q', W) — ImF3(q', W)

W —3I
v2

&P'(W —M)'e'(4n. )'p1(W')

V2 (2
X ——W2"'"'(q', v) —WI"'"'(q', v), (2»a)

We will now look in the rest frame of the nucleon, i.e.,

p'= (M,o,o,o), q= (qo, o,o,q&)

and evaluate (2.7) for the cases /a=3 and p= 1, which

are related to longitudinal and transverse cross sections.
Using (2.7), (2.10), and (2.12), we obtain for (q'&0),

@=3~

(W—M)' —q'
pov2

2MB"

(W—M)' —q'
po S'Hence

lb„v '=4xe'(d„„'WI(q')p' q)
g2

(W+M) ImF (q', W) —— ImF3(q', W)8'—M

s'e
(p, not summed)

+d.:I~.(q,p' q)/M'3 (2»)

pq, Pv
dv„=qvq„/q —gv„, dvp = pv qv p qv ~ and for p= 1,

q2 (f2

' See, e.g., S. D. Drell and D. Walecka, Ann. Phys. {N.Y.) 28,
j.8 {1964);F. J. Gilman, SLAG-PUB 674, 1969 {unpublished), (p'(W —M)'e'(4Ir)'p1(W') WII'"+'(q', v) . (2.15b)
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g2

llm»(q' W) I

'—— llmF ~{q' W) I

'
(W—M)' (W')W &'"+)(q' v)-"'

dgj2IF (q') I
&4e

(W —3E)'(p ())")))"))' ""+'(q'y)

)&(e')(4 )'
2M g

2

23fq
(2.18)

p (W')W """'(q'v) "'
d'0/'

2M
IFi(q') —el &4eSince each term on the left is positive,

Multiplying (2.15a) by —q'/v') 0 and adding the been remarked, is inefficient. It would be generally de-
result to (2.15b), we get sirable to establish such a bound.

For the present let us assume Z2 '& ~. Then the
integrals (2.3) and bounds (2.16) imply (q'&0)

ImF2(q', W)

O' —M

-pi PV') W2'"'+'(q', v)- '"
«~el WI

2

ImF g(q', W)

(W—M)'

(2.16a)

(2.16b)

(+2M@+II~—q~) /2M

dv W2&"'+){q',v), (2.19)

IFi(q') —el2&32e'(Z2 '—1)

(+2M@+p~—g~) /QM

dv W2""+)(q',v) .

Using the Schwarz integral inequality,

—q'IF2(q') I'&»"(Zn '—1)

These two inequalities do not exhaust the content of
our original inequalities (2.15) but they will suKce for
our purposes here.

In order for the integrals (23) to converge, we
require from (2.16)

W4pi(W')W2&"'")(q', v) —+ W ',
8"—+~, e&0.

(2.17)

We can consider under what conditions this require-
ment is satisfied. If we use W2i'I'+) (q', v) &W'2(q', v) and
assume the total cross sections in (2.13) are bounded

by constants, then (2.17) implies W'pi(W') ~W ' as W'
—+~. Hence under these assumptions Z2 ' —1=J'pi
PV')dW& ~ exists.

We view this requirement that Z2 '& ~ as a rather
strong one on pi(W'). However, use of the inequality.
W2 "i')+(q2,v)& W2{q',v) is probably very inefficient. If
the high-energy behavior of partial-wave amplitudes
for photon processes is anything similar to the bound
forced by unitarity on hadronic partial-wave ampli-
tudesthe, n we would, expect W, i'i'+)(q', v) ~ 1/W',
W2~~. Then we need only require pi(W') -+ W ' to
satisfy (2.17). This assumption on the nucleon spectral
function is a much weaker assumption, the existence
of a Lehmann representation (2.9) for the nucleon
propagator.

Ke have not been able to establish any good relative
bound for Wi 2i"'+)(q' v) in terms of the experimentally
measured Wi, m(q', v) other than the trivial observation
that Wx,2" ' )(q',v)&Wi, 2(q', v) which, as has already

—q'IF (q') I'&»e'(Z2 ' —1)
de)

F2((a),. —
GP

(2.20)
de

l»(q') —el'&»e'(Z. -'—1) —F (~)

Needless to say, with the measured nucleon elastic
form factors falling like q

4 there is little danger that
(2.20) is violated.

III. ABSOLUTE BOUND ON ANOMALOUS
MAGNETIC MOMENT

Prom Sec. II we can establish the following theorem:
If F,(0,W) ~0 as IWI ~~, so that this function
satis6es an unsubtracted dispersion relation, then the
anomalous magnetic moment is bounded by

dW' 8piPV')W' '"
(~+„)2 8"—M' 8"—3f'

(3.1)

where pi(W') is the spectral function of the hadron.

In using the integral inequality on (2.18), we should
comment that if the functions W2i"'+'(q', v) decrease
very rapidly in 8", then we can exchange a higher
moment of pPV') for a higher moment of W2")2+){q',v).

It is interesting to examine the consequences of the
scaling hypothesis that vW2(q', v) ~F2(id) as v —+~,
i0= —q'/v fixed. Then we obtain from (2.19) and (2.14)
as —

g
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e'W2"""'(q', v) 0 i ii/"'(W')

—2Mq' s.(R"—M')

Then (2.18) implies with q'=0,

&4
2m

Pi~~ f7~ (&/ &+) (W2) - i/ &

d8"
s (W' —M')

In this case we are dealing with physical photons
'~2+) ~8"z resents partial-wave projec-

enth ical 5-matrix element (no such statementlons of R pliyslcR -n1R ll
i'/2+i(W') hascan be made for q'@0). Consequently, 0r

a unitarity bound given by

28'
~ i'/'+/(rV')(gx0 Z'

H/" —M2

It
'

established in the following way. IfThe resu is es a
F2(O, W) —+0 as IWI ~~, then F,(0, )=we/
s ecified in terms od

' t f the unsubtracted integral over the
(2.3). Using the expression (2.13) forimaginary part ~~ . . sin

n we findtv 2t,q, v~ in ermt/ t', ', ~

'
terms of the total cross section, we in

of an unsubtracted dispersion relation for F2(O,W) is

justified.

IV. BOUND ON PION FORM FACTOR

Here we present some simple re ativ
'

e bounds on the
~ ~

f the e+e annihilation crosspion form factor in terms o
u.

'
h to our knowledge, have not been reportesectionw ic, oour

h 1't ture. We will not follow the met o oin the itera ure.
ion owing toctions since in the case of t e pion,

the s ecial circumstance that it is e o
hadron, we have oun i usea, f d 't seful to consider dispersion
rea '

1 tions in q2, the photon mass.
Ke begin our discussion by conside

'
g perin the hoton

spectral function

z,„=P (2~)'s'(P„—q)(o I i„(0) I
~&(~

I i„(0) I o& 4.1

= (q"q /q' —a")J(q'),

or theand assume t a a eh t I. hmann representation for
photon propagator m(q') exists:

arked in the Introduction, such a boundHowever, as remar e in e
need not be satis6ed order by order in per ur a

'

theory. Using this bound, we have
s(q') = —+

g2

"(")
q2 ~~2

(4 2)

IF-k')I' q' —4/' "'
ps-(q') =

6m2q2

(4.4)

1 "dq" ImF (q")

' q (q +lql )

') =J( ')/ '. The threshold 4/i' in (4.2) corre-d8" -Spj (R' ~

in to roduction of pion pairs arises in p-~—&8
f4 2 2 2

spoil g2' l oxlmatlon g R
'

n of ne lecting all ut e a
bution to the states

I
ii& in (4.1, w ic is va ik' that our method gives no suchIt is worth remar4ng tha

~ y 0
ute the two-pion con-

bounds for quan i ies it t hke the charge radius
since to o tain such a bound one must analytical y

~

l

continue e uninltarlty condition into t e unphysica
s on theregion q2@ an we0 d know of no absolute bounds on

amplitude in this region.
We further remark that caution must be applie

extend these results to all orders in the
P

&
', is the pion form factor. Since each state

contributes a positive-definite amoun o p q
For the Lehmann representation (4.2)

l t ody
uestion is the electron, it is we nown aques I

e de endent and (depen—
F ' '/ '~0 as q'~~. we

tron spectral function is gauge epen
6 ld) from (4.3), that q q

' wethe quantization procedure p
~ ~

for the hoton e
postulate the usual anay

' '
y pl ticit roperties o q

ing on e
~ ~

ns need not be pos
lies that we can write athis asymptotic behavior imp i
with no more than one

os tive de nite, so we lose the positivi y conposi ive e
Al the Schwarz inequality is not

subtraction:
I2 d' ~2

ai for these states. If, however, we stipu ate e
q2 ImF q qF, ', =e+—

4/' q (q q)of states wit p o
'

h h tons is positive definite and t ese
results can be expected to app y.a l . Ke also can show y

rmion contri ution Our interes is in. ' t t in establishing a relativet in
' '

i e bound to
P, ', in the spacelike region q &0.2&nction pi(W') in the transverse gauge first order in e for q in e' —+~ ii'i(W')

I e+(W+M)Fg(O, W) I'/W'. F„om (4 4)
Hence, if the Lehmann representation exis s

'

F.(q') —e
see L. Evans, P. I'eldman, an P. T.

2a w 268 (1961).Matthews, Ann. Phys. (N. Y.) 13,
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for q2&0 a bound on the charge radius of the pion:

(4.6) („ a)
6 dF.(q')

F.(0) dq'

" dq2 4q2(6 —
j

4„& q4 q2 —4p, 2i

-3q2& e+e (q2)- 1/2

X . (4.&)

Also perhaps of interest is the observation that if
F (q') ~ 0, —q' —&«, then (4.7) implies

F-(q') —a dg 4q~2 3/4

P(P+!v
I') v"—4I ')

co dq12 4q&2 3/4-3~&2& e+e (q2)- 1/2

& 1. (4.9)
4 2 q~2 q~2 4p2 ~g4

~2(p

-3q12& e+e (q&2)
—1/2

X —— (4.7) The integral here probably diverges as is expected in
the quark-algebra estimate of ar'+' (q'), q' ~«, so the
inequality is trivial.There immediately follows from this expression valid

and from (4.3) and the positivity p(q') & p2 (q'),

4q2 3/2

~
ImF. (q')

~

'(67r' — q'p(q') .
q2 —4@2

If we further use the relation valid to first order in
r/= e'/4m. , between the photon spectral function and the
annihilation cross section p(q') =Or' ' (q')/Sn2n, . where
q' is the c.m. energy of the pair, and combining (4.5) and
(4.6), we have our relative bound

PH YSI CAL REVIEW 0 VOLUME 2, NUMBER 1 1 JULY 1970

Relation Between the Multi-Regge Model and the Missing-Mass Spectrum'
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The integral equation approach to the multi-Regge peripheral model is applied to give the missing-mass
spectrum with Regge behavior in s and 3II2. A simple factorizable model for the double Regge coupling then
gives the magnitude and t dependence of the cross section. This model is found to be in reasonable agreement
with the backward m. +p —+ p+X data.

HK integral equation approach to the multi-Regge
production model for computing the contribu-

tion to the elastic absorptive part has recently been
formulated. ' ' The approach has been used to predict
total cross sections at high energies with results that
are encouraging. ' Recently, this approach has also been
applied by Caneschi and Pignotti' to studying the
missing-mass spectrum at high energies. The importance
of the missing-mass experiments as a test of the integral

~ Research sponsored by the U. S. Air Force Once of Scientific
Research under Contract No. AF 49 (638)-1545.' G. F. Chew, M. L. Goldberger, and F. K. Low, Phys. Rev.
Letters 22, 208 (1969).' G. F. Chew and C. DeTar, Phys. Rev. 180, 1577 (1969); A.
H. Mueller and I. Muzinich, Ann. Phys. (N. Y.) (to be published);
and M. Ciafaloni, C. DeTar, and M. Misheloff, Phys. Rev. 188,
2522 (1969).

'M. L. Goldberger, C.-I Tan, and J. M. Wang, Phys. Rev.
184, 1920 (1969); S. Pinsky and W. I. Weisberger, Princeton
report (unpublished) .

4 D. Silverman and C.-I Tan, Phys. Rev. D 1, 3479 (1970).
'M. L. Goldberger Pin Krice Summer School, 1969 (unpub-

lished)$ provides a thorough and stimulating presentation of the
integral equation approach to multiperipheral dynamics.' G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 {1968);L.
Caneschi and A. Pignotti, ibid. 180, 1525 (1969);184, 1915 (1969);
G. F. Chew and W. R. Frazer, ibid. 181, 1914 (1969); P. Ting,
ibid. 181, 1942 (1969).'I. Caneschi and A. Pignotti, Phys. Rev. Letters 22, 1219
(1969).

equation approach has motivated us to examine this
relationship in more explicit detail. In this paper we
show how the integral equations may be readily applied
to give the missing-mass spectrum in high-energy
inelastic collisions in terms of the forward Leggeon-
particle absorptive amplitude 8,(t; s). The Pieggeon-
particle absorptive amplitude at general momentum
transfer, forward or nonforward, can be obtained by
solving a multi-Regge integral equation. ' ' The pre-
dicted missing-mass spectrum has characteristic proper-
ties which can be tested experimentally. Furthermore,
using the simplified model of a factorizable and co-angle-
independent double Regge coupling, we achieve an
expression of the missing-mass cross section entirely in
terms of two-body cross sections and coupling constants.
This allows us to predict not only the Regge behavior in
energy and missing mass, but also the magnitude of the
missing-mass cross section. The result is appli. ed with
reasonable agreement to "backward" m. +p —& p+X
reaction, ' as production on the end of a multiperipheral
chain. In a later paper, we will examine more explicitly
the formulation and results of the missing-mass con-
tribution from the particles emitted from the central

' K. W. Anderson et a/. , Phys. Rev. Letters 22, 1390 (1969).
9 D. Silverman and C.-I Tan, Princeton report (unpublished).


