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In this paper we study all scattering amplitudes in quantum electrodynamics in the limit s ~co, with t
near or at the two-photon threshold. In this limit, the power of s for a diffractive amplitude with a two-
photon cut is found to be promoted from 1 to -', . The fourth-order electron-electron scattering amplitude is
6rst studied by the method of I"eynman parameters. The method of impact diagrams is next generalized
to handle the more complicated cases. We then apply the new method explicitly to the lowest-order dif-
fractive amplitude for electron-electron scattering, Compton scattering, and photon-photon scattering. A
general case a+b —+ a'+b' is also discussed. We Gnd that the scattering amplitude is now factorized and
the existence of a Regge pole is suggested. This is then verified by a study of the tower diagrams. Thus the
leading singularity in the J plane, while being a pair of branch points for t&0, is a moving Regge pole located
to the right of J=-', as t is near 4) '. The Gribov paradox is thereby automatically resolved.

give uncanceled s(lns)" terms are the ones with n

electron loops. They are illustrated in Fig. 1, and their
leading term has been explicitly evaluated. ' Physically,
the existence of logarithmic factors is due to the
contribution of the slowly moving particles created, and
is directly related to the phenomenon of pionization. ' If
we add up these leading terms over all n, we obtain an
amplitude of the order of s'+'!~'~t" (lns) ' at t= 0, where
n is the fine-structure constant. This amplitude exceeds
the unitarity limit, and therefore cannot be the correct
asymptotic form of the electron-electron scattering
amplitude. Now a perturbation series can always be
made to satisfy unitarity by including more diagrams.
In the present case, we may unitarize the amplitudes
from the diagrams of Fig. 1 by adding the amplitudes
from the diagrams of Fig. 2, as the latter also have
terms of the order of s(lns)", tt = 1, 2, 3, . . ..The sum of
all these amplitudes does not violate unitarity. This
means that for t&0, the diagrams in Fig. 2 cannot be
neglected. We must note, however, that satisfying the
unitarity condition is no guarantee for the answer to be
correct, and the precise asymptotic amplitude for a
high-energy diffractive process is still to be found.

The situation is somewhat simpler in the unphysical
region s —+, t~4X'. We note that the point t= 4X' is a
branch point for the amplitudes of Fig. 1. In fact, as
t ~ 4P, the high-energy amplitude for the m-loop dia-

grams increases dramatically, not so much by some
factor of lns, but rather by a power of s. Speci6cally, at
t=4'A', the high-energy amplitude for the n-loop dia-

grams of Fig. 1 is "promoted" from s(lns)" to s' '(ltns)".
As the amplitudes in Fig. 2 remain to be of the same
order of magnitude and are therefore negligible, it
becomes reasonable to expect that sunnning leading
terms gives the correct answer at t=4X'.

l. INTRODUCTION

*Work supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(30-1)-4101.

t Work supported in part by the National Science Foundation
under Grant No. GP-13775.' H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969).' H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969).

3 H. Cheng and T. T. Wu, Phys. Rev. 182, 1868 (1969).
4 H. Cheng and T. T. Wu, Phys. Rev. 182, 1873 (1969).' H. Cheng and T. T. Wu, Phys. Rev. 182, 1899 (1969).

H. Cheng and T. T. Wu, Phys. Rev. D 1, 1069 (1970).
7 H. Cheng and T. T. Wu, Phys. Rev. D 1, 1083 (1970).

8 H. Cheng and T. T. Wu, Phys. Rev. D 1, 2775 (1970).
~ H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 1311 (1969).

2 2276

~M~VER the past two years, we have made a 6eld-
theoretic study of high-energy diffractive scat-

tering near the forward direction. ' For a two-body
scattering process a+b —+ c+d, the region we concen-
trated on is s —+~, with t fixed at a nonpositive value,
where s is the square of the c.m. energy and t is the
negative of the momentum transfer squared. In this
paper, we shall consider scattering amplitudes in quan-
tum electrodynamics in the region s ~~, with t fixed at
a positive value near 4A.', where X is the mass of the
"photon. "More precisely, t—4X~ will be taken to be of
the order of s '. This is an unphysical region.

Our motivations for studying the present problem are
as follows. Take, for example, the process of electron-
electron scattering. In the limit s —+~, with t&0, the
second- and the fourth-order amplitudes, representing
the one-photon and two-photon exchange processes,
respectively, are proportional to s, and give naturally a
constant value to the differential cross section do/dk. .
There is, in fact, a wide class of diagrams which yields
amplitudes proportional to s. Physically, they give rise
to the two-fireball picture in which each of the electrons
and its created particles move together with approxi-
mately equal velocities, and the scattering proceeds
through instantaneous exchanges of photons. There are,
however, processes which cannot be described by this
picture. These diagrams give amplitudes of the order of
s(lns)", st = 1, 2, 3, . . ..The lowest-order diagrams which
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FIG. 2. Diagrams which unitarize the diagrams in Fig. 1.

Fro. 1. Tower diagrams for electron-electron scattering. The s
channel is from left to right and the I channel is from bottom to
top.

The phenomenon of "promotion" is not entirely
unfamiliar. In potential scattering, for example, it is
known that, if the potential is small and attractive, the
leading Regge pole is near E= —1 when the energy is
away from the threshold, but is at the right of l= ——', at
the threshold. " A similar phenomenon occurs in y'
theory. This will be discussed in some detail in the two
following papers. ""

The contents of this paper are as follows. In Sec. 2,
we calculate the fourth-order amplitude for electron-
electron scattering in the limit s —+ao, with t=4X'
+O(s '). This is accomplished via Feynman parame-
ters. The method of Feynman parametrization is not
convenient when the order is high, and in Sec. 3 we

generalize the impact-diagram method for this purpose.
In Sec. 4 we apply the new method to various scat-
tering problems. In Sec. 5 we apply this method to the
tower diagrams of Fig. 1. Finally, in Sec. 6 we discuss
the physical significance of our results. A summary of
this and the two following papers can be found
elsewhere "

~1 31tll+ Dltls 1 (2.1)

2. FOURTH-ORDER ELECTRON-ELECTRON
SCATTERING

Ke begin the investigation of threshold behavior in
quantum electrodynamics with the simplest nontrivial
case, namely, fourth-order electron-electron scattering
as shown in Fig. 3. Let P be the mass of the photon,
assumed to be nonzero throughout this paper; then the
total contribution of these two diagrams is' '

where

C~(P2)7.(—0+»+m)V.N(P1)X~(P2'b. (~+»+mb N(P1')j
DR11———ie4(22r) ' de (2.2)

L(r2 —g) —m'+is jL(rl+g) ' —X'+iegL(rs+g) ' —m'+ isjL(rl —q)
'—X'+is)

L24(P2)v ( 0+ 2+m)v N(Pl) jLN(P2 )'y ( g+ 3+m)7 N(Pl )j
ÃZ12 = —ie4(22r) —4 d4Ct (2.3)

1 ( 2
—q)' — '+ .jt (,+q)' —X'y 'ejL(rs —g)' —m'yiejL(r, —g)' —Z'giej

Since the metric used here is (1, —1, —1, —1),

t= (Pl —P2)'= (Pl' —P2')'

is nonpositive in the physical region. In obtaining the asymptotic behavior as s ~ac with t&0, the numerator is
6rst simplified. This simplification holds for all t. By (2.11) and (2.18) of Ref. 3, (2.2) and (2.3) reduce, for j=1, to

(1—nl) (1—n3) Ci(1 n 1 n2 n3—Q4—)—1

ÃLl e (42r) S m 31281 2 dnldnsdnsdn4
0 f—(—1)4nlnss+nsn4t —(nl+ns) m —(Q2+Q4)X +2ej (2.4)

for s —+~. It is thus observed that the presence of
numerator factors has mainly the effect of multiplication

IR. G. Newton, J. Math. Phys. 3, 867 (1962).
"H. Cheng and T. T. Wu, 6rst following paper, Phys. Rev.

D 2, 2285 (1970).
'~ H. Cheng and T. T. Wu, second following paper, Phys. Rev.

D 2, 2298 (1970).

by s', and otherwise does not affect the threshold
behavior.

Consider first the case where t is at the two-photon

'~ H. Cheng and T. T. Wu, Phys. Rev. Letters 24, 759 (1970).
"The terms 5t|:» and 5tt;» correspond, respectively, to 5K& and

5';~ of Ref. 3. Otherwise the notations here are the same as those
of Ref. 3.
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(ru+q S qi) and hence

f2+ q

( or, r1)

&a)

q

(-ol
~ r1)

(-or, r, )

OR1 ~~e (162r) )1 'm 's'~%1281 2

X{-'2i2r(T+1—i2)»' —(T+1—ie) '"
Xin[(T—ie)»'+ (T+ 1—ie)»')
+(T—1—ie) 't'

Xin[(T—ie)»'+ (T 1——ie)»2) }. (2.12)

Equation (2.12) gives completely the asymptotic be-
havior of BR~ near the elastic threshold.

(-(u-q s- qj)

FIG. 3. Lowest-order diagrams for electron-electron scattering
with a two-photon cut in the t channel.

threshold. More precisely, we want to study the be-
havior of 5lY~I and BR» as s —+~ with t=4x'. Let

then

and

ni =ni'X2/s ) n2= n2')12/s,

n, = —', (1+)x/Qs);

n4--,'(1—Xx/Qs)

(2.5)

(2.6)

ORlj~e (42r) ~ s m b12bl'2' rinl dn3 d+

X[—(—1)'ni'n2' —(ni'+n2'+~')+«) '. (2.&)

Explicit integration then gives that, for large s with
t=4X',

and hence

~$] 32e iX ~ s

BR» 3 ~ e9 m s'~'8igby 2. ,

DR1 22e (1+i))1 m s ~ 81281~2~.

(2.8)

(2 9)

Note that, for t=4X', the asymptotic behavior of 5R&I

and BR» differ by a factor i, and hence there is no
cancellation when added together. This is in marked
contrast with the corresponding situation for t/4X',
where the leading terms of 5K~~ and BR» cancel each
other (see Sec. 2 of Ref. 3).

The generalization to the case where t—4X' is of the
order s ' is inonediate. Let

3. IMPACT DIAGRAMS NEAR THRESHOLD

The calculations performed in the preceding section
are based on Feynman diagrams. Now we know that
Feynman diagrams are not particularly convenient for
calculations of high-energy processes. It is therefore
desirable to generalize the method of impact diagrams
to cover the unphysical case when T given by (2.10) is
fixed and s —+. This generalization will prove espe-
cially useful in handling higher-order diagrams in the
later sections.

Since promotion occurs only to diagrams with two-
particle cuts in the t channel, we shall concentrate on
such diagrams. In particular, the notation of black dot
in impact diagrams will not be used. For the same
reasons as discussed in Ref. 6, we shall perform the
calculations with pre-Feynman perturbation method.
Consider, for example, the scattering process a+b ~
a'+b'. We first draw a diagram for the process. This
diagram is not a Feynman diagram, as time is always
increasing from left to right. It is also different from an
impact diagram as there are no black dots, and the
interaction between a and b is mediated by the exchange
of photons. The propagators for the two exchanged
photons, with four-rnomenta ri+q and ri —q, respec-
tively, are [(ri+q)' —)1 +ie) ' and [(ri—q)' —) '+ i2) ',
respectively. Let us assume that the photon of mo-
mentum ri+q is the first one to be exchanged. Then the
energy propagator for particle a after this exchange is
given by

~.+(.,+q).-~.={[('+ .'+~.')"'+( +q).)
—[Z(~'P'+p' '+m'')"'+(ri+q) 2)} '

—{(2r112+M'.2+35.') (4o1)-'

Z(p'. '+m'')—/(2 0')+ +q}i'
where

(3.2)q-= qo
—q3.

(2.10)t=4) 2(1—) 2T/s);
$n (3.1),or and ri, are, respectively, the longitudinal and
transverse components of the spatial momentum of a,
and i denotes a particle in the intermediate state e, i.e.,

then, when s —+~ for Axed T,

(3.3)1 7

(3 4)Q p;1=111 0,

BlZ11 e (162r) 9. 'm 2s@'812512 (T+1—ie) '~'

X {21i2r—)n[(T—ie)»2+ (T+ 1—ie)»2)}

OR12 e (162r) X m 's'r'8»81 2 (T—1 ie)—4 —1 —3 —2 3 2
(2.11)

Xln[(T—ie)'~'+ (T 1—ie)'~')—
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since, as we shall see, q& is of the order of ~ '. Note that where
we have made use of"

I(x)= (4qr) '(-,'zqr(x+1 —zp) "'—(x+1—«) "'
L(x—z.)'~'+(x+1—z )'"j+(x—1—z ) "'

X in((x —ie)'~ + (*—1—zp)"'j} (3 13)

(3.14)I(0)=-', (1+i).

The derivation of (3.13) is presented in Appendix A.
One point is worth mentioning: An inspection of the
integrand in (3.12) shows that q+, q, and q, are all of

(3.7) the order of pp '.

rip —rip= (4pp) '(M 3I—, ). (3.5) Xln
If the photon of momentum r~—

q is the first one to be
exchanged, the corresponding energy propagator is
equal to (3.1) with q replaced by —

q . Adding up these
two terms, we get

Similarly, from particle b we get a factor

where

and

—Vp)—'Bf-,'l).4p) '(8—ie)' —q '7 '

q+= qp+qz

(3 8)

g p,'i 0. (3.11)

At this point it is probably desirable to compare the
above equations with those based on impact diagrams.
In the latter, Eqs. (3.6) and (3.7) are approximated by—2qritI(q ) and 2m'�(—q+),

. respectively. These ap-
proximations fail at t= 4A.', since the resulting scattering
amplitude contains the integral J'dq, L(ri+ q, )'+l).'] '
XL(ri—q,)'+l)'j ', which is divergent due to the inte-
gration region qi 0, q, 0, qi=0(qzz), where qi is the
component of g& in the direction of r~&, and q2 that in the
other transverse direction. Thus, the orally modification
of the impact-diagram rules needed is to recover the
energy denominators (3.6) and (3.8), and integrate over
dqq. Since q is of order O(co '), we may neglect q as
compared to unity everywhere. In particular, we may
set q=0 in all factors in the scattering amplitude,
excluding the factors (3.6), (3.8), and the two photon
propagators. Thus, to obtain the high-energy amplitude
with T Axed, we only need to make the following re-
placement after applying the impact-diagram rules:

(2qr)
—z dqi P(ri+q, )z+gzPi

X L(ri —q,)z+l), zg
—' —& —(2qr)-4&4' —zA pl

X dqidq+dq L(ri+q)' —l).'+iel '

&=& 'I Q(Pri'+zrzr')/P, +X'—-', (AERY'+dldIz'). (3.9)
3

In (3.9), j' denotes a particle in the intermediate state
after one of the photons is exchanged, i.e.,

(3.10)

4. APPLICATION TO LOWEST-ORDER
DIAGRAMS

In this section we shall apply the method developed
in the preceding section to the lowest-order amplitudes
of (i) e+e —+ e+e, (ii) e+y —+ e+y, and (iii) y+y ~
y+y, valid for s-+~ with T fixed.

A. Electron-Electron Scattering

The diagrams we shall consider are illustrated in

Fig. 3, and the corresponding amplitude has been
calculated in Sec. 4 with the help of Feynman parame-
ters. We shall now do the calculation with the new
method.

Applying the impact-diagram rules, we obtain this
amplitude as

qq&& &ds(2 )
—'(d'-)&fdq, -)(r&+q, )&+lgj

X((ri—qi)'+&'1 ', (4 1)

valid for t/4A. . An inspection of Fig. 3 gives

(4.2)

thus, when T is fixed and s —+pa, (4.1) and (3.12) give

BRi~ ) sz)zd) z(8')zI(T). (4.3)

Equation (4.3) is precisely (2.12).

B. Comyton Scattering

Next we consider the scattering of a photon from an
electron. For simplicity, let us take the mass of the
external photons to be zero, while that of the exchanged
photons remains X." When t is away from 4X', the
scattering amplitude for Compton scattering in the
sixth order is given by

zs(2~) ' dqi L(ri+q. )'+l).')-'

XP(ri —q )'+lq'j —'8'8» (4.4)Xt (ri —q)' —X'+ipse-'L-,'X'p)—'(A —zp)' —q 'j '
XC -,'Xqp) '(8—ie)' —q~'j—' where 8» is the photon impact factor given by (3.15) of

—is'~9 '(AB) ')'I(T//AId), (3.12) Ref. 6. When T is fixed and s —+~, the sixth-order

'~ See, for instance, Kq. (2.11) in H. Cheng and T. T. %u, Phys.
Rev. D 1, 459 (1970).

For the more general case in which the external photons also
have mass, see Ref. 15.
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Compton scattering process is represented pictorially by and
the diagrams in Fig. 4. An inspection of Fig. 4 gives

Thus
(4 6)

2 =X '(y, '+m')P —'(1—P) ' (4.5) gg(c) so/2y 2J—e~(T) (4.7)

where

J'&(T) =—'(22r) 'e'd' dy dp I(T/A)A —"'((yl+prl)'+m'1 '

with

pro ' TrLy;( —pl+m)y;(p2+»1+m)&o(p2+m))
X

(y, —prl)'+m'
—',ol-' Trt 7 (pl'+m) yo( pl —rl+—m) y;(p2+ r1+m)yo(p2+m) )

(4.8)
(y,+(1—P)rl)'+m'

and

r2 g2
7

yl = (poo~y&1 ~

(4.9)

(4.10)

y =t:(1—P), —rl —yll. (4.11)

In (4.8), i and j denote the polarization of the incoming and the outgoing photons, respectively. Alternatively,

(4.8) can be written as

Jg (7T) 1 2~4@6 dy dp 1(Trop( 1 p) (y 2+m2) l)/pl/2( 1 p) 1/2(y 2+m2) 1/2((y +pr )2+m2+1

8;,Porlo+2P(1 P)(Pl—,Pl; P2r»r—l;) 8;;(2 —P) rl'+2P(1 —P)((P1+2rl);(P&+2rl); —(2 —P)'r»rl; j
(y pr )'+m' Ly,g(1—p) r,)2+m'

(4.12)

with (4.9) understood.

C. Photon-Photon Scattering

%hen I is away from 4X, the scattering amplitude for photon-photon scattering in the eighth order is given by

is(22r) ' dqlL(rl+q)'+&'$ 'p(rl —
21 )'+&'j 'Lp'1(rlgl)$' (4.13)

%hen T is fixed and s —+~, the eighth-order photon-photon scattering process is represented pictorially by the
diagrams in Fig. 5. An inspection of Fig. 5 gives

Thus

where

g—2(y 2+m2)P —1(1 P)
—1

8=X
—'(y "+m')P'-'(1 —P')-'.

9R&»& so/9 'J»(T)

(4.14)

(418)

(4.16)

0 0

&'i(2 p)'rl'+2p(1 p) L(pl+2 "1)'(pl+22'1)r (2 p)'2'»2'1 3—
Ly.+(1-P)r 3'+ '

8;,p'rl'+2p(1 p) (p„p„—p'2»r 1;)—
X

(y, —pr1) '+m'

~'; p'" '+2p'(1 p')(p."p -p'".",')-
X

T»(T) = '~ ohio dy, dy, '
dP d-P'-1(TZ-'a-1)(aa)-1/2t (y,+Pr,)'+m P'L(y. '+P'r, )2+m $-

with (4.9) understood.

(yl' —p'rl)'+m'

~; r (', p')'rl'+2p'(1 p-')—t,(p~'+orl); (p,'—+2ra)s —(2 —p')'r» rl; 7

Lyl'+ (1—P')rlj2+m2
(4.17)
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D. Summary

It is clear from the above examples that for a process a+fan —+ a'+b', the scattering amplitude in the limit s b~,
with T fixed is iven b

(4.18)

T 0, we have
OR ""')- 'sit'(-1 +i)X 'I-—'I" (4.19)

where I"' can be obtained by first writing down d~" (ri,O) in integral form and then multiplying a factor A '" to
the integrand. In particular, if a and a' are both the electron, we have

I"=e'(2m) '&ib (4.20)
and if u and a' are both the photon, we have

g ~ (Nb, u'b')~sb/2) —3Jaa'. bb'( T)

where J "bb'(T) can be obtained by first writing down d '(ri, O) ebb'(ri, O) in integral form and then multip ying
a factor I(TA '8 ') (AB) 't' to the integrand, where 8"'(r&,q,) is the impact factor for a to a'. At the threshold

I»= —iiir 'e9, dpi dp p't'(1 —p)'t'(pi'+m') 't'L(pi+pri)'+m') '

b;,p'r, '+2p(1 p)(p„p„— p'r»r») — 6,,(-',—p)'ri'+2p(1 —p)L(p, +-,'ri);(pi+-,'ri); —(-',—p)'r»rij)
X

(p, —pri)'+m' Lp.+(1—p)r )'+ '

with (4.9) understood.

(4-'1)

+p,]

[()-p
I

PJ](

)i r)

We note in (4.19) that the coefficient of sbt' for
5Ki( " ') is factorised into afunction of a and a' times a
function of b and b'. It suggests that the corresponding
singularity in the J plane is a Regge pole. We shall
study this in more detail in the following sections.

We also emphasize that in the above discussions, a or
a' can be multiparticle states. Thus our treatments
apply to production processes as well.

S. TOWER DIAGRAMS

We shall now proceed to examine higher-order dia-
grams in the limit s~~ with T Axed. We shall start
with the simplest process of electron-electron scattering.
What kind of diagrams shall we consider& There are
many higher-order diagrams which give an amplitude
satisfying the impact-factor representation when t is
away from 4X'. They can be handled exactly as in the
preceding section, and the amplitude in the limit s —+~
with T fixed is, in fact, always in the form of (4.19).The
lowest-order diagrams which give an amplitude not
proportional to s are those illustrated in Fig. 6. They are
the lowest-order diagrams for electron-electron scat-
tering with one electron loop. For 3 away from 4X', the
scattering amplitude from the sum of these diagrams
gives the amplitude

is lns(2ir) —' dq dq&' (8')'E(q&,q&', ri)

[(1-p) cu,

[p, ~]

,
)i[(1-P)(u,—pg ~

r &&

etc.

XL(»+q.)'+&'?'L(r —q )'+) '?'
XL(ri+qi')'+X'?'L(ri —q')'+)). ')-', (5.1)

where E(q„q,',ri) is given by Eq. (2.14) of Ref. 8. At
t=4)i', the integral in (5.1) is again divergent, both at
q& =0 and at q&' =0.We must apply the rules in Sec. III
to take care of this situation.

From Fig. 6 it is clear that we should make the
replacement

[-~, o] [- =~] (2ir)—' dq&'L(r&+q, ')'+X')-'
Fro. 4. Lowest-order diagrams for Compton scattering with

a two-photon cut in the t channel. Xf(ri —qi') '+Z')-' —b —is't'). 'A 't'I (T/A), (5.2)—-
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[~, -r,]

Ip- —.] [p~ ~1 ~l] approximation is not valid as (»+q, )'+) ' is also very
small when gj is small. Thus in the present case, we
must make the following replacement in (5.1):

[(I-P)~, —r(-p,]

[-(I-P')~.

11

ct I)
I)

II

p) Gal pg

[-(I—p')&u, pz ]

(»~q~)&+)P ~ (»~q~)&+/&

+pL(q.'+ )/(1-P.-P.)-("+ )7
q22& 2r1q~+»2+X2+ jPp (5.6)

Finally, we remember that lns was obtained from

[- I]

p
—'dp lns. (5.7)

[-p' -»I —4U, -pg- rt
Thus p is at least of the order of co '. For t given by
(2.10), we may therefore neglect »2+X' in (5.6). Thus
we shall make the replacement

(21r) ~ dq~ P(rz+q1) ~+&~7

Xp(r1 —qi)'+X'7 '~ (21r) '
dq&dq&

etc. X (q2'+2rq1+) 'p) '(q, '—2rq,—+X'p)

=IX 'p '~'. (5.8)

From (5.1), (5.2), (5.4), (5.8), and Eq. (2.14) of Ref. 8,
we get

FIG. 5. Lowest-order diagrams for photon-photon scattering
with a two-photon cut in the t channel. 5K, (— )-,'(1+i—)s'I' -lns X-'(0')'z (5.9)

where

A-~ (P +P )P-'P. '(p'+-')- (5.3)

In (5.3), we have made the approximations p1 ')&1,
p2 '»1& and )q1, («~p, (& which hold in the dominant
integration region. Let us put

P~=p~, P2=p(1 —~);
then

[(P)+P2)~, r&-qJ

[P, , =, —

[(I-P)-Pz) ~. ~i]

, +p, )~, r„-~,]

A X Lpx(1 —x)7 '(p, '+m') .

Next we must make a replacement for

(5 4)
[&u, o] [' "11

de, E(»+q1.)'+)1'7 'L(» —q1)'+X'7 '.

We remember that the factor L(»+q)'+X'7 —' was ob-
tained by approximating the propagation factor

L(»+q.)'+) '7/(pi+ p2)

+ (q '+m')/(1 —Pg —P,) —(rP+m') (5.5) etc.

I ( +q.)'+)'7/(p+p)

This approximation was made with the justification
that P~ '&)1, P2 '&&1. However, in the present case, this

Fxc. 6. Eighth-order tower diagrams for
electron-electron scattering.
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where

c=-,'(2n)-9,—'e4 dpz Cx Lx(1—x)j'~'(y, '+m') '~'Lp, '+m' —xX'+2xrq y~j-'

(yP+m')(yP+X'+m') (y, '+m')(y, '+X'+m')+2(p, r,)-'+2(p, '+m')y, r,

y&'+m' —xX' —2xrz. p& pg'+m' —(1—x)X'+2(1 —x)rg pz

with r~'= —X'. Notice that 5R~( ~ is independent of
T. In Appendix 3 we shall show that sc is positive if
X'& nF. '~

Next we consider the e-loop diagrams illustrated in
Fig. i. Repeating the same arguments as above, we
easily get

and

5R~+g~ ~ g~(1+i)r szl'(lns) ~/zz!)& '(z'J')'z~ (5.11)

'=Q DR ' ~= '(1+—z)X '(d')'s'I'+" (512)

Extension of the treatments above to a general
process a+b -+ a'+b' is also trivial. We get

way to study the promotion. For instance, our argument
shows that the diagrams which generate the fermion

Regge pole" are promoted from s"' to s at i= (M+X)',
where M is the mass of the fermion. Thus the fermion

pole is in the neighborhood of 1=1 at t= (M+&)'. On

the other hand, no promotion occurs on a three-

particle threshold.
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APPENDIX A

OZ~" "'&--', (1+z)X-'I-'I»'s'~+ . (5.13)

Equation (5.13) shows that the leading singularity in
the J plane for t 4P' is a moving Regge pole with
factorizable residues.

6. DISCUSSION

We discuss the significance of (5.13).Equation (5.13)
shows that when t is near 4)P, the leading singularity in
the J plane comes from the tower diagrams and is a
moaizzg Regge pole located to the right of J=-', . Our
previous calculations indicate that for t& 0, the
leading singularities in the J plane are brazzclz points with
ReJ=1. These branch points start to move when t is
positive, " and for some t between 0 and 4X' a Regge
pole emerges from the second sheet through one branch
point and moves ahead. At 3 =4K', this Regge pole is in
the neighborhood of J=

~ if the coupling is weak, and is
further to the right for strong couplings. This is sche-
matically plotted in Fig. 7.

Gribov" argued that the scattering amplitude cannot
be of the form sf (t) when t is above the elastic threshold.
Apparently, the promotion phenomenon guarantees the
scattering amplitude to be at least of the order of s'~' at
1=4''. Thus Gribov's paradox is trivially resolved.

Promotion always occurs when t is at a two-body
threshold. What we have found here is a diagrammatic

~' We must remember that we are studying the scattering ampli-
tude at t~4X2. If X~&m', then 4X' already exceeds the lowest
threshold and g is complex.

SA detailed discussion of this point will be contained in
H. Cheng and T. T. Wu, Phys. Rev. (to be published).

'9 V. N. Gribov, Nucl. Phys. 22, 249 (1961).

In this appendix we derive (3.13) from (3.12).
Let us take the x axis to be in the direction of r~& and

denote r» r~,e„q,=qz——e,+q,e„. We shall make the

approximation

L(rg+q)' —X'+is]L(r, —q)' —X'+ie$

-L(r,+q)+(r,+ q) —r,.z —X —qz' —2r,.m+zej

XDrq q)+(rq q)— ru, ' —X' —qz'+2—rq, q—x+ie$. (A1)

In both of the factors in (A1), a term qP has been

neglected since q& is of the order of s '. Thus carrying

J'
3L

3
2

t
I

4V

FIG. 7. Schematic plot for the Pomeranchuk singularity. The
dotted line represents the position of the real part of the branch
point, and the solid line represents the position of the Regge pole.

"M. Gell-Mann, M. L. Goldberger, F. K. Low, E. Marx, and
I', Zachariasen, Phys. Rev. 133, 3145 I'1964); H. Cheng»d
T. T. Ku, ibid. 140, 8465 (1965).
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out the integration over q& and q2 successively, we get Putting

dq. P(ri+q)' —&'+i.)-'P(ri —q)' —& '+i.j
~+——~2@s-&12N (A4)

(A5)

-,'7ri(r&&) ' dq2 [ q+q
—-,'t+—h'+q2 i ej—'

we reduce (A3) to the right-hand side of (3.12):

iX '—s'~'(AB) 'I'I(TA 'B ')
with

,'7ri (r-„) 'P —
q+q

— ',t+—V ieP—"'
E(x) =-,'i(2s.)-' dude L

—m+x —i&1-'~'—'s'X 'L —
q q +X4T//s iej-"—'. (A2)

The left-hand side of (3.12) is therefore approxi-

mately equal to

e (2s.) 'X'M 'AB dq dq f—
q+q +X'T/s Zej—

)&P,4(Q i&) /z q—3 LX4(B i&) 2!e q+ j ~ (A3)

y (1 —u2 —je) ~(1—w2 —ie) (A6)

Equation (A6) gives (3.13) after standard integrations.

APPENDIX 3
In this appendix we shall show that ~ is positive, if

P«m.
From (5.10), we have

K=-,'(2%.) 9. 'e' dyJ. dx Lx(1 —x)]"'(y|'+m') "'

where

N y~)
X (81)

(pi'+m' Xx+2—2 rx& y,){yi'+m' xX' —2xr,—y, )(yP+m' —(1—x)X'+2(1—x)r& yij

N (P&) = (p,'+m') (p,'+) '+m') Ey,'+m' —(1—x)X'+2 (1—x)r, .p,j
—f(y '+m') (p '+X'+m')+2(y, rg)'+2(p, '+m') (y, rg) 7(yP+m' —xX' —2xrg yg)

= —(yJ'+ m') (yJ'+ m'yX')X'(1 —2x)+ 2ry yJ (pJ ym')X~(1+x)
—2(rg y )'L(1—2x) (p '+m') —xX' —2xrg p,7. (82)

Since an odd function of p& in the integrand of (81) is integrated to zero, we can symmetrize the integrand of (81)
to obtain

~ =-', (2s.) 9.—'e' dp~ dx Lx(1 —x))'"(y '+m')-'~'

X--- (83)
L(y 2+m2 x/2)2+4x2$2pl2j( Lpl2+m2 (1 x)$2j2+4(1 x)2$2p12)

where pq is the component of p~ in the direction of rq,
and where

z, =-'N(p )pp '+m' —(1—x)X'—2(1—x)r& y,)
+-,'N( —y,)$yP+m' —(1—x)),'+2(1—x)r& y,j

= —(p,'+m') (p,'+m +X')X'(1—2x)

&&Ly,'+m' —(1—x)X'j
/2X'p, 'L(1 —2x) (y, '+m') —XX'j

Xgp 2+m' —(1—x)Zq

+4$4pP (y 2+m2) (1 x2) —gx(1 x)$4p 4 (84)

Since all factors except K in the integrand of (83) are
symmetrical with respect to x ~ (1—x), X is further
reduced to

%=2(-' —x)'(y '+m')(p, '+m'+X')X4
—4(2 —x)2pP(pP+m2)P, —),4PP(y 2+m2)

+2x(1—xy6pP+4$4pP(p '+m )
&& (1—x2) —gx(1 —x)X4P,4

=2(-' —x)'(p '+m') (p '+m'+)')X'
+Sx(1—x)p&'(p22+m')) '+2x(1—x)p&9 ', (85)

where p2 is the component of y, in the direction per-
pendicular to rq. From (83) and (85), we see that z is
greater than zero. Note that, if X)m, the integral (83)
is divergent at p~=0 and x= (m'+p2')/X' as well as at
pr =0 and 1—x = (m'+ pP)/) ', in the region p22(X' —m'.
Thus ~ must be dehned by analytic continuation of
X2&m'.


