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The question of size and contraction of size at high velocity is considered in the context of particle physics.
Size is defined through a simultaneous interaction with an external potential. To second order in the external
potential, one is led to consider matrix elements of the form (p|7o(x,%3,0)70(0) |p). For large p such matrix
elements are found to approach pé(x3)F (x) if there are no Regge singularities at J=1 when #=0. If there
are such singularities at /=1 when =0 and if they recede below J=1 for negative ¢, then matrix elements
analogous to the one above, but for /<0, approach §(x3) at high velocity. F (x) is related to the residue of
a wrong-signature fixed pole at /=1 in a virtual Compton amplitude. F () is also shown to be equal to the
second-order impact factor in the operator droplet model. These results are then generalized to an arbitrary
number of interactions with the external potential. More singular interactions, where the above analysis
breaks down, are considered. It is found that for a certain strength of singularity on the light cone, the
particle size may shrink to zero at high velocities. In a large class of models which give the scaling law for
deeply inelastic electroproduction and have a constant asymptotic total cross section for electroproduction,
it is found that the particle size does not shrink. A converse statement is also found, in that a simple argu-
ment shows that if electromagnetic particle size at =0 shrinks, then the total asymptotic electroproduction
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cross section vanishes at high energy.

I. INTRODUCTION

HE idea that the “shape” of a particle may con-
tract into a thin disk at high energies! can be
based on a classical analogy. For suppose two, or more,
simultaneous localized measurements of a static classi-
cal object are made in a fixed reference frame. (We
take the direction of motion of the static object, O, to
be the z direction.) Then as the velocity of O approaches
the speed of light, these simultaneous measurements
will give a null result unless they are made inside a
thin disk whose width is the static size of O along the
z direction in its rest system times (1—22/c?)2=~"1,
This is easily seen. Suppose the two measurements in
the laboratory system occur at points in (£,2) at /o= (0,0)
and /= (0,21). Then in the rest system of O the measure-
ments take place at ly'=(0,0) and I)/=(—vyv21,y21),
where the velocity of light is taken to be unity. Now as
v approaches 1 we see that the two measurements occur
farther and farther apart in the rest system of O and
thus must give a null result unless 2; is less than the
size of the object times v~
If O is not static, the situation is somewhat more
complicated. If the motions of O are bounded, that is,
if O can be put inside a static sphere of any finite size,
then the arguments used above apply, and again a
contraction in size occurs at high velocity. If fhowever,
the motions are unbounded, no general statements
about contraction can be made. In the following, when
we deal with size in particle physics, we shall say that
size contracts into a thin disk at high velocity if that
size behaves essentially as the size of a static classical
object of finite dimensions at high velocity.
For the case of particle physics we shall discuss the
question of size in terms of an external potential. Thus
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when asking a question about the electromagnetic size,
an external electromagnetic potential 4, is introduced.
Simultaneous interactions are obtained when A4 ,(x) —
8(xo)au(x) for two or more interactions with the external
potential. Asan example, take the scattering of a charged
scalar meson of momentum p off an external potential.
To second order,

fp)=—i / ddty Mo(p, 5—3)Ay(2) A,(5)

where
M (p,0) = {p| T(js(2) 7u(0)) | ),

and p is taken along the z direction. If Aq(x) — 8(xq)
Xao(x), then (p| jo(x1,%2,%35,0) 70(0) | p) , which appears in
the integral for f(p), is the amplitude for simultaneously
finding charge density at the points (x1,%2,%3) and (0,0,0).
If that equal-time matrix element does not exist, then
the interaction is too singular to permit simultaneous
interaction with a potential which is not smeared in .
We shall not discuss this case in detail; however, ex-
amples where this singular type of interaction occurs
will be given in Secs. IV and V. Note, also, that when we
say an equal-time matrix element is divergent or does
not exist, we mean that its singularities in (x1,%2,%3) are
too severe to allow an integration with a test function
without regularization.

As will be shown in Sec. II, the above equal-time
matrix element decreases exponentially with (w:2-+ w2
+x52)1/2, showing that the particle labeled by |p) does
have a finite interaction size in any reference frame.
Furthermore, in that section it will be argued that if
high-energy off-shell Compton scattering at =0 is
governed by Regge poles or other singularities in the
angular momentum plane where the leading singularity
is below J=1 at ¢t=0, then particle size will contract at
large p. That is, the matrix element {p| jo(%1,%2,23,0) 50(0)
|#) will give a negligible contribution to f(p) unless
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| 23] $1/p for large p. In fact, that matrix element will
approach p8(x;) F(x), where x= (x1,x2). Even if there are
singularities at J=1 when {=0, if these singularities
recede below J=1 at negative ¢ then matrix elements
like (p| jo(%,%5,0) 70(0) | #") will approach a & function in
x3 when 3 and 3’ both go to infinity with (p—p")2=1
fixed. In subsequent sections we shall only deal with /=0
explicitly. But whatever we obtain for {=0 when a(t=0)
<1 will, in general, be true for negative ¢, and if the
Regge singularities move with ¢ we can answer the <0
question in general even if a(0)=1.

Also, in Sec. IT, we show that the F(x) mentioned
above is the two-dimensional Fourier transform of the
residue of a wrong-signature nonsense fixed pole at J=1
in a virtual Compton amplitude.?? Further F(x), will be
seen to be equal to the impact factor which occurs in the
operator droplet model.4~% In fact, we shall show that the
scattering of our scalar meson off a static external po-
tential occurs according to the S matrix of the operator
droplet model to second order in the external potential
but to all orders of the hadronic couplings.

The connection of F(x) with fixed poles shows
the necessity of coupling the external potential to
a vector current.® It is possible for a matrix element
{p| j(x,x3,0) j(0)| p) of scalar currents to contract to a &
function of x; for large p; however, in that case the scat-
tering off an external potential to second order will de-
crease with p rapidly for large p whether or not the po-
tentials emits only at xo=0. It is possible to understand
this in a very simple way. In the scattering off an ex-
ternal potential by the exchange of two spin-1 particles,
the matrix element of the two currents between the
initial and final scalar meson states has a wrong-signa-
ture fixed pole at J=1, as we have mentioned. The two
orders of the external potential also have a wrong-
signature fixed pole at J=1 which gives a fixed pole in a
sense scattering amplitude of the meson off the potential.
This fixed pole in J exactly accounts for the constant
asymptotic cross section. If the currents are not of a
vector type, the fixed poles will be at J=0 or lower
depending on the nature of the currents.

In Sec. III the results of Sec. IT are extended to an
arbitrary number of interactions with the external
potential. In order to achieve this, it is necessary to have
a formalism for multiparticle amplitudes on which it is
convenient to do an 0(2,1) analysis. Such a formula is
developed in Appendix A. Matrix elements such as
P T(Golx1) Fo(x2) 70(0)) | p) are considered at large values
of p and found to approach po(x10—213)8(x20—223)
X F(x1,X). By going to x10=x20=0, one again sees that

( 21"‘7.) H. Mueller and T. L. Trueman, Phys. Rev. 160, 1306
1967).

3H. D. I. Abarbanel, F. E. Low, I. J. Muzinich, S. Nussinov,
and J. H. Schwarz, Phys. Rev. 160, 1329 (1967).

4T. T. Chou and C. N. Yang, Phys. Rev. 175, 1832 (1968).

5B. W. Lee, Phys. Rev. D 1, 2361 (1970).

¢ H. Cheng and T. T. Wu, Phys. Rev. 182, 1852 (1969); 182,
1868 (1960); 182, 1873 (1969); 182, 1899 (1969); 186, 1611
(1969) ; Phys. Rev. Letters 23, 670 (1969).
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particle size contracts under similar assumptions as in
Sec. II. F(x1,Xs) is again related to a fixed pole at J=1
and is also seen to be the third-order term in the expan-
sion of the S matrix in the operator droplet model. The
third-order term for the scattering off a static external
potential is thus shown to obey the operator droplet
model.

Also in Sec. I1T it is observed that the complexity of
matrix elements of the type

(¢l T(J g (1) iy (202) - - .jl‘n(x">j“n+1<0))lp>

is no more than that for the three current case. Thus
one obtains

(PI T(jlﬂ(xl)jﬂz(x?) T j#n(xn)jl-‘n+1<0)) l P) -
p8(x10—213) X 8(w20—%23) + - -
X 8(Xno—%nz)F (X1,Xs,. « « Xn)

for large . We see that electromagnetic size contracts
for n+1 simultaneous interactions. Again the coefficient
F(X1,Xs,...,Xs) is related to a fixed pole at J=11in a
multiparticle amplitude. The operator droplet model is
derived to the n+41 order for scattering off a static ex-
ternal potential, with F being the impact factor to this
order.

In Sec. V more singular interactions are considered for
the case of scalar currents. It is found that if the singu-
larities of (p|T'(j(x)7(0))|p) on the light cone have a
strength (x2)~72, then for y> —% the interaction is too
singular to define scattering by a scalar external po-
tential which approaches a § function in time. However,
for —1<y<—1% it is found that (p|j(x,x:,0)7(0)|p)
approaches 8%(x)8(xs) for large p. That is, the particle
shrinks to a point at large . It is then shown that the
rate of decrease in p of f(p), the amplitude for scattering
off an arbitrary external potential, and the rate of de-
crease with p of S d% e2*(p| T'(j(x)7(0))| p) for fixed q
are related to the strength of the singularities in « of the
operator product j(x)7(0) as x, — 0. One result of this
last result is that the rate of decrease in p should be
independent of the momentum transfer of the
scattering.

In Sec. V the question of the behavior of the matrix
element of the time-ordered product of two electro-
magnetic currents is again considered for the case that
the integrals in (2.10) and (2.13) do not exist and hence
the arguments leading to contraction of particle size are
no longer valid.

For a large class of models which obey the scaling law
for deeply inelastic electroproduction and have a con-
stant asymptotic total cross section for electropro-
duction,” it is explicitly shown that particle size does not
contract with the velocity of the proton. That is, at
high velocity, regions of |x;3|>N/p for any fixed N in
(p| 70(%,%3,0) 7o(0) | p) are dominant in the scattering off
an external potential 4 ,(x)=8(xo)e,(x1x;) at large p.

7R. A. Brandt, Phys. Rev. D 1, 2808 (1970).
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A converse statement is also possible. Suppose the
equal-time matrix element contracts in x; to a disk whose
size is ~1/p. By relativistic invariance this means that
(#| T(Go(x,x3,%0) 70(0)) | p) becomes nonzero only for
|#0—x3] S1/p. Consider the amplitude

Mig=—i / dh ¢ (| (a5, jo(0)) | )

at large p. Write

@1 TGo() 10D | )= popod(p- w08+ - - -

Then |xo—x3| $1/p means that d(p-x,x?) is independ-
ent of o+ up to values | 2o+ 3| ~p. But this means
that | go—g¢s| S 1/p, which requires that ¢- p not be large.
Thus the leading contribution of Mo(p,q) at large p,
which grows as p, occurs only when ¢~1/p, which
requires that the total electroproduction cross section
vanish at high energy. This heuristic argument makes
it difficult to see how electromagnetic size can shrink if
the total electroproduction cross section becomes asymp-
totically constant.®:® This is supported by the models
of Sec. V.

Finally, in Sec. V a singular example is given where
(p] 7o(x,%3,0) 70(0) | p) is divergent. In this case the inte-
grals in (2.10) and (2.13) are convergent, but the inter-
change of limits leading to (2.10) and (2.13) is not valid.

II. PARTICLE SIZE TO SECOND ORDER
IN EXTERNAL POTENTIAL

To begin our discussion of the interaction size of a
particle, consider the scattering of a charged scalar par-
ticle in an external electromagnetic field. For simplicity,
only forward scattering to second order in the external
potential will be considered in this section. The general
case of all orders in the external potential will be dis-
cussed subsequently. If the scalar particle has momen-
tum p, the scattering amplitude is given by

1) = / B Mb)@ A=), (2.1)

where A4, is the external electromagnetic field, and M,
is given by

Mo(p) =—i f dh e | T, () j,(0)) | )

= —i/d“x e =M, (p,x) .

We can convert (2.1) to coordinate space, in which case

)= —i / Bty M o(p, 5—) @A) (2.2)

8 J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).
9 B. L. Ioffe, Phys. Letters 30B, 123 (1969).
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Further, at this point consider only the u=0 component
of A, and choose 4 (x) = 8(x0)ao(X,x3), where x= (x1,%s)
is a two-dimensional spacelike vector. Then

) =—i f a5y Moo(p, 5—9)

z0==0; y0=0

Xao(x,23)a0(y,ps) . (2.3)

By choosing the external potential in the above form,
the expression inside the integral in (2.3) refers in effect
to simultaneous measurements, as defined by interaction
with the external potential, at the points (x,xs) and

(¥,¥3). Thus

(P T((%,53,0) 0(0)) | p) = M o0(p,) | z4=0
= (p| 7o(x,%5,0) 70(0) | p)

is the amplitude for simultaneously finding an electro-
magnetic charge density at (x,x;) and (¥,ys), and thus
should provide a measure of the size of the scalar particle
in the frame in which that particle moves with momen-
tum p.

First it will be established that M .(p,x)| z=0 has a
finite size for any value of p. To show this, it is conven-
ient to use the Jost-Lehmann-Dyson representation!®:!!

(2.4)

M () = / 0 pbms)An(ng®). (2.5)

pwy May contain a finite number of derivatives but the
coefficients of these derivatives are bounded by poly-
nomials in x. For spacelike x,

A(x?)=— Ki(k(—x%)'9),

47r2(_x2) 1/2

which decreases exponentially with x(—x?)1/2 If there
are no zero-mass particles in the theory, the 2 integra-
tion in (2.4) does not extend to zero [except for the pole
term in which case A (x)=08(x?%)/4r] so that M ,.(p,x)
decreases exponentially with (—x?)!/2 for large space-
like x2. This result can also be obtained by a slight modi-
fication of a common proof of the cluster decomposition
property.'? The minimum value of 2, kmin?, allowed in
(2.4) does not depend on p, so the size determined by
kmin ' does not contract in a rapidly moving reference
frame. As we shall now show, kmin~! is a maximum
size and the particle size which does contract in a rapidly
moving reference system arises from a different source.

To investigate this question further, write M ,.(p,x)
as

7
J(pyx) = —— | dq e =M ,,(p, 2.6
= [ty emion 00

10 R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (1957).

1L F, J. Dyson, Phys. Rev. 110, 1460 (1958).

2 R. F. Streater and A. S. Wightman, PCT, Spin and Statistics
and All That (Benjamin, New York, 1964).
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and

M ($,9) = agut+bgugstc(quprtgupu)+dpupy, (2.7)

where a, b, ¢, and d depend on p-¢ and ¢% Consider for
the moment only the contribution of the last term in
(2.7) to the integral in (2.6). Call this contribution
M,,. Then

i 1
M o (p,%) = pupy - | dg,dg_d>
(%) PP(27)42/9+(1 q

Xeiasr——in-ritivxi(p.q,), (2.8)

where

ge=(go=qs) , x1=%(x0xs).

For large p=ps, p*pu= po®—ps® remaining fixed, p-¢
=~ pg_=v, (2.8) can be written

pupr 1

2

Xemitrsminilotusd(y, vy, /p=q?).

M#V(P:x) =

(2.9)
If the large-p limit can be taken inside the integral, then

DPupy
2p (2w)®

M (pyx) — 3(x-)

)(/ du/tﬁq e *d(v, —q?). (2.10)

Because of its importance to this section of the paper, I
would like to present another derivation of (2.10).
Write d(v,¢?) in a dispersion relation as

)= - [ o )
d(v,q*) = — Imd(', .
a wJo 1 vV —v—ie vV +v—ie

Instead of considering d as a function of two invariants
v and ¢?, consider it, for large p, as a function of p¢_ and
g% Then for large p,

1 i 1 1
A(pgrg?) = — / Imd@',qz)a)( + )
P Jo V/p—q-  V/ptq-

+§ f Imd(,g)[60"/p—g-)+80//p+¢)], (2.11)

where @ indicates a principal value. The principal value
vanishes as p — %, so one obtains

21 o0
)=~ 300 / & Tmd (s, —q). (212)
0
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Substituting (2.12) into (2.8), one obtains

puty 8(%-)

Mﬂ"(ﬁyx) —— (2 )3

X/ dv/d2g e Imd(v, —q?) (2.13)
0

which, upon using
/ dvd(v, —q?) =2’i/ dv Imd(v, —q?),
o 0

is seen to be equal to (2.10).

Clearly the condition for the convergence of the inte-
grals in (2.10) or (2.13) is that there be no Regge singu-
larities greater than or equal to 1 at ¢=0. Assuming
convergence we see that 17 ,,(p,x) approaches zero except
for xo=~x3, that is, except for the region in a thin disk
| xo—23]| ~1/p. In particular,

Mss(p,x) = M oo(p,x) = M os(p,2) =~ M 50(p,%)
ip
2(2m)3

5(x_) / dvd?qd(v, —q?)etia

for large p, while all other components of /7, are smaller
by at least a single factor of p~*. The reader can readily
verify that the other terms of (2.7) do not give contribu-
tions to M ,, which increase linearly with p for large p.
Thus

MW(P)x) zMw(P,@ , #=0,3, »=0,3

for large p. If xy=0, that is, the condition specified in
(2.4), then

8(xs)
Moo(?,%)[zozoziPZ(Qﬂ_g) fdvd2qd(y’ —qz)e"‘l'x. (214)

Equation (2.12) shows that so long as there are no Regge
singularities with a(}=0)>1 the electromagnetic size as
defined by (2.4) contracts to a disk with width «1/p.

Now, returning to (2.13), we note that i Imd(»,
—q?)dv is the residue of a nonsense wrong-signature fixed
pole at J=1 and {=0,%? as is easily verified from a
Froissart-Gribov representation for the continued
partial-wave amplitude F_7(t=0) in the ¢ channel.

We can very easily derive another representation for
M ,,(p,x) as p becomes large. To achieve this, use (2.13)
to write

(P1 T(Go(x,3,%0) 7u(0)) | £) —

_ Duby ()
p (2m)?

Integrating the above expression over x; and setting

/dvd2g e'rx Imd(v, —q?).
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2= 0, one obtains

/ a5 .(%,2,0) 1,(0) | p) —

b 2
— e fdvdzq €= Imd(v, —g¢?
» oy
or
Moy — 33(x) / dx(p] 7. (k2,0 ,(0) | ),
§=0,3, »=0,3. (2.15)

Using (2.15), consider the scattering of the charged
scalar boson off a static potential. Then the scattering
amplitude is

6(¢) =i [ty Mntp, 5-3)
X @0(x1y3) @0(}’73,2) ) y0=0 .
Substituting (2.15) into (2.16), one obtains

(2.16)

gp)=—1i f d2xd?y F(x—y)@o(x) Qo(y), (2.17)

where

éo(X) =/dx3 @o(x,x;g) (218)

and

F)= [ ds(p) s )o@ 2).  (2.19)

Equations (2.17)-(2.19) are just the expressions given
by the operator droplet model in second order.5 Such
expressions will not be obtained, however, if the poten-
tial is time dependent.

We have obtained the result, then, that the second-
order term S {p| jo(%,%3,0) 70(0) | p)dxs in the expansion
of the operator droplet model is directly related to the
residue of a nonsense wrong-signature fixed poleat J=1,
and on the way to deriving this result we have actually
obtained the operator droplet model for the scattering
off an external static potential to second order assuming
the absence of Regge trajectories, or cuts, with a(0)>1.
In Sec. IIT we shall obtain an extension of this result to
all orders in the external potential.

Before we conclude this section, let us note what the
physical results are to second order in the external
potential. In the first place, we have argued that a
particle has a size, determined by the interaction with an
external electromagnetic source, which contracts at high
velocity if there are no Regge singularities greater or
equal to one at {=0. This same assumption then allows
one to derive the operator droplet model for the scatter-
ing of a charged particle off a static external potential.
The impact factor which occurs in this model is then
simply related to the residue of a fixed pole at J=1 in
a nonsense wrong-signature partial-wave amplitude.
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III. HIGHER-ORDER TERMS IN
EXTERNAL POTENTIAL

In this section higher-order terms in the scattering of
a scalar meson off an external electromagnetic potential
will be considered. The result of forward scattering for
three interactions is, for example,

f(p)= / A*x1d%%ad s M un (P,%1,%2,%3)

XAu(xl)A.,(XQ)A )\(xg) s (31)

where

M (pyx1,2) = (p| T(Gu(1) ju(w2) pr(xa)) | ). (3.2)

The extension of (3.1) to an arbitrary number of inter-
actions is obvious. As in Sec. IT, we wish to consider
M .\ when p is very large. To begin, let us consider the
kinematics of the five-point amplitude

Mo (Prnge) = [ b

Xgiq111+iq212MM)\(p,x1,xg,O) . (3.3)

The invariant amplitudes appearing in an expansion
of M ,,n will depend on five variables which can be chosen
to be 12, g%, (q1+¢2)% p-q1, and p-¢a. One of the invari-
ants appearing in (3.3) will occur as a coefficient of
pupypr. We call this contribution

M}w)\: d(P *q1, P ‘ QZ : qu; q227 (q1+ q2) Q)P“PVP}\ )
by analogy with the notation of Sec. II. Then

1
(2m)s / Fudgs
™

Xe =02 (p,q1,0) pupvpr-
This equation can be written as
DubrPr
4(2m)8

X e iU+~ A~ Vg4 By 10y w240y X HiGy Xy

Xd(pqi, pga—, 41% ¢2% (91+¢2)*)

for large p. Let »1=pq1— and vo=pgo—. Assuming the
interchange of the p —o limit and the integration over
q for pp \=0,3, one obtains

DuprPr
p%4(2m)"

MM(P:“‘I:@) =

an)\(PaxlaxZ) =

dq14+dq1-Aq2+dga-d°q1d*qs

M, (P, *1,%2) — 5(951—)5(902—)

X /dvldugd2q1d2g2eiql' x1+iqa: x2

Xd(vy, va, —Q1% —Q2% — (@1 1+92)?). (3.4)

Equation (3.4) is the three-current analog of (2.10)
and similar assumptions are required for its validity. If
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! T16. 1. Kinematics for the
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the time components of x; and wx, are set equal to zero,
M vanishes identically unless the z components of
and x are also equal to zero, up to order 1/p. Thus three
simultaneous measurements by an external potential
show that the fast-moving particle again contracts into
a thin disk of width proportional to 1/p. In the following
it will be argued that (3.4) is related to a fixed pole at
J=1 in a nonsense right-signature production ampli-
tude. In completing this argument we shall also show
that for large p, M . approaches M, for upyA\=0,3 so
that the restriction to dp.p,px in M was, in fact, not a
necessary assumption.

Consider now the five-point function illustrated in
Fig. 1 and whose matrix element is given by (3.2). For a
particle with spacelike momentum g, we can choose a
frame where 9= (qu3) = (O’ lQI 70)93) = (qO)ql)q?:q3)' In
this frame, define the polarization vectors

et =%v2(1,0,1,0),
e, =3V2(1,0, —1,0),
€.°=(0,1,0,0),
e.°=(0,0,0,1).

The polarization vectors have the property

©
o)

(3.5)

Z €765 =gu.
a

The amplitude given by (3.2) can be expressed in an
helicity notation

Mape= 2" Map,($,q,91) €a®(q1) 5% (g2) €4°(q) -

aBy

(3.6)

This amplitude can be expanded in O(2,1) harmonics
according to!*15

Maye(u'gu'gg1,81)
=3 /dp(A)d”(ﬂ)DO,p#A(u_Ig)Mavap#(gl) , 1)
P
with the inversion

M aptre(gr) = / dv M avo(v,081,80) D0 it (), (3.8)

and where

p=up,  p=(M,00),
q=gé> Q=(O,]ql,0),
G1=g01q1, §:=(0,|3:1,0).

13 M. Toller, Nuovo Cimento 37, 631 (1965).

4 A. H. Mueller and I. J. Muzinich, Ann. Phys. (N. Y.) 57,20
(1970); 57, 500 (1970).

18, M. Ciafaloni, C. DeTar, and M. Misheloff, Phys. Rev. 188,
2522 (1969). ’
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F16. 2. Schematic diagram of (A12).

#, g, and gy are O(2,1) transformations, and we have for
the moment dropped variables which do not enter di-
rectly into the O(2,1) expansion. Now consider only the
dpupspr term. Then

Mubczdp' ea?. Ebp' €
and

MaboApF(gl) =/d71d('11,7)g1,g1)
Xp.eup.ebp.ecﬁo,p“A(v). (3.9)

Choose g=¢ and p=v"'p=M (coshf cosh{, —sinhg,
cosh¢ sinh¢). Then dv=2wd sinh&d¢.

The leading fixed poles in A will come from the leading
pole in A of Dy, ,,* which depends on u. When the five-
point function is used to calculate a scattering amplitude
as illustrated in Fig. 2, for example, an integration over
u will occur. This integral over u can be distorted in the
r plane until singularities appear. Suppose this leading
singularity in u is a pole at a. Then the leading pole in
A will be given by the leading pole in Dy, .4, assuming
that this pole can be reached before the integral in (3.9)
diverges. Thus, the first step is to calculate the leading
poles in u which occur owing to the { integration in (3.9).
For large ¢,

pre P M coshé cosh{(ep—ez) ,
pre ;—) M coshé cosh{(eg+es) .

Substituting this into (3.9),
Mt P#(g1) < M3 (e — &%) (e0” — €2) (€0°— €2°)

X/d sinh.{/ d¢(coshg)3(cosh)®ertdy, ,,A(£)d(&,¢,81)
A
+M3(Ega+62“)(60b+62b)(€0°+62°)/d sinhg
—A
X / d¢ (coshg)*(cosh{)?ewidy, A (£)d(§,5,1)  (3.10)

near the leading singularity in u. Consider, for the pres-
ent, the integral

I=/ d sinh&(cosh§)?do, 2 (£)

—A
X / dt (cosh)entd (&, g1)
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Now use (3.4), which states that as { —— o

8(g10—q12)
BT M cosh§ cosh{

d(P— Q:P_'QI’Q7q1)

x/dvld(ﬁ-é,vhé,gl)-
Thus

1 —A
= E / d sinh£(coshg)?dp, .0 (£) / d¢ (cosh{)2ers

X/dvld(p_ Q,VI,Q,QI)a(QIO_qm) .

The ¢ dependence has now been isolated into the (cosh{)?
factor. The leading pole in u occurs at p=2, that is,

—A 0 11
/ d¢ (cosh{)2ert =~ (%)~ f d cosh{(cosh{) "+~ — ——
—0 A’ 4 M _2

near u=2. Now, using do,,.2(§)=do,_,_, A" 1(—E),1415
and keeping only the leading u pole, I can be written as

I= ( - - ) /d 'nhS( 5)2 —p— l( )
~—_— sl h&)2d —A—1(
) COS. 0,—p—2 E
X/dl ld(P . é;” lygA:gl) .

Noting that do,—,—227!(—%) has a pole in A at A= —2
whose residue is a constant times (cosh£)—2, we can write

; 8(q10—q12) s hé/d (P )
@ —————— [dsin v1d(P-4v1,4,3
M(u—2)(A+2) ‘
8(g10—qa2)

o« Lt T

M (u—2)(A+2)

Thus near u=2 and A= —2 the first term of (3.10) is

Ms(gr0—qi2)

(u—2)(A+2)

dnidvd(v,v1,4,q1) -

MabcAp"(gl) o

(60" —€2?) (en®—e€2?)

X(Eo”—€2°)/dvdvld(v,vl,é,ql). (3.11)

The second term in (3.10) is similar, where again the
integral

/dvdv 14 (vw1,4,q1)

appears as a factor. This integral is the same one which
appears in (3.4), and the fact that it occurs as the coeffi-
cient of 1/(A+2) means thatitis the residue of an 0(2,1)
fixed pole.
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Furthermore, this fixed pole at A= —2 is the leading
A pole in M ,5.47#(g1) so long as there are no Regge tra-
jectories o which have «(0)>1. It now becomes clear
why only the pup,pr term of M contributes to the
leading right-signature fixed pole. In the calculation just
completed, it was critical that there be a pole at p=2 in
order to get a pole at A= —2. A pole at u=1, for ex-
ample, would give a pole at A= — 1 which corresponds to
a pole at J=0 in a Sommerfeld-Watson amplitude, just
as a pole at A= —2 corresponds to a pole at J=1. The
pole at u=2 came from the (cosh{)? factor, which in turn
came from the three factors of p in p.p,px. A term whose
tensor indices were pup.qa, for example, would have only
a (cosh{)? factor which would give a pole at u=1 and
hence at A= —1.

At this point it may also be in order to comment on
the reason why only spacelike g, g1, and (§—g1) were
considered. We have been interested in the large-p
behavior of M . If any of the variables g, g1, or (—q1)
is timelike then $-g, if  is timelike, must go to infinity
with large p. Thus in that case the behavior of M
would be governed by the leading Regge singularities in
the ¢ channel. If there are no «(0)>1, the singularity
which we have found above at A= —2 is greater than
the singularities derived from Regge asymptotic be-
havior, so that the spacelike values of g, g1, and (§—@1)
are the only important ones for our considerations.

In concluding this section let us again go back to (3.4).
For u,y,A\=0,3, we can write

MMV)\(P7x1’x2) — ia(xl—)a(xz—)/dx13dx23
p->0

X (| Ju(X1,%13,0) 7, (X2,225,0) 1x (0) [ ), (3.12)

and M ,,» is independent of u, », X so long as these indices
take on the values 0 and 3. Thus, again the operator
droplet expansion is obtained, this time to third order
in the external potential. However, the higher orders are
trivial once the three-current problem has been dealt
with, so we reach the conclusion that to any order in the
external potential the scattering of a scalar meson off a
static electromagnetic potential is given by the operator
droplet model. We note, however, that this will not be
true for external potentials which are not static, nor will
it be true in general for particle-particle scattering to
higher orders in electromagnetism.

IV. SINGULAR EXAMPLE

There is a different and rather singular way in which
particle size can contract at high velocity. This case will
first be analyzed for scalar currents and then the exten-
sion to vector currents will be discussed.

It will be convenient to use a formalism which ex-
presses high-energy behavior of scattering amplitudes
in terms of a Mellin transform. Such a formalism is de-
veloped in Appendix B. We restate a few relevant results
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for completeness. If

fprg)=—i f d (| TG FOD|p)  (4.1)

and p=(M,0,0,0), then f(p,q)= f(Q,u?), where Q%= gs*
—+¢2%+¢s? and p?= g2 Furthermore,

f(Q7”'2) = Q—ltg(Qﬂ‘Z) +g( _Q7 #2)] ) (42)

with

gQu?) = _i[rdrdng(xo,r)eiqoxo—iQr
and f(zo,r) = (p| T(j()(0))| p). Also,
gQp?)= / 4l Q'gi(u?),

and the leading singularities in the left half / plane are
determined by

21(u?) =2 %et (I / rdrdxg f(%0,7)

#2x0 —1/2
¢8) 20 (x0—7) ]1/2). 3
X[zm_r)] HOut(w—n) 1) . (4.3)

If the leading singularities in 7 of gi(u?) occur at xo=7
but finite %o in (4.3), then again we shall have an instance
where particle size will contract at high velocity. This is
most easily seen by use of an example.

Suppose f(p-x,5%) = (p| T(j(x)j(0))|p) has a singu-
larity near x2=0 of the type

J(p-%5%) <= (3%)77%a(p %), (4.4)

where a(p-x) decreases rapidly in p-x. Then from (4.1)
Hrqat)==i [ d5 ey ratp )t @3)

For large p-¢ and fixed ¢, f(p-¢,¢%) goes as (p-¢)”. This
can be seen by substituting (4.4) into (4.3) and calcu-
lating the leading I-plane singularity at /=a+1. Now
consider scattering off an external potential ¢(x). Then
the scattering amplitude is

1) = / dedty(p| TG 5) o) o),

in complete analogy with (2.1). Suppose now that
¢(x) = ¢(X,25)3(x0). Then

) — / d*xd?ydxsdys

X f(—p(xs—ys), —(X—¥)*—(x3—5))
X Qo(x)xlf) ¢@7y3) )
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or
500~ [ adtsnden f~pr, 2=
X o(%,%3) p(x—2Z, %s—23). (4.6)

However, if v> —1%, the above expression diverges, and
the interaction is too singular to give a meaning to
simultaneous measurements. This is a statement that
(p| j(x,23,0)j(0)| p) has a very strong singularity at
x=0, x3=0. This singularity is too strong to be inte-
grated with a test function over x and x; unless the
test function vanishes at x=0, x3;=0. Of course,
(p| j(x,23,0)7(0)| p) does correspond to a simultaneous
measurement, and it is finite, but the relative proba-
bility of making such a measurement to the « proba-
bility indicated at x=x3=0 by the divergence of (4.6)
makes it difficult to interpret the y> —3% case.

In the range —1<y<—3%, the integral in (4.6)
exists and can be rewritten as

1
fp)=- /dzxdxgd%dv f(—v, —22—1%/p?)

? X Qp(x)x?) go(X—Z, x3—y/P) (47)

for large p, where v= pz;. The large-p limit cannot be
interchanged with the integration because of the
singularity on the light cone. Using (4.4) and observing
that only the region near z=0 and 2;=0 contributes
to the large-p limit, one obtains

d2xdx3d®\dy a(v)
X (24212 o(x,25) o(X,%5) . (4.8)

Equation (4.8) makes it clear that in fact the particle
has shrunk to a point for simultaneous interactions at
high energy.

Thus if the interaction is singular (in the sense that
the high-energy behavior is determined by singularities
on the finite regions of the light cone), then the particle
shrinks to a point at high energies if the interaction is
not too singular: if —1<y< —1%, in the above example.
If the interaction is very singular (y> —1% in the above
example), it appears difficult to give meaning to par-
ticle size without a more detailed treatment of smearing
in time. The question of more than two simultaneous
interactions has not been investigated.

A possibly interesting feature arises in the present
context. To illustrate this feature, we shall display
(p| j(x)7(0)| p) by means of a Jost-Lehmann-Dyson
representation®:11

f() — pPrit /

1 i@)i0) )= f i p () A ()

=f(?'x)x2) ’ (49)

where

() = f a4 e u-=p )
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and where p(%,k?) has bounded support in %. Now from
(4.9) one sees that singularities on the light cone
arise from the large-«? behavior of p(xx«?), apart of
course from the usual §(x?) and possible derivatives of
5(x?). I, for example, p(x,k2) — (k2)7p(x), with y> —1,
then

S 58) 52 (),

as in (4.4). [For the moment we assume that p(x?) is
simply a function.’] However, such behavior means that

Jpra5?) — (+%)777%(0).

This indicates that the strength of the singularities on
the finite light cone and the strength of the singularity
at x=0 are derived from a common source. These
strengths are not necessarily equal, but could differ
by integer powers. Now!6—18

J(x)5(0) 72, Bo@)+ E(2%)2(0)+ - -,

where E, and E; are numerical functions and &(x) is
a local field. Thus we could move away from {=0 and
consider matrix elements like (p|j(x)7(0)|p") with
values of t=(p—p’)? different from 0. Of course, the
leading singularities of {(p| j(x) 7(0) | #") near x,=0 would
be the same as those of (p|j(x)7(0)|p’) by the fact
that ®(x) is local. The arguments following Eq. (4.9)
suggest that the strengths of the singularities on the
finite light cone are then also independent of . This
has two immediate consequences.

(i) The size which depends on singularities on the
finite light cone is independent of ¢. That is, this size,
defined by interaction with an external potential,
shrinks to zero at large velocities for any finite value of .

(ii) If high-energy scattering is actually determined
from singularities on the finite light cone, then the
asymptotic behavior with energy is independent of ¢
as far as the rate of growth with energy is concerned.

These results do not appear to depend on the assump-
tion, used in the*above example, that p(x,%) involves no
derivatives. The central point of the argument is simply
that it is the large-«? region in (4.9) which is important,
and that this region governs both the short-distance
behavior and light-cone singularities.

V. SOME EXAMPLES IN VIRTUAL
COMPTON SCATTERING

We shall now consider again the case of the large-
momentum limit of the product of two electromagnetic
currents for the case where the integrals in (2.10) and
(2.13) do not exist. We shall treat two cases in detail
and then comment on general features of the problem.

16 K. Wilson, Cornell LNS Report No. 64-15, 1964 (unpub-
lished) ; Phys. Rev. 179, 1499 (1969).

17 R. A. Brandt, Ann. Phys. (N. Y.) 44, 221 (1967).

18 W. Zimmermann, Commun. Math. Phys. 6, 161 (1967).
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The first case to be considered will have a nonsingular
light-cone commutator, will obey the scaling law in
deeply inelastic electroproduction,’® and will give a
constant total inelastic electroproduction cross section
at high energies.” In the second example the light-cone
commutator will be marginally singular but the scaling
law will be violated, while constant total cross sections
will result.

A. Nonsingular Light-Cone Behavior
In this section we shall follow the formalism and

ideas of Ref. 7. We restrict our discussion to Ws(v,q%)
for brevity. Recall that

0 1
Wa(v,q? =q2/ da/ db o2(a,b)8(q*+2bv—a) (5.1)
0 -1

for v=p-¢>0, where

1
Walpa)= f dt ew(p|[4,(2),7.(0)]1 )

Yqu vgy
(2o 2

qugy
_<guv_ _M:)Wl(”)q2) ’ (52)
q

and where p2=1. If

/ da o2(a,b) =0 (5.3)
0
and

52(a,b) — 2(a)b~! as b— 0, (5.4)

where G2(a,b) = dc(a,b)/ b, one obtains the usual scaling
property »W(v,g%) — Fao(—v/q®)=Fs(p) as v and ¢?
become large with p fixed. Furthermore, (5.3) and (5.4)
give Fa( 0 )=ws,, which in general is not zero. We shall
now examine the question of the size of the proton at
high velocity as determined by (5.1), (5.3), and (5.4).

It is convenient to consider not the Fourier transform

R 1
Wa(p-x2%) = ——

G ) e W),
T

but rather the function Va(p-x,x?),72 which is related.
to We by Wa(p-ax?)=—0OVa(p-x,2%). Vo can be
written as

Va(p-2,5%) = f— /dadb o2(a,b)et?tr cA(x, a+5%). (5.5)

vy
If we switch to the time-ordered product rather than

1 J. D. Bjorken, Phys. Rev. 179, 1547 (1968).
20 J, ' W. Meyer and H. Suura, Phys. Rev. 160, 1366 (1967).
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the commutator, we obtain

. 7
Vae(p-w,0?) = 2* /dadb o2(a,b)e®? =A (x, a+b2), (5.6)

v
with

(1/2m) P T(ju(*) 50D | p)

= —pupy O Vae(p- 2604+ (5.7)

The other terms in (5.7) will turn out to be comparable
to the p,p, term at large p, but for the essence of the
argument (5.7) will suffice. Then

(1/27)(p| ju(x,%5,0) 5»(0) | p)

= —pMP"[D 1720(?'90,902):” x0=0+ e (58)

We shall be interested in seeing in which regions of
(%,23) Eq. (5.8) is not small when p — . Now for large
p, we can write (5.6) as

Vao(p(x0—23), 42)

i
= — | dadb e+iv0 a9y (a,B)A(x, a-+b2) .

(5.9)
2

Let us first look in the region where |x;3|>>1/p while
%< | x3]. Then clearly only the small-b part of the inte-
gration in (5.9) is important. From (5.4) we see that
o2(a,b) ~a2(a) In|b| for small b, so that (5.9) becomes

V20(P(x0—x3)7 xZ)
~ / dadb o5(@)Ay(x,a) In|b| e®»Gra . (5.10)

Now for large p

/eibgr(ro—ls) lnl bl db=C

)
Pl wo—ws|

where ¢ is a constant. Thus

Vzc(f’(xo*xs), x?) =~ ——6——-— /da a2(@)Ac(x,a) (5.11)
plao—as]

and

[— O VZC(P(xO‘xQ; x2):” 20=0

= ‘ /da az(a)l:A—(—Xz—x32, a)a
Pl

9
+ A‘(—xz——x32,a):|. (5.12)

6x32
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Using (5.12) and (5.8), we obtain
1 . .

—(p| ju(x,25,0) 5,(0) | p)

27

_ Chups
plas|

/da ag(a)[A—(—x2—x32, a)a

+ iA—(—;ﬂ—xg?, a)J (5.13)

ax32

for |x3|>>1/p, and where p is very large.

Except for the finite-size effect due to A™(—x2—x5?, a)
which we encountered in the discussion following (2.5),
the only decrease in size outside the disk |x3|>1/p is
the factor 1/p|x3| in (5.13). Now the amplitude for
an interaction inside the thin disk |xs| $1/p will be
proportional to p,p, times 1/p. The 1/p comes from the
fact that the disk has a width 1/p. However, the ampli-
tude, given by (5.13) for interaction outside the disk,
| %3] >1/p, goes as (pup,/p) Inp. That is, the amplitude

f(p)=—i / Brdy(p jo(x550)7oT,950) | £)
X ao(X,x5)ao(Y,ys)

given by (2.3) goes as p Inp, and this asymptotic con-
tribution can be obtained without approximation by
dropping the region |x3—ys;| <N/p, where N is any
finite number, as the region |x3—y3| <N/p contributes
a term proportional to .

Thus particle size clearly does not contract in a
rapidly moving frame in this large class of models which
give scaling and a constant asymptotic total cross
section for inelastic electroproduction.

B. Example of Singular Light-Cone Commutator

Now we shall drop the assumptions of Sec. V A and
rather assume that the os(a,6) of (5.1) behaves as
o2(a,b) — o2(b)/a for large ¢ with ¢2(0)=0. Then for
v —co and fixed ¢?,

¢* ' oa(b)
Wa(v,g?) = ——f db , (5.14)
21/ 0 b
while for y —w, ¢ ——c0, and »/¢? fixed,
g a—gq*
Wy, 2)=—/daa(a, >
il 2v ’ 2
=(q%/2v) lnw a2(¢%/2v). (5.15)

Equation (5.15) violates the scaling law, as apparently
do all singular commutators. The major difficulty is
that one needs a condition like (5.3) to obtain scaling
while any attempt to obtain a constant total cross
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section, as in (5.14), requires o1(a,b)~1/a if this con-
stancy is to be achieved from a singularity on the finite
light cone. It is a rather simple exercise to show that
this interaction is too singular to permit simultaneous
interaction, as in this example (p| jo(X,%3,0)70(0)]p) is
a divergent quantity.

Suppose that we had taken ¢s(a,b) — oo(b)a¢ for
large @ where 0<e<1 and taken 02(0) constant where
02(a,0)= 852(a,0)/0a. Now the integrals in (2.10) and
(2.13) do not diverge but the steps leading to the
equations represented by (2.10) and (2.13) are no longer
valid, as again (p|7o(%,23,0)70(0)|p) is a divergent
quantity for large . This shows up in the fact that the
impact factor F(x), which one would obtain in this
example, goes as (x%)72*¢ near x=0. A singularity of
this strength is too strong to be integrated over without
regularization. High-energy behavior cannot be the
only criterion for shrinkage of size to a thin disk.

APPENDIX A: O(2,1) FORMALISM FOR
MULTIPARTICLE AMPLITUDES

In this Appendix we shall develop an O(2,1) formalism
for multiparticle amplitudes which exhibits nonsense
fixed poles in an explicit way. We shall consider first
the four-point function, and in the following subsection
a formalism will be given for the five-point function.
The other #-point functions which will be needed in
this paper will be obvious extensions of the analysis
carried out for the five-point function.

A. Four-Point Function

The relation between the O(2,1) harmonic analysis
and the Froissart-Gribov continuation of the partial-
wave amplitude has been discussed by Olive?! for the
case of four-point functions where all the external
momenta of the four legs are timelike. In the case
considered by Olive, there are no fixed poles in the 0(2,1)
amplitudes at wrong-signature nonsense points. How-
ever, if two of the external particles have negative
mass, then this analysis must be modified. This will be
done for the case of spinless particles in what follows.

Consider the process shown in Fig. 3, with pi2= py?
=m?>0and ¢:2= u12<0, g22= u2?<0. Work in the Breit
frame defined by

pe=(M*—3)'?, 0,0, (i)',
pr= (=317, 0,0, —(~101),
where !=(po—$1)2<0. Furthermore, suppose that
32*=(g2)o*— (g2)1’—(g2)2*<0

(A1)

and
g1*= (q1)o*— (g1)1*— (¢1)22< 0.

If these last conditions are not fulfilled, then again
there will be no wrong-signature nonsense fixed poles

1 D, Olive, Nucl. Phys. B15, 617 (1970).
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F1c. 3. Kinematics for the 2 j !
four-point function.
P, 9

in 0(2,1) amplitudes. This point should become clear
in the following discussion. Label ¢; and g» by

—p1 e —1
1= <Q, ——————— | =(910,911,912,413)

2(—pv2
(A2)
(_ —u12+.u.22+t)
q2 9, 2(_01/2 )
with
d=|q| (sinhg, cosh{ coshe, cosh sing).  (A3)

For the amplitude describing the process shown in
Fig. 3, we can choose ¢=0. This choice can be made
since the amplitude can only depend on invariants
which are independent of ¢. Let f be the invariant
transition amplitude describing this process. Then f
can be expanded according to!4-1®

169= 5 [6®ns@r00, @
with ! ’
S0 = / dsinht (LA, (AS)

The do,,0* are special cases of the representation func-
tions of 0(2,1) in a mixed O(2) and O(1,1) basis,
D, i (0,8,8). [m is an O(2) quantum number while
is an O(1,1) quantum number.]| Explicit formulas for
these functions in terms of hypergeometric functions
are given in Refs. 14 and 15. A mixed basis is appro-
priate here, since g2 <0.
For m=0, u=0 we have

do,+04(§) = —n~ T @-D2Q, (i sinhf) , £>0
do,—o2(§) = —meirA—DI2[ ), (—1 sinh§)
—inPy(—isinhg)], £>0 (A6)
do,—*(—E)=do+*(8) ,
£<0.

do,+0A(" 5) =d ,—OA(E);

Thus, for example,

()= f dsinht f(LDdas D). (AT)

Using the above formulas for the representation func-
tions, one finds that f;2(f) has a pole at A=0. The
fact that this pole occurs at A=0, rather than at A= —1
as might be expected, can be understood by the follow-
ing argument. Suppose one considers the process de-
scribed in Fig. 4, where  is the same as given in (A1),
d is as given in (A2), and p'=up, where « is an 0(2,1)
transformation. We take all particles spinless. This
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p P P q
Fi1c. 4. Schematic diagram of (A8).

process can be written as

a(u)= f 2 b(e(g ),

(A8)
g=R2(<P)Bx(E)BU(§-) 3

Z=R.(¢)B:(t), dg=d¢dsinh¢,
where integrations over dg; and d|g| are ignored since

they do not enter into the group-theory arguments.
If we carry out an O(2,1) analysis

ar= / du a(u)DooA(”)
=f dudg b(g)c(g~'u)Doo* (1)
=3 / do(u)dudg b(g)c(g~"4)Do,pu*(§)D pu,o* (g '0t)

=2 f do(n) / dg () Do .u(8) / du c(u)D puo (1),

and use
/du c(4)D ()

=(2m)25(ip) / d sinh£ ¢(sinh§)d o, (£)
= (2m)26(iu) /d sinh£ ¢(sinh£)do,—p62~1(8),

/ 020(8) Do, (g) = (21) f d sinh b(sinhe)da,(E),

then we obtain

a=Qe) L bt =att,  (A9)
P

where || and ¢; integrations are understood. Now b,4
has a pole in A at A=0, while ¢c_,741 has a pole in A at
A= —1.Thus ¢* has first-order polesat A=0 and A= —1
as its leading fixed poles.

We can now see why the vector g, as defined in (A2),
must be spacelike for a nonsense wrong-signature fixed
pole to appear in an O(2,1) analysis. We have seen that
such a fixed pole comes from a pole in the representation
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function. O(2,1) representation functions described
purely in an O(2) bases have no such poles.’® An O(2)
basis occurs for timelike § and an O(1,1) basis occurs
for spacelike ¢. Since P is fixed to be timelike, it is
necessary for g to be spacelike in order to avoid having
the 0(2,1) functions in a purely O(2) basis. This is
not the case for right-signature fixed poles since they
arise from divergences in integrals over the group
volume in an 0(2,1) analysis.

B. Five-Point Function

Consider the process whose momenta are described
in Fig. 1. Again label the first three components of
po by P, that is, p= (po,p1,p2), and similarly for g;. As
before, we take all particles to be scalar. We use the
representation

p=(M2—1f)12(cosh£ cosh{, —sinh{, sinh sinh() |

p=up, p=*—1)"*(1,0,0)

u=DB,({) Ba(£).

Also, choose g=|7|(0,1,0)=¢. We shall later argue
that only spacelike ¢ and g; will be important for the
question of fixed poles, as was the case in the four-point
function.

The amplitude for the process shown in Fig. 1 can
be expanded as

f(ﬁ ° Qaﬁ * QI;Q‘ ql) =f(u—lg7u_lgg1:g1)
-y f dp(A)do () Do (1 1g) fud(gs), (AL0)

with the inversion

Foib(g) = f @ [(0gg0Dond@), (Al

where
v=R.(¥)B.(c) By(8)
—wo Lo, —wolalw, 0<y<2r
dv=dyd sinhf dB,
and
ﬁzuﬁ ) ﬁ: (M2—%t)”2(1,0,0)
7=g4q, ¢=141(0,1,0)

Gi=gpdr, ¢=1a3:/(0,1,0).

To see that A is actually the label of the usual Casimir
operator, we form the amplitude, shown in Fig. 2,

o(p-F)= f a0 bB a0 F gz . (AL2)

Neglecting those variables invariant under O(2,1)
transformations and keeping only that part of the phase
space relevant to the O(2,1) group structure, we can
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write (A12) as

a(u) = / d*gdgib(ug,u""gg1,81)

Xe(v g v ggng), (Al3)
where
P'=vp', F'=(1—3)12(1,0,0),
g=R.(¢)B(§), d?¢=ded sinh¢,
0<<2r, —o<Et<®
8§1=R.(¢1)Bas(£1) , d?g1=d¢id sinhf, )
0<e1<2r, —wo<fH<©,

Equation (A13) can be diagonalized as

= / d(u)a(uw 1) Do (u—0)

=2 f d(u"0)d*gd’grdo ()b (w g, "gg1,81)
»

X5(”—lg,v—lgghgl)DO.pnA(u_lg)Dpu.OA(g-lv)‘
Using D,,,¢*(g ) =Dy, ., (v"1g), we obtain

A=y / oo (Wb (§1)cpi(gr). (A1)

Equation (A14) is the three-particle analog of (A9)
and shows that the A of (A10) and (A1l) actually is
the usual A appearing in expansions of elastic scattering
amplitudes.

Nonsense fixed poles of b,,2 and ¢_,_, 72! in A again
appear through the A poles of Dy, % in (A11). As we
have noted in Sec. III, gi, o, and § must be spacelike
in order for the poles in u of 4,,* and ¢_,—_, 4! in (A14)
not to arise only from Regge asymptotic behavior. In
general, the fixed poles in u will involve & functions of
part of the group volume g; in (A14), as illustrated in
(3.11) and the three equations preceding (3.11).
However, the & functions in g, will be integrated over
when one considers a physical amplitude such as the
one given in (A14).

The extension to the (#-4)-point function is now
obvious. The analog of (A11) is

fp#A(gl;g27 .. ')gﬂ) =/d7) f('U,’Ugl,'ng, oo 308ns81,82 - - -;gn) )

while the analog of (A14) is

aA':E [da’(ﬂ)ngldzgz‘ --d? ﬂbPﬂA(gbgz: . ':g”)
XG—P—ﬂ_A_l(g17g27 e ;gn) .

APPENDIX B
Consider the amplitude

fg)=—i / d* e2=(p| RG() 1)) 2),
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where both the particle whose momentum is p and the
current j are scalar quantities. If p=(4£,0,0,0), then

(PR (%)7(0)) | p)= f(x0,r) and
@ =FQut) = —i / d e f(zor),  (BI)

where Q%= g1*+¢2*+¢s? and u?=g?% The angular inte-
grations can be completed to give

2w
f(Qn“z) = E /7dfdx0f(x0’7)eiqozo(e—iQr_eiQr)

=[g(Qnu'2)+g(—Q3 ”2):10—1) (BZ)

where
2(0,u?) =2x / rdr %of(%o,r)eiwr0—Rr (B3)

g can be represented in terms of a Mellin transform as

1 —a-+17%0
£ = — f dQ'g(?), a<0  (B4)
2w —a—io
with the inversion
i) = f 40 0~ 1g(Qu). (B3)
0

Substituting (B3) into (BS), one obtains

01(u?) = (2r) f rdrdzy [(zo) ] dQ Q--igimeier, (B6)

The poles in the left half / plane are determined by the
asymptotic behavior in Q, so one may use go= (Q%+ u?)1/?
~Q+u2/2Q for the leading’poles. In this approximation,
(B6) becomes

e~ (2r) f rdrdao f(zo) f dQ 0+

Xepr:iQ(xo—r)-l—il;—g]] . (B7)

Now?2
f dQ Q1 exp[iQ(xo—r) -I—i—ZiQ—xo]

140

/2
=i1re""”zl:2(xo_r):" HOC2ua(wa—r)]), (BS)

27, S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series,
and Products_(Academic, New York,11965), p. 340.
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so that (B7) becomes

21(u?) =2m2ieiri? / rdrdaxof(xo,r)

#Zxo —1/2
X[Z(xo—f)] Q= 11 (B9)

From (B9), one can determine which regions in
coordinate space give the leading singularities in ! and
hence are responsible for the leading terms at high
energy in g. Using

—i r 1 1 )
Hl(l)(z> RN %Z_l —%‘Zl 6—11rlj| ,
=0sinml” T(1—1) ~ T(+1)

we note the following properties of

#2x0 —~1/2
[ ] Hl(l)(l:zﬂzx()(xo_r):ll/z):h(xo)rﬂ"'z):
Z(xo——r)

(i) As xo—o with xo(xe—7) finite,

h(aco,r) — (aou®) [ 2o (o —7) J/2H 0

X ([2u*xo(20—7)1"2),
or equivalently,

h(o,r) = (x0—7)'[Fuxo(oco—7) J7H2H,

X ([(2uxo(wo—7)12).
(i) As xo(x9—7) — 0,

h(so,7) — —

sinwrl

[(%xouz)—l
r(1—0)

—(%o—7)*

e—i'lrl] .
L(+1)
(lli) As X9 —> X0 and xo(xo—i’) —w,
—1 s\ 12 2
h(xo,r) — /._) ( e
sinwl\m 2(xo—r)
X {cos([2uxo(x0—7) ] /245w —4m)

—cos([2utta(ro—r) ]V —lm —m)e 1)

—1/2
) [2u2x0(xo—7) 71/
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From these expressions and (B9), one can see that
singularities in g;(u?) can arise from regions in coordinate
space which are a finite distance from xo=7r=0 as indi-
cated by case (ii), or from regions which are infinitely
far from the origin as in case (i). For example, suppose
flowo,r) — %0 f(x?) as xp—>oo for fixed 2. Then from
(i) and (B9),

2 1/2 po
gl(M2)z21r2ie”/2(—;> f dy y* f(2y) H:, @
0

o

X (a1 / dr roct
A

27r2iei7r(a+l)l2< 2 ><a+1)/2

T i—(at+1) \g?

x f dy y(+0121(2y) HaD((2u%9) 1)
0

near /=a-+1. This pole in / at a+1 corresponds to an
asymptotic behavior of f(Q) in (B2) whichis f(g) — Q.
This is the typical way in which a Regge pole arises in
coordinate space, as can be verified explicitly in a
¢3-type theory. If there are also strong singularities on
the light cone, xo=7, then the singularities in / from
xo= o and from xo=7 are additive as indicated in case
().

The above formalism can be used for operator pro-
ducts other than the retarded product with a minor
modification. Other operator products will, in general,
not vanish outside the interior of the forward light cone,
in which case one must go around the branch points at
xo=7 and at xo=0in

Fou? _”2[1 W22 1/2
[Z(xo—r):l KO Qolo=r) 1)

In the first instance one should take xo—7 — xo—7—1e,
and in the latter instance, w2xo— u?co—ie. These
prescriptions follow immediately from the integral
representation (B8).



