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The question of size and contraction of size at high velocity is considered in the context of particle physics.
Size is de6ned through a simultaneous interaction with an external potential. To second order in the external
potential, one is led to consider matrix elements of the form (p ~

jp(x, x&,0)jo(0)
~
p). For large p such matrix

elements are found to approach ph(xi)F(x) if there are no Regge singularities at J=1 when t=0 If the.re
are such singularities at J=1 when t=0 and if they recede below J=1 for negative t, then matrix elements
analogous to the one above, but for t(0, approach b(x8) at high velocity. F (x) is related to the residue of
a wrong-signature fixed pole at 7= 1 in a virtual Compton amplitude. F (x) is also shown to be equal to the
second-order impact factor in the operator droplet model. These results are then generalized to an arbitrary
number of interactions with the external potential. More singular interactions, where the above analysis
breaks down, are considered. It is found that for a certain strength of singularity on the light cone, the
particle size may shrink to zero at high velocities. In a large class of models which give the scaling law for
deeply inelastic electroproduction and have a constant asymptotic total cross section for electroproduction,
it is found that the particle size does not shrink. A converse statement is also found, in that a simple argu-
ment shows that if electromagnetic particle size at t =0 shrinks, then the total asymptotic electroproduction
cross section vanishes at high energy.

I. INTRODUCTION

HE idea that the "shape" of a particle may con-
tract into a thin disk at high energies' can be

based on a classical analogy. For suppose two, or more,
simultaneous localized measurements of a static classi-
cal object are made in a 6xed reference frame. (We
take the direction of motion of the static object, 0, to
be the s direction. ) Then as the velocity of 0 approaches
the speed of light, these simultaneous measurements
will give a null result unless they are made inside a
thin disk whose width is the static size of 0 along the
s direction in its rest system times (1—ti'/c')'~'=y '.
This is easily seen. Suppose the two measurements in
the laboratory system occur at points in (t,s) at lp = (0 0)
and lt (O,si). Then i——n the rest system of 0 the measure-
ments take place at ls' ——(0,0) and lt' (—pest, est), ——
where the velocity of light is taken to be unity. Now as
n approaches 1 we see that the two measurements occur
farther and farther apart in the rest system of 0 and
thus must give a null result unless s1 is less than the
size of the object times p '.

If 0 is not static, ' the situation is somewhat more
complicated. If the motions of 0 are bounded, that is,
if 0 can be put inside a static sphere of any 6nite size,
then the arguments used above apply, and again a
contraction in size occurs at high velocity. If,&however,
the motions are unbounded, no general statements
about contraction can be made. In the fo/lowing, when
we deal with size in particle physics, we shall say that
size contracts into a thin disk at high velocity if that
size behaves essentially as the size of a static classical
object of finite dimensions at high velocity.

For the case of particle physics we shall discuss the
question of size in terms of an external potential. Thus

~Q"ork performed under the auspices of the U. S. Atomic
Energy Commission.' T. T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968).

when asking a question about the electromagnetic size,
an external electromagnetic potential A„ is introduced.
Simultaneous interactions are obtained when A„(x) -+
8(xs)a, (x) for two or more interactions with the external
potential. As an example, take the scattering of a charged
scalar meson of momentum p off an external potential.
To second order,

f(p) = i d4xd4y 3II„„(—p, x —y)A, (x)A„(y),

where
~„,(p,x) =(pl r(j,(x)j„(O))I p&,

and p is taken along the s direction. If Ap(x) ~ 6(xp)
Xas(x), then (P I js(xi, x&,xs,0)js(0) I P), which appears in
the integral for f(p), is the amplitude for simultaneously
finding charge density at the points (xi,xs,xs) and (0,0,0).
If that equal-time matrix element does not exist, then
the interaction is too singular to permit simultaneous
interaction with a potential which is not smeared in xo.
Q'e shall not discuss this case in detail; however, ex-
amples where this singular type of interaction occurs
will be given in Secs. IV and V. Note, also, that when we
say an equal-time matrix element is divergent or does
not exist, we mean that its singularities in (xt,xs,xs) are
too severe to allow an integration with a test function
without regularization.

As will be shown in Sec. II, the above equal-time
matrix element decreases exponentially with (xt'+xs'
+xs')'l', showing that the particle labeled by I p) does
have a finite interaction size in any reference frame.
Furthermore, in that section it will be argued that if
high-energy oR-shell Compton scattering at t=0 is
governed by Regge poles or other singularities in the
angular momentum plane where the leading singularity
is below J= 1 at t= 0, then particle size will contract at
large P. That is, the matrix element (P I js(xt,xs,xs,O) jii(0)
Ip) will give a negligible contribution to f(p) unless
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lx, l
& 1/p for large p. In fact, that matrix element will

approach pb(xo)F(x), wherex=(xi, xs). Even if there are
singularities at J=1 when 3=0, if these singularities
recede below J= 1 at negative t then matrix elements
like (pl jp(x,xp,0)jo(0) I

p') will approach a 5 function in
xp when pp and ps' both go to infinity with (p —p')'= t

6xed. In subsequent sections we shall only deal with t =0
explicitly. But whatever we obtain for t =0 when n(t = 0)
(1 will, in general, be true for negative t, and if the
Regge singularities move with t we can answer the t(0
question in general even if n(0) =1.

Also, in Sec. II, we show that the F(x) mentioned.
above is the two-dimensional I ourier transform of the
residue of a wrong-signature nonsense fixed. pole at J= 1
in a virtual Compton amplitude. "Further F(x), will be
seen to be equal to the impact factor which occurs in the
operator droplet model. 4 ' In fact, we shall show that the
scattering of our scalar meson off a static external po-
tential occurs according to the S matrix of the operator
droplet model to second order in the external potential
but to all orders of the hadronic couplings.

The connection of F(x) with fixed poles shows
the necessity of coupling the external potential to
a vector current. ' It is possible for a matrix element

(pl j(x,xo,0)j(0) I p) of scalar currents to contract, to a 5

function of xs for large p; however, in that case the scat-
tering off an external potential to second order will de-
crease with p rapidly for large p whether or not the po-
tentials emits only at xo ——Q. It is possible to understand
this in a very simple way. In the scattering off an ex-
ternal potential by the exchange of two spin-1 particles,
the matrix element of the two currents between the
initial and final scalar meson states has a wrong-signa-
ture fixed pole at J= 1, as we have mentioned. The two
orders of the external potential also have a wrong-
signature Gxed pole at J= 1 which gives a fixed pole in a
sense scattering amplitude of the meson off the potential.
This fixed pole in J exactly accounts for the constant
asymptotic cross section. If the currents are not of a
vector type, the fixed poles will be at J=O or lower
depending on the nature of the currents.

In Sec. III the results of Sec. II are extended to an
arbitrary number of interactions with the external
potential. In order to achieve this, it is necessary to have
a formalism for multiparticle amplitudes on which it is
convenient to do an 0(2,1) analysis. Such a formula is
developed in Appendix A. Matrix elements such as
(p I T(jp(xi) jo(xs) jo(0)) I p) are considered at large values
of p and found to approach p5(xio —xio)6(xso —xos)

XF(xi,xs). By going to xip ——xsp
——0, one again sees that

~A. H. Mueller and T. L. Trueman, Phys. Rev. 160, 1306
(1967).' H. D. I. Abarbanel, F. E. Low, I. J. Muzinich, S. Nussinov,
and J. H. Schwarz, Phys. Rev. 160, 1329 (1967).'T. T. Chou and C. N. Yang, Phys. Rev. 1'75, 1832 (1968).

5 B.W. Lee, Phys. Rev. D 1, 2361 (1970).
6H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969); 182,

1868 (1969); 182, 1873 (1969); 182, 1899 (1969); 186, 1611
(1969);Phys. Rev. Letters 23, 670 (1969).

particle size contracts under similar assumptions as»
Sec. II. F(xi,xs) is again related to a fixed pole at 1=1
and is also seen to be the third-order term in the expan-
sion of the S matrix in the operator droplet model. The
third-order term for the scattering off a static external
potential is thus shown to obey the operator droplet
model.

Also in Sec. III it is observed that the complexity of
matrix elements of the type

&PIT(j. (xi)j"(»)" j..(x-)j...(0)) I p)

is no more than that for the three current case. Thus
one obtains

(pl T(j„(»)j.,(xo) j,„(x )j,„„(o))I p) ~
p8(x10 x13)X5(x20 xso)'''

X5(X p
—X p)F(xixs, . . . ,x )

for large p. We see that electromagnetic size contracts
for n+1simultaneous interactions. Again the coeKcient
F(xi,xs, . . . ,x„) is related to a fixed pole at J=1 in a
multiparticle amplitude. The operator droplet model is
derived to the n+1 order for scattering off a static ex-
ternal potential, with F being the impact factor to this
order.

In Sec. V more singular interactions are considered for
the case of scalar currents. It is found that if the singu-
larities of (P I T(j(x)j(0)) IP) on the light cone have a
strength (x') ~ ', then for y& ——,'the interaction is too
singular to define scattering by a scalar external po-
tential which approaches a 5 function in time. However,
for —1&y& ——', it is found. that (pl j(x,xo,0)j(0) I p)
approaches V(x)8(xs) for large p. That is, the particle
shrinks to a point at large p. It is then shown that the
rate of decrease in p of f(p), the amplitude for scattering
off an arbitrary external potential, and the rate of de-
crease with p of j'd'x e"*(plT(j(x)j(0))l p) for fixed q
are related to the strength of the singularities in x of the
operator product j(x)j(0) as x„~0. One result of this
last result is that the rate of decrease in p should be
independent of the momentum transfer of the
scattering.

In Sec. V the question of the behavior of the matrix
element of the time-ordered product of two electro-
magnetic currents is again considered for the case that
the integrals in (2.10) and (2.13) do not exist and hence
the arguments leading to contraction of particle size are
no longer valid.

I'or a large class of models which obey the scaling law
for deeply inelastic electroproduction and have a con-
stant asymptotic total cross section for electropro-
duction, ~ it is explicitly shown that particle size does not
contract with the velocity of the proton. That is, at
high velocity, regions of I xoI &X/p for any fixed X in

(pl jp(x, xs,0)jp(0) I p) are dominant in the scattering oR
an external potential A~(x) = 8(xp)as(xixs) at large p.

7 R. A. Brandt, Phys. Rev. D 1, 2808 (1970).



PARTICLE SIZE AND CONTRACTION AT HIGH VELOCITY 2243

A converse statement is also possible. Suppose the Further, at this point consider only the 1i=0 component
equal-time matrix element contracts in xp to a disk whose of A„and choose A p(x) = h(xp) ap(x, xp), where x= (xl xs)
size is 1/p. By relativistic invariance this means that is a two-dimensional spacelike vector. Then
(P I T(jo(x,xs,xo) jo(0)) I P) becomes nonzero only for

xp —xpI &1/p. Consider the amplitude
f(p) = i—d'xd'y Mpp(p, x—y)

sp=0; @0=0

Mpp —— i—d4x e'o*(PI T(jo(x,xp, xp) jo(0)) IP)

at large p. Write

(P I &(jp(x) jo(0)) I P) =PoPod(P. »x')+ ".
Then

I
xp —xpI & 1/p means that d(p x,x') is independ-

ent of xp+xp up to values
I xp+xpI p. But this means

that Iqo —
qpI &1/p, whichrequiresthatq pnotbelarge.

Thus the leading contribution of Mpp(p, q) at large p,
which grows as p, occurs only when q 1/p, which
requires that the total electroproduction cross section
vanish at high energy. This heuristic argument makes
it difficult to see how electromagnetic size can shrink if
the total electroproduction cross section becomes asymp-
totically constant. ~ This is supported by the models
of Sec. V.

Finally, in Sec. V a singular example is given where

(p I jp(x xs 0)jo(0) I p) is divergent. In this case the inte-
grals in (2.10) and (2.13) are convergent, but the inter-
change of limits leading to (2.10) and (2.13) is not valid.

II. PARTICLE SIZE TO SECOND ORDER
IN EXTERNAL POTENTIAL

To begin our discussion of the interaction size of a
particle, consider the scattering of a charged scalar par-
ticle in an external electromagnetic field. For simplicity,
only forward scattering to second order in the external
potential will be considered in this section. The general
case of all orders in the external potential will be dis-
cussed subsequently. If the scalar particle has momen-
tum p, the scattering amplitude is given by

f(p) = d'q M„„(p,q) A„(q)A„( q), (2.1)—

where A„ is the external electromagnetic field, and 3f„„
is given by

M"(P,q) = sd'x e*"(P
I
2'(—j (*)j.(o)) I P)

= —i d4x e"*M„„(p,x) .

We can convert (2.1) to coordinate space, in which case

f(p) = i d4xd'y—M„„(p, x—y)A„(x)A„(y) . (2.2)

P J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).
~ B.L. IoGe, Phys. Letters 30B, 123 (1969).

Xcp(x xp)cp(y, yp) . (2.3)

M„„(p,x) = da' p„„(p,x,s') h, (x,~') . (2.5)

p„, may contain a finite number of derivatives but the
coef6cients of these derivatives are bounded by poly-
nomials in x. For spacelike x,

ZK

h, (x Ir') = ———— Ei(s(—x')"')
4~2( xs) its

which decreases exponentially with ~(—x')' s. If there
are no zero-mass particles in the theory, the K' integra-
tion in (2.4) does not extend to zero Lexcept for the pole
term in which case A, (x) =5(x')/4s. ] so that M„,(p,x)
decreases exponentially with (—x')'i' for large space-
like x'. This result can also be obtained by a slight modi-
fication of a common proof of the cluster decomposition
property. "The minimum value of K K allowed in
(2.4) does not depend on p, so the size determined by;„'does not contract in a rapidly moving reference
frame. As we shall now show, K;„' is a maximum
size and the particle size which does contract in a rapidly
moving reference system arises from a different source.

To investigate this question further, write M„„(p,x)
as

M„„(p,x) = — d'q e 'o*M„„(p,q)-
(2or)'

(2.6)

'o R. Jost and H. Lehmann, Knovo Cimento 5, 1598 (1957)."F. J. Dyson, Phys. Rev. 110, 1460 (1958).
'2 R. F. Streater and A. S. Wightman, I'CT, Spin und Stutis&'cs

und Al/ Thut (Benjamin, New York, 1964).

By choosing the external potential in the above form,
the expression inside the integral in (2.3) refers in effect
to simultaneous measurements, as dined by interaction
with the external potential, at the points (x,xs) and

(y,yp). Thus

(PI 2"((»» 0)jo(0)) I p) ™op(px) I o=o

= ('P
I jo(x,» 0)jo(0) I P) (2.4)

is the amplitude for simultaneously ending an electro-
magnetic charge density at (x,xp) and (y,yp), and thus
should provide a measure of the size of the scalar particle
in the frame in which that particle moves with momen-
tum p.

First it will be established tha, t M„„(p,x) I,, p has a
finite size for any value of p. To show this, it is conven-
ient to use the Jost-Lehmann-Dyson representation'o "
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so= 0, one obtains

or

d &Pli.(,* 0)i.(0) IP)

Pvpv

p (2~)'
dvd'q e'o'* Imd(v, —qo)

III. HIGHER-ORDER TERMS IN
EXTERNAL POTENTIAL

In this section higher-order terms in the scattering of
a scalar meson off an external electromagnetic potential
will be considered. The result of forward scattering for
three interactions is, for example,

~"(P*) o&(x-) d»(PIJ(»»0)i. (0)IP),

@=0,3, v=0, 3. (2.15)

Using (2.15), consider the scattering of the charged
scalar boson oR a static potential, Then the scattering
amplitude is

g(p) = i', —d4xd'y Moo(p, x—y)

«o(»yo) tto(y, yo) yo=O (2 16)

Substituting (2.15) into (2.16), one obtains

f(p) = d'xid'xod'xocV„v), (p) xi, xo,xo)

XA „(xi)A „(xo)A g(xo), (3.1)

~."(p,»,x2) =(pI2'(i. (»)i (»)i~(xo)) I p). (3 2)

The extension of (3.1) to an arbitrary number of inter-
actions is obvious. As in Sec. II, we wish to consider
M„„zwhen p is very large. To begin, let us consider the
kinematics of the five-point amplitude

3Evvy(p, qi)qo) = d xid xo

Xe*o~*i+*'o2*2M„.&(p,x„x&,0) . (3.3)

where

g(p) = od'xd'y p(x——y) (xo(x) Cto(y), (2.17)

Ho(x) = dxo eo(x,xo)

J'(x) = d»(pl io(x,» 0)io(0) IP) (2.19)
by analogy with the notation of Sec. II. Then

The invariant amplitudes appearing in an expansion
of M„„),will depend on 6ve variables which can be chosen
to be qi', q&', (qi+qo)', p qi, and p q&. One of theinvari-

(2.1g) ants appearing in (3.3) will occur as a coefficient of

p„p„pq. We call this contribution

~vvX d(p'qll p q2'ql 1 q2 q (ql+q2) )pvpvpkl

Equations (2.17)—(2.19) are just the expressions given
by the operator droplet model in second order. ' Such
expressions will not be obtained, however, if the poten-
tial is time dependent.

We have obtained the result, then, that the second-
order term J'(pl jo(x xo,O) jo(0) I p)dxo in the expansion.
of the operator droplet model is directly related to the
residue of a nonsense wrong-signature fixed pole at J= 1,
and on the way to deriving this result we have actually
obtained the operator droplet model for the scattering
oR an external static potential to second order assuming
the absence of Regge trajectories, or cuts, with n(0) & 1.
In Sec. III we shall obtain an extension of this result to
all orders in the external potential.

Before we conclude this section, let us note what the
physical results are to second order in the external
potential. In the 6rst place, we have argued that a
particle has a size, determined by the interaction with an
external electromagnetic source, which contracts at high
velocity if there are no Regge singularities greater or
equal to one at I,=0. This same assumption then allows
one to derive the operator droplet model for the scatter-
ing of a charged particle oR a static external potential.
The impact factor which occurs in this model is then
simply related to the residue of a fixed pole at J= 1 in
a nonsense wrong-signature partial-wave amplitude.

lVvvg(ppxi)xg) d qid qo
(2m)'

Xe '"*' '"*' (dPqi, q)2.P.P&P, .

This equation can be written as

pvpvpX
3E&vy(p&x1&xo) dqi+dqi dqoydqo d—qid qo—

4(2m)'

)(' g
—iq1+$1 —iq1 $1+;iqP+X2=iq2 xmy+iq1 X1+iq2 X2

Xd(pqi, pqo, qi', q2', (qi+qo)')

for large p. Let vi ——pqi and v&=pq& . Assuming the
interchange of the p —+~ limit and the integration over

q for p,v,P = 0,3, one obtains

pvpvpX
3/Ip„y(p, xi, xo) -+ - 8(xi )8(xo )

p'4(2x) '

d'& d'& d2~ g2~ &iq1 x1+iq2 X2

Xd(. .. ,
—q ', —q", —(q +q )'). (3.4)

Equation (3.4) is the three-current analog of (2.10)
and similar assumptions are required for its validity. If
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qr= gg&k ) q1= (0) I qr I )0) '

"M. Toiler, Nuovo Cimento 37,37 631 (1965).
'4 A. H. Mueller and I. J. Murinich, Ann. yo.

and M. Misheloff, Phys. Rev. 188,'~„M. Ciafaloni, C. DeTar, and M. is e o,
2522 (1969).

X d (cosh/) (cosh/) ePrdo, pp ($)d($, t g1) (3.10

. Consider, for the pres-near the leading singularity in p, . o
ent, the integral

d slnh$(cosh/) do, pp ($)

x df(cosht )oe"rd($, l, gr) .
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and where p(N, ~') has bounded support in N. Now from
(4.9) one sees that singularities on the light cone
arise from the large-K' behavior of p(x, s'), apart of
course from the usual b(x') and possible derivatives of
b(x2). If, for example, p(x,s2) ~ (sr)rp(x), with y) —1,
then

f(p »') (*') ' ' (*)
@2~0

as in (4.4). LFor the moment we assume that p(x, K') is
simply a function. ) However, such behavior means that

f(p x,x'): (x')—
&—'p(0) .

xp-+0

This indicates that the strength of the singularities on
the finite light cone and the strength of the singularity
at x=o are derived from a common source. These
strengths are not necessarily equal, but could differ
by integer powers. Now" "

j(x)j(0):Ee(x')+E&(x') C (0)+
xp, ~o

where Fo and Ft are numerical functions and C(x) is
a local Geld. Thus we could move away from t=o and
consider matrix elements like (P~ j(x)j(0)~P') with
values of t= (p —p')' different from 0. Of course, the
leading singularities of (p ~ j(x)j(0) ~ p ) near x„=0 would
be the same as those of (P~ j(x)j(0) ~P') by the fact
that C(x) is local. The arguments following Eq. (4.9)
suggest that the strengths of the singularities on the
finite light cone are then also independent of t. This
has two immediate consequences.

(i) The size which depends on singularities on the
finite light cone is independent of t. That is, this size,
defined by interaction with an external potential,
shrinks to zero at large velocities for any finite value of t.

(ii) If high-energy scattering is actually determined
from singularities on the Gnite light cone, then the
asymptotic behavior with energy is independent of t
as far as the rate of growth with energy is concerned.

These results do not appear to depend on the assump-
tion, used in the'above example, that p(x,u) involves no
derivatives. The central point of the'argument is simply
that it is the large-s region in (4.9) which is important,
and that this region governs both the short-distance
behavior and light-cone singularities.

V. SOME EXAMPLES IN VIRTUAL
COMPTON SCATTERING

Ke shall now consider again the case of the large-
momentum limit of the product of two electromagnetic
currents for the case where the integrals in (2.10) and
(2.13) do not exist. We shall treat two cases in detail
and then comment on general features of the problem.

's K. Wilson, Cornell LNS Report No. 64-15, 1964 (unpub-
lished); Phys. Rev. 1'79, 1499 (1969).

'r R. A. Brandt, Ann. Phys. (N. Y.) 44, 221 (1967).
Q'. Zimmermann, Commun. Math. Phys. 6, 161 (1967).

The 6rst case to be considered will have a nonsingular
light-cone commutator, will obey the scaling law in
deeply inelastic electroproduction, " and will give a
constant total inelastic electroproduction cross section
at high energies. ~ In the second example the light-cone
commutator will be marginally singular but the scaling
law will be violated, while constant total cross sections
will result.

8's(v, q') =q' da db os(a, b) b(q'+2bv —a) (5.1)

for v=p q)0, where

I
~"(p q) = — d'x o'"(pI Cj.(x),j (0)7Ip)

2%

vqp f vqv

and where p'=1. If

da os(a, b) =0 (5.3)

os(a, b) -+ os(a) b
—' as b ~ 0, (5 4)

where (o sba) = B&r(a,b)/Bb, one obtains the usual scaling
property vWs(v, q) ~Fs(—v/q')=Fs(p) as v and q'
become large with p fixed. Furthermore, (5.3) and (5.4)
give Fs(~) =toe, which in general is not zero. We shall
now examine the question of the size of the proton at
high velocity as determined by (5.1), (5.3), and (5.4).

It is convenient to consider not the Fourier transform

j.
Ws(p x,x') =

(2s.)'
d4q e "*8's(v,q'),

but rather the function f"s(P x,x'),r ' which is related,
to Ws by Ws(p x,x')= —CIVs(p x,x'). Vs can be
written as

z

Vs(p x x') = — dadb os(a, b)e+" '*a(x, a+b'). (5.5)
2'

If we switch to the time-ordered product rather than

'9 J. D. Bjorken, Phys. Rev. 1/9, 1547 (1968)."J.W. Meyer and H. Suura, Phys. Rev. 160, 1366 (1967).

A. Nonsingular Light-Cone Behavior

In this section we shall follow the formalism and
ideas of Ref. 7. We restrict our discussion to Ws(v, q')
for brevity. Recall that
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the commutator, we obtain &sing (5.12) and (5.8), we obtain

p'&, (p x,x ) = — dadb o (a,b)e'~v'*Q, (x, a+b~), (5.6) (pl j.(x,»,o)j.(o) I p)
2' x

with

(1/2 )&pl T(j.(x)j (o)) I p)
= —p„p,ol,.(p',")+ . (5 7)

The other terms in (5.7) will turn out to be comparable
to the p„p„ term at large p, but for the essence of the
argument (5.7) will suKce. Then

(1/2 )(pl j.(x,x,0)j.(o) I p)
= —p„p, l

aV, .(p x,x'))I =o+" . (58)

We shall be interested in seeing in which regions of
(x,x3) Eq. (5.8) is not small when p ~~.Now for large

p, we can write (5.6) as

V'p, (p(xp —x3), x')

p v

dao. ,(a) 6—
(—x' —x3', a)a

pl»l

+ ~—
(—x' —x3', a)

Bxe
(5.13)

for
I x3I &)1/p, and where p is very large.

Except for the finite-size effect due to 6 (—x' —xP, a)
which we encountered in the discussion following (2.5),
the only decrease in size outside the disk

I x3I & 1/p is
the factor 1/plx3I in (5.13). Now the amplitude for
an interaction inside the thin disk Ix3I(1/p will be
proportional to p„p„ times 1/p. The 1/p comes from the
fact that the disk has a width 1/p. However, the ampli-
tude, given by (5.13) for interaction outside the disk.

I x3I & 1/p, goes as (p„p„/p) lnp. That is, the amplitude

z
dadb e+"v"' *"o~(ab)d.(x, a+b'). (5.9) f(p) = —~ d'xd'y(pl jo(xx: 0) jo(yy~ 0) I p)

2x
&&ao(x,x3)ap(y, y&)

Let us first look in the region where Ix, l)&1/p while
xo&(I x3I Then clearly only the small-b part of the inte-
gration in (5.9) is important. From (5.4) we see that
o~(a, b) =o~(a) lnl bl for small b, so that (5.9) becomes

Vg, (p(xp —xg), x')

dadb o~(a)A, (x,a) lnl bl e""&*' *". (5.10)

Now for large p

e""i" *'i ln
I
b

I
db =c

plxo —xBI

where c is a constant. Thus

given by (2.3) goes as p lnp, and this asymptotic con-
tribution can be obtained without approximation by
dropping the region lx~ —

yml (iV/p, where 1V is any
finite number, as the region

I
x3—yil (X/p contributes

a term proportional to p.
Thus particle size clearly does not contract in a

rapidly moving frame in this large class of models which
give scaling and a constant asymptotic total cross
section for inelastic electroproduction.

B. Example of Singular Light-Cone Commutator

Now we shall drop the assumptions of Sec. V A and
rather assume that the o~( ba) of (5.1) behaves as
o~(a,b) ~o~(b)/a for large a with o~(0)=0. Then for
v —+~ and fixed q',

C

Vg, (p(xo —x3), x') = — da o g(a) 4,(x,a) (5.11)
pl x,—x3I

q' ' o g(b)
Wg(v, q') = — db

2v b

while for v —v~, q'~ —~, and v/q' fixed,

(5.14)

I—&1' (p( —*), '))I.o=o

C

da og(a) 6-(—x' —x3', a)a
pl»l

+ 6—
(—x' —xs', a)

8$3
(5.12)

g
Wp(v, q') = — da ap a,

2v 2v i
= (q'/2v) lnv og(q'/2v) . (5.15)

Equation (5.15) violates the scaling law, as apparently
do all singular commutators. The major difficulty is
that one needs a condition like (5.3) to obtain scaling
while any attempt to obtain a constant total cross
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section, as in (5.14), requires &ro(a, b) 1/a if this con-
stancy is to be achieved from a singularity on the finite
light cone. It is a rather simple exercise to show that
this interaction is too singular to permit simultaneous
interaction, as in this examPle (P) jo(x,xo,0)jo(0) j P) is
a divergent quantity.

Suppose that we had taken oo(o,b) ~ ao(b)u ' ' for
large a where 0(0& 1 and taken 00(0) constant where
0'o(u, O)= &oo(a,O)/Bu. Now the integrals in (2.10) and
(2.13) do not diverge but the steps leading to the
equations represented. by (2.10) and (2.13) a,re no longer
valid, as again (P~ jo(x,xo,O) jo(0) ~P) is a divergent
quantity for large p. This shows up in the fact that the
impact factor F(x), which one would obtain in this
example, goes as (x') '+' near x=O. A singularity of
this strength is too strong to be integrated over without
regularization. High-energy behavior cannot be the
only criterion for shrinkage of size to a thin disk.

APPENDIX A: O(2, 1) FORMALISM FOR
MULTIPARTICLE AMPLITUDES

In this Appendix we shall develop an O(2, 1) formalism
for multiparticle amplitudes which exhibits nonsense
fixed poles in an explicit way. We shall consider first
the four-point function, and in the following subsection
a formalism will be given for the five-point function.
The other e-point functions which will be needed in
this paper will be obvious extensions of the analysis
carried out for the Ave-point function.

A. Four-Point Function

The relation between the O(2, 1) harmonic analysis
and the Froissart-Gribov continua, tion of the partial-
wave amplitude has been discussed by Olive" for the
case of four-point functions where all the external
momenta of the four legs are timelike. Ili the case
considered by Olive, there are no fixed poles in the O(2, 1)
amplitudes at wrong-signature nonsense points. How-
ever, if two of the external particles have negative
mass, then this analysis must be modified. This will be
done for the case of spinless particles in what follows.

Consider the process shown in Fig. 3, with Pl' ——Poo
=m'& 0 and ql'= p,l'(0, q2'= p"&0.Work in the Breit
frame defined by

FIG. 3. Kinematics for the
four-point function.

in O(2,1) amplitudes. This point should become clear
in the following discussion. Label ql and q2 by

tl\ +tlo
g 1 Q) $10yg11yg12pg18 p2(-t)"'

tll +tlO +t)
Q~

2( —t)»o )

(A2)

with

f(t, k) = Z d (A)d, ,o'(k)f'(t),
@=1', 2

f, (t)= dsinh& f(t, t)do, ,o ($).

(A4)

(AS)

The d0, p0 ale special cases of the representation «nc-
tions of O(2, 1) in a mixed, O(2) and O(1,1) basis,
D,»~(p, ),t). Lm is an O(2) quantum number while tl

is an O(1,1) quantum number. g Exphcit formulas for
these functions in terms of hypergeometric functions
are given in Refs. 14 and 15. A mixed basis is appro-
priate here, since g2 0.

For m=0, p=O we have

do+0~($) =
,or 'e' &—~ "I'Ql(i silnh(), $)0

do 0~($) = —or 'e' ~~ '~loLQ11( —i sinhf)
—in.P (—i sinh))g, $)0 (A6)

d. ."(-a=d. . "(u, d. "(-e=d..,"(n,
$(0.

Thus, for example,

with
g= ~g~ (sinh$, cosh) cosh', cosh& sin&@) . (A3)

For the amplitude describing the process shown in

Fig. 3, we can choose q =0. This choice can be made
since the amplitude can only depend on invariants
which are independent of o1. Let f be the invariant
transition amplitude describing this process. Then f
can be expanded according to" "

p, =((M ;t)'i', 0, 0,—(——-'t)'I')

p =((~'--:t)"',0, o, -(-!t)'") (A1) f+o (t) = d sinhp f(t, &)do,+0~(p) . (A7)

where t= (Po —Pl)'(0. Furthermore, suppose that

and
g2 (g2) 0 (g2) 1 (g2) 2

gl (gl)0 (gl)1 (gl)2 (0 ~

If these last conditions are not fu16lled, then again
there will be no wrong-signature nonsense fixed poles

"D. Olive, Nucl. Phys. B15, 617 t,'1970).

Using the above formulas for the representation func-
tions, one finds that f~~(t) has a pole at h, =O. The
fa,ct that this pole occurs at A.=O, rather than at A= —1
as might be expected, can be understood by the follow-
ing argument. Suppose one considers the process de-
scribed in Fig. 4, where p is the same as given in (A1),
g is as given in (A2), and p'= Up, where I is an O(2, 1)
transformation. We take all particles spinless. This
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(A9)—h.—1 g—4—1a=(2~)'Q b,~c, ~ '=a—
lt'

b As are un ers d stood. Nowd q3 ntegration

6 t- d 1 th=0= —1.Thus a~ has erst-or

as defined in (A2),h th tWe can noww see w y
n -si na ur

We have seen
nsense wrong-

'
r

from a pole in the represen a
"'

~d"1 '-"-:-such a e

de= dPd sinh$ dP,

= (M' —'t)'I'(1,0,0)p=up, p= M —
~

0= lel (0,10)
5= I Ca I (0,1, ) .

a
'

all thelabelo t eusthat A. is actua yTo see a
'

a
operator, we'form t e a

d gi, , ',gi) . (A12)a ' = d'-d'g, b(p, g,q,)c(p',g, g& .a(p p')= d g gi

e
' ' nt under 0(2,1)les invariant un

hasedk o 1 t
h. 02 1 roup structurespace releva nt to



2253

p and thew
'

are scalar quacurrent J
) I ) f(x, r) and(pI p(j(x)j(o)

write (A12) as

(81)d4x, 'P.f(xo,r)f(q)=f(Q~')= '

2 yhe angular '" 's+qos and pwhere Q'= qt +q'
feted to givegrationss can be comP e"

..)»s(1,O,O),
ds —d pd slI1 (](op

g.(„)8.(h) g=
O( (2x,

) dpgt —dpi sjnh$t rg =z (p t)&*(&& '

o(~ (2~,
pnahzed»Fquation (A13) can be d g

sgr ~iQ&
2pr

f( «) s «*p(8f(Q P)—

(Q,)+.g( Q, l')3Q '

wh. ere

(83)

~ I-'&1&)o(gg
—

v)Dop

),qp~p-~Q".rdr xof(xo' 'g plld(u „)d gd g,d (l )&(" g'
-1 I ggt)gl)

M ll» t.ransform asin terms pf ag can represented»

.(o (84)dl Q g'(l') '

p(N
—

g)Dps. o g~
—

lgg1 g1 O, PIllX~(s g'
p—1(p g &w=Do,—f —&

a/~

g(Q»' =
2,

a tp)Using Dos o

,) . (A14)d g,d (l)b" (g')

of (A9)articie analog oA14) is the th~~~ p
d (A11) actua&y is

Equation
h A of (A10) an

'
cattering

and shows . .
ex&ansipns

that the o
~

of elastic scaearing»the uSual &

—g—1 in g aga
pli

d &es of bop — ' "
(A11) As we

Npnsen se Gxe I p
oles pf 0,pP

~ in
s ace»ke

appear thro. g
off q, q„and q ~, , (A14)

rpu h t e
-must e

in order fo "
from Regge asy p

g f nctions of

t o s 'n g'
1 t d h

pwever, the
hysical am& i u eonsiders a pwhen pne c

ction is nowsion to the n y4)- o' t f
f (A11)

'
alo o

wit h the inversion

(85)dQ Q-'-'g(Q, ").g~(~') =

u s
' '

3 into (85), one obtainsubstituting (83) into

g~(u )

are determined by t e
syrnptot

=Q+p'/2Qfor the ea i
'

n
(86) becomes

-l-t «*o 'O. -P = 2pr) rdrdxo f(xp, r)r dQ Q l 'e'«*o--

VF LOC I TsrzE ~ND CONT AT HI

whose m tu

p A R T j[ ("L

„„,b,th the pa""',
;,;„.ff p=(

of A14) iswhile the analog o

dp ls &
' ' 'd sb 4gp). ~ )g~)d (l)d ed'gs „(g

—--' '(g,g, ".g-).XC—p—„

~ ~ ~ )&gn)f17C22' ' ~ )gnd& fb'8 g&F'g» ~ )&g»fn~ (g»go~ 4s) =

NOW22

p, xp
&&exp iQ(xo-—r +i

xo—r)+i xpdQ Q
—'—' exp sQ xp — xo

Z—1
gg p' = rdrdxp f(xp, r) dQQ

——gg(p')=(2n. ) r r xp

~ (8&)

APPENDIX B

Consider the amp
'

litude

d" e''-(P
I ~(j(x)j(O)) IP&,f(q) = —i d4x e'p

--LI2p $0
gixZ/2= me —« "'), (88)&~'"(L2l '*o(xo—«)z

2 xp —r)
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so that (87) becomes

g/(/i') =2n'ie' '/' rdrdxpf(xp, r)

p2Xp

X Hi "([2/i'xo(xp —r)]'/') .
2(xo —r)

(89)

From these expressions and (89), one can see that
singularities in gi(/i') can arise from regions in coordinate
space which are a finite distance from xp= r =0 as indi-
cated by case (ii), or from regions which are infinitely
far from the origin as in case (i). For example, suppose

f(xp, r) ~xpf(x') as xp~~ for fixed x'. Then from

(i) and (89),

1
&~l ~

—i+i

r(1 —l)
'

r(l+1)

—Z

H &"(s) —+ — -'s—'
' psinxl

we note the following properties of

From (89), one can determine which regions in
coordinate space give the leading singularities in / and
hence are responsible for the leading terms at high
energy in q. Using

l/2

gl(/io) 2orozeiw/2 dy yl/Pf(2y)H/&li

p p
2

X((2/ 'y) "')

2proje'~&~+»» 2 ) & +»/P

l —(n+1) /i')

dr ra—l

h(xo, r) ~
—z

(oxo/') '
sinn. l I'(1 l)—

(iii) As xp ~op and xp(xp —r) ~op,

l e
—ill

r(t+1)

—Z 2 QXp
h(xo, r) —& — — [2/i xo(xo —r)]

sinorl n 2(xp —r)

X(cos([2/i'xo(xo —r)7"'+-,'ln. —-„'n)

—cos([2/i'xo(xo —r) ]'/' —-', ln- ——,'n) e—").

p2Xp
H/&" ([2/i xp(xp —r)]' ') =h(xo)r, //, '):

2(xp —r)

(i) As xp —+~ with xo(xo —r) finite,

h(xo, r) + (xo/i') '[2/ti'xo(xo —r)]'"Hi "
X([2/i xo(xo —r)]'")

or equivalently,

h(xp, r) ~ (xo—r)'[io/i'xp(xp —r)] '/'Hi"&

X ([2/i'xo(xp —r) ]'").
(ii) As xo(xo —r) ~0,

X dy y'+""f(2y)H.+i"'((2/"y)"')

near l=n+1 This. pole in l at n+1 corresponds to an
asymptotic behavior of f(Q) in (82) which is f(&I) ~ Q .
This is the typical way in which a Regge pole arises in
coordinate space, as can be veri&ed explicitly in a
iI/'-type theory. If there are also strong singularities on

the light cone, xp=r, then the singularities in l from

xp ——~ and from xp ——r are additive as indicated in case
(ii).

The above formalism can be used for operator pro-
ducts other than the retarded product with a minor
modification. Other operator products will, in general,
not vanish outside the interior of the forward light cone,
in which case one must go around the branch points at
xo=r and at go=0 in

2 ——l/2
XpP

Hi &"([2/Ii'xo(xo —r)]"')
2(xp r)—

In the erst instance one should take xp —r ~ xp —r —i6,
and in the latter instance, p, sp + p, xp —l6. These
prescriptions follow imlnediately from the integral
representation (88).


