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£n,E.% ) In terms of the Green’s function K® and the phase-space distribution function ®®:
N=/' ‘ -fd?{zx}deoH explubn2+rH*2+(\+5) | 6] H-ban* — fi*a]
=1

X IT K9 (ron® et | oac1— 2via1* — (A 3) o1, axr* - 2ubr—1+ (A -3) r-1%,10-1)

A=2

XK ®(z1,21% 1] 20,50%,£0) @ @ (z0,20% t0) . (D17)

The normally ordered time-ordered correlation function I'z"? may be obtained from (D3) and (D17). We stress
that in (D17) @ is eny mapping characterized by a filter function of the form given by (D1). With the special
choice corresponding to mapping according to the antinormal rule one has uy=»=0, A= —% (cf. Table IV of I)
and Egs. (D3) and (D17) may then be readily shown to give formula (5.38) derived in the text.

PHYSICAL REVIEW D VOLUME 2, NUMBER 10 15 NOVEMBER 1970

Derivation of Equal-Time Commutators Involving the Symmetric
Energy-Momentum Tensor and Applications*

H. Genzt
Lawrence Radiation Laboratory, University of California, Berkeley, California 94720

AND

J. Karz
Purdue University, Lafayette, Indiana 47907
(Received 28 January 1970)

The use of covariance and the Jacobi identity in the study of equal-time commutators is investigated.
Denoting by T, the conserved and symmetric tensor density of Poincaré tranformations and by X any of
the operators ¢, dop, Jo, Ji, or Joi, we use the most general form of the equal-time commutators [27,(x),
X (y)]and [iT0(x), iT00(y) ] compatible with covariance, together with the Jacobi identities for [T (),
iT00(y)], X ()], to derive relations between the equal-time commutators [370m (%), X ()] and [iT(x),
Y (y)], where Y is any of the operators denoted by X or (¢, 8“0, 947, and 3°J ,,. This information is first
used in deriving equal-time commutators in canonical models. We then show that the assumption of SU (2)
®SU (2) charge-current commutators together with [A¢*(),§ (¥) Jeg=yo < ¥ (%) 7#v58 (x—Y) (where 4, denotes
the axial-vector current and ¢ denotes a spinor field) implies (as obtained earlier by the authors under differ-
ent assumptions) [4 (%)% ()0 Jegmyo = 3¥ (¥) V57728 (X—¥) +3 (y—2) s[4 * (®),fm| (%) Y0 Jeg—yo [Where f denotes
(#y*d,—m)y]. For the conserved vector current an analogous relation holds. The incompatibility of field-
algebra current commutators with /"d3s[ A% (%) ,¥ (%) vvJeo=ye =< ¥ () vsvs is noted. Taking ¢ to be the nucleon
field, it is shown that a certain form of the nucleon current leads to the above unless the right-hand side
vanishes. Imposing this requirement, one then obtains g4, =g,, where g4, (%) vsv*(r%/2)¢ (x) [g,0,&(x)v*
X (72/2)¢ (x) ] denotes the contribution of 41 (p) to fm in terms of the renormalized field ¢, (v,%). From this
and the usual saturation of the Weinberg spectral-function sum rules by single-particle intermediate states,
we obtain the universality relations g,=m,%/f, and ga,= (m,/ma;)*ma.2/f4,, where fa, (f,) is defined by
pay (m?) =f4,26(m®—ma®) [p,(m?)=f;28(m?*—m,z?)7]. For currents obeying the algebra-of-fields commutators,
we obtain restrictions on Schwinger terms contained in equal-time commutators involving time derivatives
of the currents. These relations show, for example, that in canonical realizations of current-field identities one
needs derivative couplings of the spin-1 field.

I. INTRODUCTION

tors of Poincaré transformations may be written as
T is generally assumed!™” that in relativistic local '

field theories a.conse‘rved and symmetric local tensor P,= / %% Tou(%) (1.1)
operator T, (x) exists with the property that the genera-
* Supported in part by the DAAD through a NATO grant and and
in part by the U. S. Atomic Energy Commission. _
T Present address: Lush’tut fiir theoretische Kern physik der M= | &*x[x,To() —%,Tou() ]. (1.2)

Universitiit Karlsnuhe, Karlsnuhe, Germany.
17J. Schwinger, Phys. Rev. 130, 406 (1963); Nuovo Cimento

30, 278 (1963).

2D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967).

8 R. Jackiw, Phys. Rev. 175, 2058 (1968).

4D. J. Gross and M. B. Halpern, Harvard University report,
1969 (unpublished).

§ H. Sugawara, Phys. Rev. 170, 1659 (1968).

8 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

Denoting by ¢, ¥, J,, and J,, (defined as J,,=9,/,
—9,J,) local operators with spins 0, , 1, and 2, respec-

(1969) ; M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).
7T. K. Kuo and M. Sugawara, Phys. Rev. 163, 1716 (1967).
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tively, one finds that the equal-time commutators
(ETC) between T, and these operators (and between
the T,’s themselves) are partly determined by co-
variance%89 [see Egs. (1.14)-(1.20) and (1.24)-
(1.29)]. As may be read off from Egs. (1.14)—(1.20),
the non-Schwinger terms (NST) and the first-order
Schwinger terms (FOST)—the canonical terms—in the
ETC [T0(x),X (y)] are completely specified by co-
variance, whereas in the ETC [T, (x),X (y)] only the
NST’s are completely determined this way while the
FOST’s are shown to satisfy relations (1.30)-(1.35).
These ETC’s have some immediate applications which
we discuss next.

Turning first to Eq. (1.17), we remark that it follows
from this that the Gell-Mann condition®1

[ostizu@aon-one 0y
is equivalent to'!
N%Jo) 9 )
— e —— 70, (ka} () =0. (1.4)
a=2 0%y 0%kq

As we shall also see below, for canonical currents the
noncanonical terms (NCT) jo, ()% are absent!?!?® so
that Eq. (1.3) holds in this case. In addition it is
frequently assumed®'* that only the scalar part of 7',
breaks the symmetry so that

[astiTe@.no=o. (1.9)
From (1.26) we see that (1.5) is equivalent to
N™(Jo) O )
— o, 1) (%) =0. (1.6)
a=1  0Xg;  OXke

In Sec. IIT it is seen that in certain models®™# jq, (z,)™

8 H. Genz and J. Katz, Nuovo Cimento 694, 15 (1970).

9 H. Genz and J. Katz, Nucl. Phys. B13, 401 (1969).

10 Tn Ref. 6 this relation has been used to derive the transforma-
tion properties of current divergences assuming the behavior of
Too under the chiral group. Since (Ref. 6 and, e.g., Ref. 14) this
application provides possible experimental tests, it is of interest to
derive further consequences of Eq. (1.3) [as done in Eq. (1.47)
and in Appendix A .

11 We denote the set ki,...,ka (@>2) by {ko} (where summation
over repeated {k.} is understood). )

12 The absence of NCT in Eq. (1.17) has been obtained for
canonical currents in Ref. 2 by means of Schwinger’s action prin-
ciple (Ref. 1). Another derivation of this result has been given in
Ref. 3 and in the Appendix of Ref. 9 (using the formalism of
Ref. 32).

13 We)restrict our attention to the contributions of basic canoni-
cal fields with spin 0 and 3. .

14, Ellis, Nucl. Phys. B13, 153 (1969); P. R. Auvil and N. G.
Deshpande, Phys. Rev. 183, 1463 (1969). .

1s We restrict our attention to the contributions of basic canon-
ical fields with spins 0 and § and assume a Lagrangian not involv-
ing derivatives of the fields carrying spin (see also Ref. 16).

16 1t has been shown (Ref. 17) that canonical realization of
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vanishes so that Eq. (1.5) holds in such models. Further-
more (Sec. III), for fields ¢ proportional to canonical
ones, the NCT’s in Eq. (1.15) are absent,!® and thus

/ I iToo(e) F 0] = 99 (v —b0R @re,  (1LT)

in analogy to Eq. (1.3). [Conditions under which the
additional Egs. (3.37)-(3.42) hold are also investigated
in Sec. I1L.]

As a consequence of Eq. (1.31) [Eq. (1.33)] the ETC
of Ty, with fields of spin % (space components of
spin-1 fields) must at least have first-order ST. Since
the ETC between the time-space components of the
canonical energy-momentum tensor ®,,, with any field
which is proportional to a canonical one does not have
ST, this property distinguishes the generators of local
Lorentz transformations 7, (the symmetric energy-
momentum tensor in canonical theories) from ©,,.
Canonical models in which both coincide therefore only
contain basic fields of spin 0 (the generalization of the
argument to canonical variables with spin higher than 1
should be obvious) and thus no fermion operators at
all. Therefore, in the models of interest to us, one can-
not assume Eq. (1.2) with @, replacing T,,. However,
it turns out (e.g., Sec. III) that the commutator
[ Tou(x)— Oou(x), jo(y)] vanishes in a large class of
models and thus the calculation of i[ T, (x),70(y)] may
be simplified by considering instead i[ @0, (x) jo(y) ]2

It is the main purpose of the present paper (Secs. IT
and IIT) to derive restrictions on the canonical and
noncanonical terms in Eqgs. (1.14)-(1.20) and (1.24)-
(1.29). It is in view of the applications made?—4/6.8.9.14
of these relations (see also Sec. IV and Appendix A)
that a systematic investigation is desirable.

The results obtained in Secs. IT and III are of dif-
ferent generality. Whereas in Sec. III we calculate
ETC’s in canonical models (the results are described
in statements 1-3), Sec. II depends only on the assumed
validity of the Jacobi identities? for [[470o(x),:T00(y)],

PCAC and current-field identities require couplings involving
derivatives of ¢ (which we allow here). We shall see (Sec. IV) that
for any (i.e., without restrictions on the basic fields) Lagrangian
realization of these identities derivatives of the spin-1 field are
also present in the interaction Lagrangian.

17 H. Genz and J. Katz, Nuovo Cimento (to be published).

18Tn Ref. 3 this conclusion has been obtained for canonical
theor%es involving only basic fields of spin O (i.e., no fermions
at all).

19 This conclusion has been obtained in Ref. 8 for theories ful-
filling the condition of Ref. 15.

2 Of course, ©,, may be used in any canonical theory as long
as it is not interpreted as a generator of local Lorentz transforma-
tions (see Refs. 3, 8, and 9 for examples).

2t We will assume in this paper that the equal-time limits con-
sidered exist and that the Jacobi identities employed are valid.
[See J. Katz and J. Langerholc, Phys. Rev. 184, 1577 (1969),
for a discussion of equal-time limits and their possible nonexis-
tence.] Occasionally we shall also assume the associative law. For
brevity we shall refer to the consequences of assuming the Jacobi
identities for [[2700(%),2700(y) ],X ()] without imposing any re-
strictions on the possible NCT in the ETC [47(x),X (2)] and
[iT00(x),T00(y)] as “consequences of covariance.”
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X (2)] (where X denotes any of the operators ¢, ¥vo,
Jo, J1, Joi, or do¢p) and on the transformation properties
of T, and X under Lorentz transformations. The results
of Sec. II are then used in obtaining?? some of the con-
sequences discussed in Sec. ITI [Egs. (3.20), (3.24), and
(3.25)], but we would like to illustrate here possible ap-
plications by deriving the commutator [T (%), J0:(v)]
in the Sugawara model,’ in which we have

/ BYY=2)m[Toa®),J1(@) =g m(z).  (1.8)

Then we use (2.21d) [and the absence of NCT in Egs.
(1.17) and (1.18) for the Sugawara model] to see that
at most NCT of second order contributes to the com-
mutator under discussion. Using (1.8) and (B4), we
obtain

[iToo(2),J0(y) ] 5
= 30]01(90)5(X—Y)+Jkl(y)(—9x—5(x—}’) . (1.9

(Of course, the above result would also follow by direct
calculation, a procedure which involves ambiguities due
to products of fields at a point which is avoided by the
derivation presented above.)

Absence of NCT in Eq. (1.21) may be made plausible
by assuming Schwinger’s action principle,' which may
be used to obtain

[iToo(x), iT0o(y)]

Ié] i)
=1Tou(x)—0(x—y)+iTor(y)—d(x—y). (1.10)
X 0xy;

However, our results do not depend on this assumption.

Next we would like to make explicit?®® the con-
sequences which Egs. (1.1) and (1.2) together with
the transformation properties of X have for the com-
mutators [£7,(x),X (¥)]. To describe a possible deriva-
tion, we consider the commutators involving ¥ry,.
Assuming only existence of the equal-time limit, we
may write

)
[iTo0o(2) ¥ (¥)vol=X(x)6(x—y) +Xk(x)675(x -y)

N

9 3
+ 2 Xa®@)—--
a=2

Xk1 Xk

s(x—y). (1.11)

Note the particular choice of the arguments of the ST
in the above equation. This may always be achieved

22 An analogous derivation of Eqgs. (3.24) and (3.25) was given
in Ref. 3.

2 We have not written explicitly the contributions of ST of at
least second order. As in Eq. (1.11) they are understood to be
written with arguments at y. For example, their contribution to
Egs. (1.17) and (1.18) is given by fu; {5 () (8/0%(1,})8 (x—9).
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and will prove convenient in what follows. From the
Heisenberg equation of motion [using Eq. (1.1)], we
find

AW (Dvo=X(y)— *Xi(y).

Writing Eq. (1.11) for y,=0, multiplying by z, and
integrating over X, we find by use of Eq. (1.2) from the
known transformation properties of  under boosts

()= O)vk, (1.13)

which determines the CT in Eq. (1.15). Applying the
same reasoning to the other operators denoted by X,
one obtains the results® (see also Refs. 2-4, 8, and 9)

LiT00(2),8(y) I= 00 ()8 (x—y),, (1.14)

[T 00(%),¢ ()70l
= 0 (0) 7,0 (X—Y)+3¢ (x)y: 9% (x—y), (1.15)

where we have defined

(1.12)

>

w=0,—0,. (1.16)

One also obtains

[iT00(x), T o(y)] s
=98], (x)8(x—y) +Jk(x)a-5(x —-y) (1.17)
Xk

[which has been discussed in Ref. 1 (second entry) as
well as in Ref. 24,
LiTo0(),Tu(y) 1= Joa()3(x—y)

a
—Jo(x)—a(x—y), (1.18)
dxt

[T 00(%),J () 1= 8T 01(x) 6 (x—y)

d
+J kz(y);;é(x—y) , (1.19)
[iT00(x),008(y) 1=leb(x)6(x—y)
l¢]
+orp(x)—d(x—y), (1.20)
axk
and
a
[iT00(x),6T00(y) 1= 1T ox(x)—5(x —y)
axk
fé]
FiTou(y)—o(x—y). (1.21)
axk

NST are absent in Eq. (1.21) since 9*7,,= 0+T,,=0.
From the transformation properties of 7T° 0o(x), it also
follows that

(8/ 0% tka))too; k®(x)=0 (1.22)
and

a(8/9% (ka))too; (1) P (2) = 0. (1.23)

% H. Pagels, University of North Carolina report (unpublished) ;
(private communication).
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We next use Eq. (1.1) for u=m to obtain®

[T om(),6(y) 1= Omp (%) (x —) ,
i (y)—0(x—Y),

(1.24)
Xl
LiTom(%) ¥ (¥)v0]= 0 (x)v08(X—Y)
[¢]
+X0m(y)—d(x—y), (1.25)
Kk
fé]
[iTom(x),Jo(y) = —Jo(x)—8(x—y)
ax™ 5
+ 7o, ™ (y)—d(x—y), (1.26)
axk
[T om(x),J2(y) 1= 0T 1(x)6(x—Y)
i)
+ () —o(x—y), (1.27)
6xk
LiTom(x),J 01(y) 1= 0mJ ar(%)8(x—y)
[¢]
+jo " (y)—o(x—y), (1.28)
axk
and
a
[iTom(x),000(y) 1= —3095(90);9;;5(31 -y)
a
+o, " (y)—0(x—y). (1.29)
axk
Using Eq. (1.2), we further obtain
— o™ () +¢x"%(¥)=0, (1.30)
=X (@)X () i
=)V YmYa— 3P () Y0gmn, (1.31)
— Jo ™ (3)+ Jo; % () =0, (1.32)
— 750+ i () = g n(¥) — g (), (1.33)
— Jo ™)+ Form® (V) = gurS om (y) — gm0 (), (1.34)
and
— o kom(y)+¢0;m0k(y)=0' (135)

Before discussing applications of the results described
above, we proceed to introduce our basic assumptions
and notations concerning ETC between currents and
fields. We will restrict our attention to chiral SU(2)
®SU(2) and assume the usual ETC between charge
densities. The currents 4,%(x) and V,*(¢) (a=1-3)
will be denoted by J,*(%) (a=1-6) with J,*(x)=V,*(x)
for a=1-3 and J,*(x)=A4,3%) for a=4-6. The
structure constants e®*¢ are then defined by

[Joe(x),J 0 () ]=1e°J ¢ ()5 (x—y). ~ (1.36)
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For the fermion field, we will occasionally assume?®

(A @) P () ]=—rab(@)ysresx—y). (1.37)

It follows?® from this (by an appropriate choice of the
phase of 4), assuming the usual ETC between charge
densities, that

[Jo*(#)¥ (3) 1= 3 (x)T6 (x—y), (1.38)
with
Te=re for a=1-3 (1.39)
=374 for a=4-6.

Turning next to the applications of Eqgs. (1.14)-
(1.21), we note that the connection between usual
ETC of charge densities, ST in [Jo%(x),0%J,%(y)], and
current-albegra commutators has already been partly
discussed.?37 The discussion given in Refs. 2 and 3
made use of Eq. (1.17) and assumed for the main con-
clusions that NCT were absent, while in Ref. 7 use
was made of Lorentz invariance, and it was assumed
that the ETC occurring in that derivation (7, was
not used in Ref. 7) contain at most a FOST. It was
then shown??7 that usual current-algebra commutators
follow, provided that

(e—=y)m[ T o*(%),047,°(y) 1=0,

i.e., the above ETC contains no ST.
In Refs. 8 and 9 it was shown that in certain models
it follows from Eq. (1.37) that®

[ (@) () vo]= 3P ()T *vmd (X—Y)

(1.40)

Fi(y—2)mlSo* (@), ! ()70,  (1.41)
where f, is defined by
Jn (@)= (iy*9u—m)¥ (x) (1.42)

for any m. [As noted in Ref. 9, Eq. (1.41) may be ob-
tained for conserved currents, using direct consequences
of covariance,? from the Heisenberg equation of motion.
Also for conserved currents the x-integrated Eq. (1.41)
is a simple consequence of the Heisenberg equation
of motion.] Absence of ST in the ETC’s [Jx*(x),
Y (y)vo] and [94J,(x) ¥ (x)] was also derived in Refs.
8 and 9.7 This result may be combined with Eq. (1.41)
to see that [Jo*(x),/T(¥)ye] contains at most a FOST.

25 This commutator has frequently been used in the literature
[Refs. 8, 9, and 26] and no contradictions with experiment have
been found. [See S. Weinberg, Phys. Rev. 166, 1568 (1968), for
another proposal.] See also the following: J. Rothleitner, Nucl.
Phys. B3, 80 (1967) ; M. Sugawara, Phys. Rev. 172, 1423 (1968);
M. K. Banerjee and C. A. Levinson, University of Marlyand
Technical Report No. 857 (unpublished); A. M. Gleeson, Phys.
Rev. 149, 1242 (1969) ; H. Gengz, J. Katz, and S. Wagner, Nuovo
Cimento 644, 218 (1969); H. Genz, Phys. Rev. D 1, 659 (1970).

26 H. Genz and J. Katz, Nuovo Cimento 644, 291 (1969).

27 To obtain the results given in Refs. 8 and 9 it was assumed in
Ref. 8 that NCT were absent in the ETC [@q0(x),J*(y)] and
[i®00(x) ¥ (3)vo]. The absence of these terms was derived in Ref.
8 for canonical currents and for fields proportional to canonical
ones in Lagrangian field theories. In Ref. 9, the absence of NCT
in [4T00(x),J ()] and [T 00 (x),¥ (¥)v0] was assumed.
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It is the first purpose of the applications made in Sec.
IV to derive Eq. (1.41) from covariance and Eq. (1.37)
alone and to discuss the dependence of the results of
Refs. 8 and 9 on the absence of NCT in Egs. (1.15)
and (1.17) (as is the case for certain models discussed
in Sec. III).

We next illustrate?® applications of Egs. (1.14)-
(1.21) by considering the Jacobi identity for [T o(x),
[Jo*(),7¢%(2) ]].2 We thus write

[Jo°(5),047 2 (z) J6(x—2) — [ Jo?(2),04T u*(x) J6(x —y)
—1e7%¢94J ,%(2)0(x—y)o(y—z)

d
=[Jo*(2),J k“(x)]gﬂx—y) —[Jo*(),7 %) ]

a
X —b8(x—2z) —iebeeJ 1¢(x)d(y —z)

6xk

I¢)
X 5——5 (x—2)+Z(x,9,2).

Xk

(1.43)

In the above equation, we have denoted by Z the sum
of terms which depend on jo, {£,}®. Owing to covariance,
we have

/ d3x Z(x,y,3) = / d¥x 22 (x,y,2) =0. (1.44)

Note that if one assumes Eq. (1.3), then one may also
write

] d*yd®z Z(x,y,2) =0. (1.45)

Next we multiply Eq. (1.43) by (x—y)n, integrate
over X and z, and use Eq. (1.44) to obtain (as a result
of covariance, and the ETC between charge densities
only)

[0X (50 Tm(s)Jmieb*eT u(y)
+ / Fely—2)nlTo*(0),047,5() 1. (1.46)

Assuming Eq. (1.3), we then obtain from Egs. (1.43)
and (1.45)

[Q°(%0),047* (%) ]— [Q°(w0),04T u*() ]

=deetegu] o(x). (1.47)

The above relation has been derived in Ref. 7 by use
of Lorentz covariance and the assumption that at most
a FOST is present in the ETC’s [Jo%(x),0*J,%(y)] and
[Jo*(x),Jx*(»)]. In Ref. 3 it was obtained assuming
absence of NCT in Eq. (1.17). Our derivation shows
that it is a simple consequence of Eq. (1.3).

28 This derivation differs from that given in Ref. 2 in that Eq.

(1.40) is not assumed and from that given in Ref. 3 in that we allow
for the possible presence of NCT in Eq. (1.17).
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From Egs. (1.40) and (1.46), evidently the usual
charge-current commutators follow.2®7 From covari-
ance we derive in the Appendix the absence of ST in
[Jo*(x),0%7 ,2(y)] for currents which obey field-algebra
commutators with charge densities. Also in the Ap-
pendix the usual? symmetry relations for the FOST in
[Jo*(x),J n?(y)] are obtained from assuming at most a
FOST in this commutator. The Appendix, in which we
employ the methods of Refs. 2 and 3, is independent of
NCT in Eq. (1.17) and contains also a discussion of
the further consequences of Eq. (1.3). This investiga-
tion is motivated by noting that only for canonical
currents absence of NCT [in Eqgs. (1.17) or (3.4)] has
been obtained.??8.°

It is the main purpose of Sec. IV to investigate
consequences of Eq. (1.41) for ETC between currents
and fermion fields. It is argued in that section? that
large effects due to the interaction term in Eq. (1.41)
are to be expected, in contrast to Eq. (1.46) in which
these effects are expected to be small. The relaton in
Eq. (1.41) shows that it is in fact because of the inter-
action of the spin-} field that deviations from the
quark-model result for [Jx2(x)¥(y)yo] are possible
(as pointed out in Ref. 9). Since proportionality of the
NST of this ETC to $I'*y,, is incompatible? with com-
mutativity of the space components of the currents,
we immediately see that the algebra of field-current
commutators is exlcuded if the fermion field is free.
In order to investigate the compatibility of Eq. (1.37)
with field-algebra commutators, we present in Sec. IV
the following model for the nucleon current:

Im(®)={cxP(¢(x))
HLev Vi (@) Fcad (@) vs e (),

which may be interpreted by use of current-field
identities. [In Eq. (1.48), P(¢(x)) denotes an arbitrary
polynomial of the pion field with the right quantum
numbers. ] If algebra-of-fields current commutators are
assumed, together with Eq. (1.48), then the second
term on the right-hand side of Eq. (1.41) (the inter-
action term) is proportional to the first term. Thus
field-algebra current commutators are compatible with
Eq. (1.41) [a consequence of (1.37)] and Eq. (1.48)
only if the right-hand side of Eq. (1.41) vanishes,
which yields the relations (4.18)-(4.31).
Therefore, Eqs. (1.41) and (1.48) suggest that®

[ae(x) ¥ (y)1=0 (1.49)

in case of algebra-of-fields commutators. (Note that the
above equation is also a consequence of the canonical

(1.48)

29 A different discussion is given in R. Jackiw, CERN Report
No. 1065 (unpublished).

3 Note that Eq. (1.49) is the simplest possibility to express
[J#* (%)@ (¥)vo] as a linear form in ¢ and its space derivatives
which is compatible with rotational invariance and field-algebra
commutators.
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rules in case of canonical realizations of current-field
identities.?!)

In the remaining part of Sec. IV consequences of
Egs. (1.15) and (1.17) are first discussed when they
are combined with Eqgs. (1.37) and (1.49) and finally
the consequences of Egs. (1.17) and (1.18) for cur-
rents obeying field-algebra commutators are obtained.
The main results are Eqs. (4.40) and (4.42), which are
obtained without any assumption about the NCT
in (1.17) and (1.18). We would like to note here that
Eq. (4.40) shows that in canonical realizations of
current-field identities, one needs derivative couplings
involving the spin-1 field.16:17:3

II. CONSEQUENCES OF COVARIANCE

In the present section? we assume the Jacobi identi-
ties involving [[iT00(x),iT00(¥)],X ()] and utilize
Egs. (1.14)-(1.22) and (1.24)-(1.29) to obtain rela-
tions connectmg the ST in [Tom(%),X (y)] with the
NCT in [iT0(x),Y (¥)]. In the above, X (¥) denotes
any of the operators ¢, ¥yo, Jo, J1, Jot, or dop (9P,
9T 4y Jomy 8%Jos, or [I¢). Our present considerations
are model independent since we only make some rather
general assumptions about the existence of equal-time
limits and the validity of the Jacobi identity. Since all
the relations below are obtained by analogous manip-
ulations, we shall only choose the commutators involv-
ing ¢ to illustrate the calculations and merely give the
results for the other cases.

We start by writing the following Jacobi identities:

[[1T00 (x) )iTUO (y)];X (Z)]
= [T 00(x),[1T00(y),X (2) 1]
—[iToo(),[iToo(2),X () 1]. (2.1)

In this equation, X denotes any of the operators in-
dicated above. For X(3)=¥(z), we use (1.15) and
(1.21) to rewrite this as®

d
[iTor(x) ¥ (2)y0—d(x—Y)
axk 3
+[iTok(y);‘l—’(z)70]676(x_Y)

=[iTo0(x),0"9 (y)vu16(x—2) =5 [ T00(%),0" (y)v:]
X 8(y—2) — [T 0o(y),0"(%)vu]8(x—2)
+3[iT00(y),0 P () yx ]8(x—2)

a d
+ @)y l"/o’Yk’é—‘ﬁ (X“Y)g—fs(Y'“ z)

X1 Vi

g 0
WO ix—y)—i(x—2). (2.2)
0 axk

Vi

stT, D. Lee and B. Zumino, Phys. Rev. 163, 1667 (1967), and
references therein; R. Arnowltt M. H. Frledman and P. Nath,
Nucl. Phys. B10, 578 (1969), and references therein,
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For a consistency check, we first multiply the above

equation by (y—2). and integrate over x and y to
obtain

f Eai Ton(5) F() o]
=— f B3y(y—2)m[1T00(y),09(2)v,]

+3 f By (y—2)n[iToy), 0 )mi]
+10% () vrvoymt+3 0.9 (2)v0.

Using once again Eq. (1.15), as well as Eq. (1.25), we
then obtain, after some rearrangements,

(2.3)

f d*y(y—2)m[iToo(y),0"(2)uv0]
= =30 (@)1 Vm.

Therefore, comparison with Eq. (1.15) shows that
0"y (2)y, transforms like a spin-% field, as it should.

Employing the same reasoning as above and using
Eqgs. (1.14) and (1.17)-(1.21) for each of the cases
X=¢, Jo, J1, Joi, and 9@, respectively, we then obtain
the correct transformation properties for dop, 947,
Joi, 3% o1, and .

We now return to Eq. (2.2) and multiply it by
(x—¥)m and integrate over x, with the result®

—2[iTon(¥)¥(2)v0]

2.4)

- f 0555 —3)n[iToo(8), 09 5, 163 —7)
—3 / 0355 —9) i Too®), 00 (3} 1 —2)

F)
— 5O Ym0y —2) —(E—Y)n
ayk

X T o00(y),04 (3)yu 1H+5(E—)m
X[iToo(y),0% (@) yi]. (2.5)

Note that there are no contributions from the higher-
order ST in Eq. (1.21). Therefore, the resulting ex-
pressions are identical to those which would be ob-
tained by use of Schwinger’s condition.

Using Eqgs. (2.4) and (1.15), the above equation may
then be written as

LiTon() ¥ (2)v0]= =3 —2)m[iT00o(5), 04 (2) 7]

— 504 () vy my0d (Y —2) + 8, (y)y08(y —Z)
I¢]
—%1/7(2)705;;5(3’— Z)+30 (@) vo (v ym—YmY i)

d
X —0i(y—1z).
ayk

(2.6)
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Employing the same reasoning as above, the collec-
tion of formulas obtained for X=¢, Jo, Ji, dop, and
Jo: may be easily written, but we shall not do so in the
present paper in order to keep its size manageable.

We next proceed to obtain the relation between the
FOST in [iTon(y)¥(2)y0] and the second order ST
in [4T00(y),0*¢ (2)v4]. In order to do this, we multiply
Eq. (2.6) by (y—2)» and integrate over y. This gives

/ By (y=2)LiTom(3) P )]
—_1 / Byl —2),[iTun(), 09 @, ]

+%gmn‘p(z)70+%‘p(z)70(7m’yn '—’Yn'Ym)
+0"Xma®(2)vu¥0.

The analogous results for the other cases are given in
Appendix B. From these relations it may then be seen
that Egs. (1.30)-(1.35) (which have not been used in
the preceding calculation) emerge upon antisymmetriza-
tion in m and n.

Next we multiply Eq. (2.2) with (x—2).,, integrate
over X, and use Eq. (1.15) to obtain®

LiTon(y) ¥ (2)vo]+5 (5 —2)m[10*Tox(y) ¥ (2)v0]
=50.9(2)v0d(y —2) +3¥ () Yo (Y KYm—YmYE)

2.7

d
X —i(y—2z).
8yk

[Note that the higher-order ST’s in Eq. (1.21) do not
contribute to the above equation. ]

Similar results may be obtained for the remaining
cases by an analogous procedure. However, we only
wish to note here the result

LT om(y),J0(2) 145 (v —2)m[ 10* T 0x (y), 0 (2) ]
=30.J0(y)6(y—2), (2.9)

since we shall make explicit use of it later. Note that
the only possible NCT which may contribute to
Eq. (1.9) {i.e. those of [T 0(x),/,(y)]} have not been
written out explicitly for simplicity.

We would next like to obtain relations between the
higher-order ST’s. To achieve this, we multiply Eq.
(2.8) by (y—2)n,(y—2)n,, integrate over y, and use
Eq. (1.25) to obtain

(2.8)

X (2) X4 (2) - X2 (2) = / (e =2)n

X DTOO(x); X 1ne®® (z)]+xn1n20070')’m .

From (2.10) it is easy to derive that X, »,°™= 0 whenever
X0 =0. In fact, when X,,,,°=0, Eq. (2.10) gives

(2.11)

(2.10)

Xngng"™ (2) =Xy (2) = Xy ®"2(2) = 0
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and
anmonz(z)-"xnlnzom(z)“‘anzonl(z)'——O- (2.12)
Adding these relations, we then obtain
'—2an20”1(2)=0, (2.13)

the desired result.

We next derive the analogous results for the ST’s
of the third order by multiplying Eq. (2.8) by (y—2)a,
(y—2)n,(y—2)n;, integrating over y, and using Eq.
(1.25). We obtain

—SEXnnwnaom(z) _“anznaonl(z) _anmn30n2(z)

~Xninom'"(2) ]=3 / @%(2—2)m[iT00(%), Xninans(2) ]
+3Xnnns™(2) . (2.14)

Once again it follows from the above that X, n,n0=0
implies that X n,»’"=0. To see this we write Eq.
(2.28) when Xy nyn,®=0. We obtain

X"Inznzom(z) - Xm”z"aom (Z) - Xn1mnson2 (Z)
— annsz"S(Z) =0 (2 15)
and

an2n30n1 (2) - anmnaonz (Z) - annzmonz(z)

- X"xnznaom(z) =0. (2.16)
Adding and subtracting these equations, we get
anmngo’w(Z)+Xn1n2m0"3(2) =0 (2.17)
and
Xn,_’nz’ng’om' (Z)—Xm’nz'ng’onll (Z) =0. (2.18)

Choosing m'=mn,, ny'=mns, n'=m, n3’=n;, and using
the symmetry of Xp n,»™ in the lower three indices,
we obtain from (2.18)

anmnaOnz(z) - anngmona (z) =0 )

(2.19)

which upon comparison with Eq. (2.17) shows that
Xnyngng?™(2) vanishes. Clearly an analogous reasoning
may be performed for higher-order ST’s but we shall
not do so in this paper since the generalizations are now
apparent.

Our results may be schematically expressed as

J@5=3) TT =)iTon(2) X))

=2
=2 s(rso-12") for X=¢ (2.20a)
=Zy(Xpgerr™) for X=vvyo (2.20b)
Z=70(Jo;kreeekn®®; Jminaekp’®)  for X=Jo (2.20c)
=Z 5,(J1; k1012 J o1 kree o 5220) for X=J; (2.20d)

=Z 30 (Pr1e- k8% P0; k1-1-15"") for

=Z s0(Jom; k1o kr?% J1: k1--xp%°)  for

X=03up (2.20€)
X=Jo, (2.20f)

since analogous calculations may be performed for the
other choices of X. In the above we have denoted by Z
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those linear forms in the ST obtained following the
procedure indicated. Note that they vanish whenever
the ST’s vanish.

To obtain analogous results for commutators involv-
ing To and ¥V, with Y=2a.9, 0"y, T4y Jom, O,
or d¢Jom, we return to Eq. (2.6). We mutiply this
equation by

R
(y—2)m ]-:__12 (y—2)n: (R=23)

f Ba(a— )= T (v )Tl ¥ ()]

H. GENZ AND J.

KATZ 2

and integrate over y. The explicit non-ST on the right-
hand side do not contribute, and we are left with a
relation expressing the ST or order R+2 in [1700(y),
0")(2)y,] in terms of the ST order or R+1 in [T on(y),
Y(2)vo] and Xg, ..., Xiyokp,,. Using Eq. (2.20),
we then obtain a relation expressing the ST of order
R+2 in [iToo(y),é)"\E(z)’y,‘] in terms of Xklkgoo, cey
Xppeokpyst» Our results for the different ¥ may be
schematically represented as

=Z 311", - < ;Prreekpys™) for V=00 (2.21a)
=25 (X1, - -+ Xireokpya™) for  V=0by, (2.21b)
= Z 1o ks - s s kreekss®s ks, k) for  Y=04T,  (2.210)
= Z i, s bk ok josretng®)  for  V=Jom  (2.21d)
=Z 06 (@r11?%, - - - 1 Phreeekppa®®s B0 k180, -+ D0 Ere e kpy2’0) for V=[¢ (2.21e)
=Z rai(Jot; sk’ « o5 Jo1 kreekg2™’s T0ikakes e o oy Tt kreeekpye®®)  fOT Y=0%y. (2.21f)

The explicity form of the Z’s (which vanish when-
ever the ST’s vanish) may be obtained by performing
the manipulations described above, taking into account
the explicit forms of the equations used.

III. COMMUTATORS IN CANONICAL THEORIES

We obtain in this section some equal-time com-
mutators of T, with currents and fields in canonical
theories with basic canonical fields of spins 0 and 3.
We will sometimes also assume that the interaction
Lagrangian does not contain derivatives of the spin-3
field. If canonical variables of higher spin are present,
a generalization of our derivations under this assump-
tion requires absence of derivatives of any field carrying
spin from the interaction Lagrangian. In obtaining
these commutators we will also make use of the informa-
tion obtained in Sec. II.

We start with some remarks concerning the canonical
energy-momentum tensor ®,, and the symmetric
energy-momentum tensor T, (the generator of local
Lorentz transformations). The canonical tensor is
given by Noether’s theorem as

0,.(x) dyba(®) —gwl(®),  (3.1)

T 9(0u0e))

while the symmetric energy-momentum tensor 7, is
defined by
TF»VT(x): ®Mv(x)_~a)\f)\uv(x)- (3.2)

We employ the formalism of Ref. 32. However, we

% G, Kallén, Quantenelecirodynamik Handbuch der Physik, Bd.
V/1 (Springer-Verlag, Berlin, 1958).

choose the adjoint of the T, given there as our sym-
metric energy-momentum tensor. This will prove
convenient and is possible even if 7', is not Hermitian,
since the non-Hermitian parts cannot contribute to
Eqgs. (1.1) and (1.2).

The canonical energy-momentum tensor ®,, has the
advantage that equal-time commutators such as®

[i@o(%) ¥ (y) =0 (x)6(x~y) ,
[iO00(%),J o(y) ]= 04T u(x)8(x—y)

(3.3)

l¢]
FJTe(x)—0(x—y), (3.4)
axk

[1@0m(x) ¥(y) 1= dmp(x)8(x—Y),

and

(3.5)

0
[iOom(),Jo(y) 1= —J °(x)5x_m§(x_}’) ,  (3.6)

are readily calculated, while if we consider the analogous
commutators with 7,, replacing ®,,, we note that
[iToo(x),¥ ()] is different® from [@oo(x), ¥(y)] [see
Eq. (3.15) below], [T00(x),Jo(y)] is the same* as
[i@0(®), Jo(»)], and [iTon(x)¥ ()] and [iTon(*),
Jo(y)] are in general not completely determined unless
additional assumptions are made.?* Incidentally we also

3 See Ref. 32 (and Ref. 9) for a derivation of Eq. (3.3). In Refs.
3 and 9, Eq. (3.4) was obtained, Eq. (3.5) obviously holds, and
Eq. (3.6) was derived in Ref. 3.

3 This will become apparent after reading this section.
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note that?®
[i®00(x),¥(¥)y0]= 0" (x)vud(x—Yy) s
+'l—/(x)‘7ka—5(X—‘Y) .

Xk

3.7)

Evidently Egs. (3.3) and (3.7) may not hold with
T oo replacing ®g9 owing to covariance [i.e., Eq. (1.2)].
Since for any canonical variable ¢, one derives®s2

[iO00(x),¢a (y) 1= dogpa (¥)8 (x—Y), (3.8)
one finds from covariance that
Mo;= ——/dsx xi®oo(0,X) (39)

can hold only if all the basic canonical variables have
vanishing spin. Similarly Eq. (3.5) with @, replaced by
Ton would be in contradiction with Eq. (1.31). These
facts have already been discussed in the Introduction.
It should also be noted that even though the equal-time
commutators involving T, are in general different
from those involving ®q,, they give the same results
in some instances.8:%:3

We will next derive X®=0 without making any as-
sumptions about derivative couplings. To this end we
note that for spin 2, S,.;«s [Eq. (4.18) of Ref. 32] is

given by
Suviap=1YuYr—VYu)- (3.10)
Thus we may write [Eq. (4.19) of Ref. 32]
Fnoo(®) =17 (@) (Yormn—rmy)f(x),  (3.11)
where = is canonically conjugate to '
o 3.12
O Sk .

In the above, ¥ denotes the canonical field to which ¢
is assumed to be proportional. We also note that if
derivative couplings involving § are absent, one has

oL
3(3mf(x))

Now, from Eq. (3.11) one easily obtains (using the
antisymmetry of f in the first two indices)

axf)\oo(x) = a"‘fmoo (x) = lam[ﬂ' (x) (707m—7m70)‘2(x)] .
Then from Egs. (3.2) and (3.3) one obtains

[T 00 (%), v () 1= 04y, ()8(x —)

a
v (x)—i(x—y) (3.14)
ax;,

=7(x)YmYo- (3.13)

% Of course, ©,, is defined only in canonical theories and the
more general results of covariance follow only from the commuta-
tors involving T,.
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or
[iToo(%) ¥ (9)vo]= 0" (x)yud(x—y) _
+%§Z(x)7k-éi—k6(x—y). (3.15)

Next, for the time component of a canonical cur-
rent defined by

Joo (%)= —iwt(x)p° (x) Fp., (3.16)

where F,. are the structure constants of the group
considered, we use Egs. (3.4) and (3.16) to obtain
(Jo is Hermitian)

[T 00(x),Jo(y) 1= 04T u(x)0(x —Y)

+Jx(x0)—d(x—y).

axk

(3.17)

{To derive the above equation it is sufficient to realize
that [0*fuo0(x),Jo(¥)] contains at most a FOST, and
thus the result follows by covariance.}

Next we assume the absence of derivative couplings
involving ¢ and obtain from Egs. (3.10) and (3.13)
[using Eq. (4.18) in Ref. 32]

" foun (%) =30™[7 () (YmYn—YuYm)¥ ()

Since the above expression contains only canonica

(3.18)

variables, we may calculate [T om(®)¥()v0]. We
obtain

i 9
+_§’¢(y) (7m7n _'Yn'Ym)'YOg_a(x _Y)
Xm

_ )
—3¥(®)yo—di(x—y).

ax”

(3.19)

Now, since because of Egs. (2.20b), (2.21b), (3. 15),
and (3 19), at most a second-order ST is contained in
[iT00(%),fn (¥)¥0] [fn has been defined in Eq. (1.42)]
and at most a FOST in [T on(x)¥(y)v0], we obtain
from Eq. (2.7) and covariance that Eq. (3.19) is
equivalent to

[iToo(%) fm(y)v0]= 0* fr(2)yub (X —Y)

] 3
+3fm(®)vi—d(x—y). (3.20)
6xk

Therefore, Eq. (3.20) is derived for canonical theories
which do not involve derivatives of ¢ in the interaction
Lagrangian.

Our next task is to determine the commutators
[iT00(x), T2 (¥) ], [iT 0k (), o(v) ], and [T 0o(x),847 . (y)]
in canonical theories under the assumption that the
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interaction does not contain derivatives.of the fermion
field. We will make use of Eq. (3.6), obtained in Ref. 3,
and show under the present assumptions that the addi-
tional terms in the definition of T, do not contribute
so that

ad
[iTom(x),70(y) 1= —]o(x)aj(x-—}’)- (3.21)

The relations in Sec. II will then be used to derive
[T 00(x),J x(y)] together with further commutators.

The derivation of Eq. (3.21) from Egs. (3.6) and
(3.18) is a straightforward calculation. Using the
associative law and defining I',, by

Tma=Ym¥n—"YnYm, (3.22)

we may write

[Ton' (%) — Oom(2),To*() ]

0
= %‘5—{[Wa“(x)xbaﬁ(x),wca(y)zl/dé(y)]PmnaﬁFode
Xm

FAgma[ T (@) (x),m (MWt (y) JFea®) =0. (3.23)

We next note that because of Eq. (2.9) it follows
from the absence of ST of higher order than 1 in Eq.
(3.21) and from Eq. (3.17) that

LT o00o(%), T m(y) 1= T om(x)6(x—Y)
—Jo(x)ﬁé(x—y) . (3.24)

Note that in obtaining Eq. (3.24) from (3.21) the
special form of the FOST was not needed. Therefore,
Eq. (3.24) depends only on the absence of ST’s of
order higher than 1 in Eq. (3.21) and on the absence
of NCT’s in Eq. (3.17). Now, because of Egs. (2.20c)
and (2.20d) the absence of ST’s of order higher than 1
in Eq. (3.21) and in the commutator [7p(x),J»(y)]
follows from Egs. (3.17) and (3.24). It also follows
from these equations [using Egs. (2.21c) and (2.21d)]
that no ST’s of order higher than 2 are present in the
commutators of T4 with 9*J, and with Jo,. Thus
[Eq. (2.20a)] in this case ST of order higher than 2 are
also absent in [T o, (x),0%7,(v)].

Next, assuming Eqs. (3.17) and (3.24), we show that
Eq. (3.21) and

[T 00(x),047 . (y) = 3004T . ()8 (x—)

are equivalent. Then, since Egs. (3.17) and (3.21) are
derived for certain'® models and since, as shown above,
Eq. (3.24) follows from Eq. (3.21), this establishes the
validity of Eq. (3.25) in these models. To prove the
equivalence, we note that Eq. (3.21) follows from Eq.
(3.25) since [Eq. (2.20c)] at most a FOST is contained
in this commutator which [Eq. (B3)] is as given in
Eq. (3.21). Assuming Eq. (3.21), we first note [Eq.
(2.21c)] that at most a second-order ST is contained in

(3.25)
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[iT00(x),0%7 . (y)]. This ST also vanishes [Eq. (B3)],
and Eq. (3.25) follows from covariance. Thus, Eq.
(3.25) is indeed a consequence of Egs. (3.17) and (3.21).

Furthermore, we note that as soon as Eq. (3.25) is
established, the absence of ST’s of order higher than 2
in [T0(x),0007,(v)] [Eq. (2.21a)] and of order
higher than 11in [470.(%),047 . ()] [Eq. (2.20a) Jfollows
[note also Eq. (B2)]. In addition, from Egs. (3.17)
and (3.24) it may be seen that ST’s of order higher than
2 are absent in [47°0(x),0*J.(y)] [Eq. (2.21c)] and in
[iT00(x),Jor(v)] [Eq. (2.21d)] and that ST’s of order
higher than 1 are absent in [T (x),/:(v)] [Eq.
(2.20d)]. Note also that the relation

/ a*y(y—2) i Tom(¥),J1(2)]

f By —2)uly—5)n
X[Too(y),J0i(2)]  (3.26)

[Eq. (B4)] connects the ST in [iTon(v),7:(z)] with
those in [¢T00(y),J () ].

We would like to investigate next scalar fields ¢(x)
which are proportional to canonical ones. For example,
the divergence of the axial-vector current in La-
grangian models of partial conservation of axial-vector
current (PCAC) has this property. Since, for such

=gntm(z)— %

fields, 2
[000(x),¢0 (y) 1= dogp (x)8 (x—) (3.27)
and
[@o0(x) — 4T 00" (x),6 () 1=0, (3.28)
we have
3T 00(2),0 () ]= dogp (%) 6 (x—). (3.29)

If the coupling does not contain derivatives of the
fields carrying spin, we have (since ¢ is Hermitian)

[T on(%),0(y) ]= 0ng(x)6(x—y).  (3.30)

[The absence of ST’s of order higher than 1 is already
a consequence of Egs. (2.20a) and (3.29).] From Egs.
(2.21a) and (3.29) we learn that at most a second-order
ST is contained in [2700(x),d0¢(y) ] and that this term
vanishes due to (3.29), (3.30), and (B2). Thus it
follows (using covariance) that

[T 00(x),000(y) 1=[Ié(x)6(x—y)
+8k¢(x)g5(X-Y) . (3.31)

This relation, which may have been obtained easily
from the formulas given in the Appendix of Ref. 9 if
do¢ is canonically conjugate to ¢ (i.e., if derivative
couplings involving ¢ are absent) now is seen to be valid
even when the coupling contains derivatives of ¢.
Using Eqs. (B2), (2.20a), and (3.29), one may evi-
dently also derive Eq. (3.30) from (3.31). From (3.29),
(3.31), (2.20e), and (2.21e) it follows that ST’s of
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order higher than 2 (1) are absent in the ETC

[iT00(%),0¢ () 1 ([iT'0x(x),006(y) ]). From Egs. (3.31)
and (BS5) we thus obtain equivalence of the relations

d
[iTom(x),000(y) 1= — 60¢(x)5;n5(X~y) (3.32)
and

[iToo(x),(O+m*¢(y)]
= (O4m*)dep(x)s(x—Y).

Note that Eq. (3.32) is a consequence of the canonical
rules in case that derivative couplings are completely
absent.

The following statements summarize the content of
the above discussion:

Statement 1a. Assume Eq. (3.15). Then (1) there are
no ST’s of order higher than 1 in [T (*),¥(¥)];
(2) Egs. (3.19) and (3.20) are equivalent.

Statement 1b. For a nucleon field proportional to a
canonical field §, Eq. (3.15) holds. If the interaction
Lagrangian does not contain derivatives of { then, in
addition, Eq. (3.19) holds [and consequently Eq.
(3.20) holds].

Statement 2a. Assume Eq. (3.17) and at most a
FOST in [T om(x),70(»)]. Then Eq. (3.24) follows.

Statement 2b. Assume Eqs. (3.17) and (3.24). Then
(1) Egs. (3.21) and (3.25) are equivalent; (2) ST’s of
order higher than 1 are absent in the commutators
[iTom(x),7o(y)] and [3Tom(x),J:(»)]. (3) ST’s of order

(3.33)

higher than 2 are absent in the commutators
[iT00(x),047u(3)],  [iToo(%),Jom(y)], and [1T0x(x),
o*J, (y)]

Statement. 2¢. If J,(x) denotes a canonical current,
Eq. (3.17) holds. If the interaction Lagrangian does not
contain derivatives of ¥, Eq. (3.21) holds [and con-
sequently Egs. (3.24) and (3.25) also hold]].

Statement 3a. Assume Eq. (3.29). Then (1) Egs.
(3.30) and (3.31) are equivalent; (2) there are no ST’s
of order higher than 1 (2) in the ETC [T o (x),000(¥)]
([T oo(x),[Jo () D).

Statement 3b. Assume Eqgs. (3.29) and (3.30). Then
Eqgs. (3.32) and (3.33) are equivalent.

Statement 3c. If $(x) is a canonical spin-0 field, Eq.
(3.29) holds. If the coupling does not contain derivatives
of ¥, Eq. (3.30) [and consequently (3.31)] holds. If
all derivative couplings are absent, Eq. (3.32) [and
consequently (3.33)] also holds.

Finally, we note relations analogous to Eq. (1.3)
which may also be obtained. This relation itself (as
noted in the Introduction) follows from Eq. (3.17)
and has thus been derived for canonical currents.
Analogously we may derive Eq. (1.7) from Eq. (3.15)
(which holds for all spinor fields ¥ proportional to
canonical fields). If the coupling does not contain
derivatives of ¥, we may write [from Eq. (3.20) and
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statement 1b]

/ d3y[iT00(x), Fu(¥)v0]= 0" fur (%)Y u— % 0% Fn(2)y1c. (3.34)

From Egs. (3.21), (3.24), (3.25), and with the assump-
tion of Eq. (3.34), we have (using statement 2c)

/ i Ton (), To(3)]=0, (3.35)

/ BTl n) =T, (3.36)

and

/ @3y[iToo(x),0°T u(y) J=300"T u(x) .  (3.37)

If ¢ is proportional to a canonical field, it follows from
Eq. (3.29) and statement 3c that

f BTo@00)]=00().  (3.38)

If the coupling does not contain derivatives of ¢, it
follows from statement 3c and Egs. (3.30) and (3.31)

/ BTon(@)00)]=0mdle)  (3:39)

and

/ @*y[iT0o(x),000(y) J=[lp() . (3.40)

If the coupling does not contain any derivatives of the

canonical variables, we obtain from Eqgs. (3.32),
(3.33), and statement 3c
Jastiene)a01=0 (3.41)

and

/ Y iTun(e), CEm () 1= Clm2)ou().  (3:42)

IV. SELECTED APPLICATIONS

Applications of the relations obtained in the preced-
ing sections may be distinguished as to whether the
result depends on absence of NCT or as to whether it
depends on the specific form of the FOST in Egs.
(1.24)-(1.29) obtained in canonical theories. Those
applications which only depend on general assumptions
such as existence of equal-time limits and Jacobi
identities will as such be of a much higher generality
than the others.

First let us consider the applications to the ETC
assumed in Eq. (1.37). We then note? the validity
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of Eq. (1.38) [assuming the usual SU(2)QSU(2)
commutators between charges and currents] and write
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the Jacobi identity for [4T00(x),[Jo*(v) ¥ (2)v0]], mak-
ing use of Egs. (1.15) and (1.17):

a “ _ d - 0
L k“(x),ll?(Z)Vo];a(X—y) =30 (x)Ty,8(x—2)8(y —2)+1¥ () F“ng—é(x—Z)B(y—Z)—l-ixl/(y) Péy—d(x—y)
k

Xk axk

ad
Xo(x—2) —%@(y)l‘“*rkg—ﬁ(x—z)ﬁ(y—z) —[07,2(x) ¥ (2)voJ3(x—Y)

Xk

In the above equation Z(x,y,z) denotes the sum of the
contributions from NCT; it has the property stated
in Eq. (1.44). We have also defined

8u= (90,30 (4.2)

In Refs. 8 and 9 this equation with Z=0 has been
obtained if NCT are absent. Multiplying Eq. (4.1) by
(*—9)m, integrating over x, and using Eq. (1.44), we
obtain

[T w34 (2)v0 =¥ () GT*)ymd (Y—2)
+iE—)nlJo*¥), [ W)vo], (4.3)

where f, has been defined in Eq. (1.42). Note that
Eq. (4.3) has been obtained in Refs. 8 and 9 assuming
absence of NCT and is thus seen to hold independent
of this assumption. We next discuss the dependence of
the further results of Refs. 8 and 9 on the model-
dependent assumptions made there.

We multiply Eq. (4.1) by (*—32)» and integrate over
X to obtain

a
[T w* () ¥ @)vo]+(y—2) mg[f () ¥ (=) vo]
k

=(y—2)m[0*T2(»),¥(2)v0].

Integrating the above equation over y, we obtain

(4.4)

/ Py —D[T ) FD10I=0, (&5

i.e., the above ETC has no FOST if one writes its ST
with arguments z. This result has been obtained in
Ref. 26 by a more explicit use of covariance. Multiply-
ing Eq. (4.4) by (y—2), and integrating over y, we
obtain

/day(y—z)n[fm“(y)#_/(z)w]
__ / B3y(y—2)n(y—2)u[047 (9 B(2)r0]. (4:6)

Thus for conserved currents FOST are absent in
[Tn*(),¥(z)vo]. Furthermore it may be seen by
multiplying Eq. (4.4) with (y—2)a,---(y—32)y, inte-
grating over y, and using a little algebra, that for

—[oe(),09(0)vu18(x—2)+2Z(x,y,2) . (4.1)

conserved currents also no ST of higher order are
contained in this commutator. This result has also
been obtained in Ref. 26 by a direct use of covariance.
In Ref. 9 this result has been used to obtain Eq. (4.3)
for the conserved vector currents. We note in passing
that the x-integrated Eq. (4.3), for conserved currents
is a simple consequence of the Heisenberg equation of
motion.

Applying the manipulation described above to Eq.
(4.6) for 9+J,0 relations between ST are obtained.
To obtain the most powerful results of Refs. 8 and 9,
one must assume the validity of Eqs. (3.15) and (3.17).
Then Z=0 in Eq. (4.1) and integration over y sohws
the absence of ST’s in the ETC [947.%(x),¥ (¥)vo]-
Multiplying Eq. (4.1) by (x—2)m(x—1v)a, integration
over y shows then also the absence of ST’s in the ETC
[Jx#(x) ¥ (¥)vo] for nonconserved currents.

It is evident that Eq. (1.37) is a natural assumption
for current-field commutators in a model in which ¢ is
proportional to a canonical field and J,%(x) is a can-
onical current since this equation is then a formal con-
sequence of the canonical rules and the associative law.
Since formal agreement with current-algebra commuta-
tors might therefore be expected, no such direct formal
argument for algebra-of-fields commutators exists,
and it is not at all clear from the outset if the assumed
current-field commutator (1.37) would be in formal
agreement with algebra-of-fields commutators. The
answer depends on the ETC between space components
of the currents and the fermion field. Since®?® propor-
tionality of S d®x[Jm®(@)¥(y)y0] to ¥(y)T%, (the
quark-model result) excludes (using the Jacobi identity
for S @BxdPy[[Tn®(x),Tn? () 1% (2)v0]) commutativity
between the space components of the currents, Eq.
(4.3) shows that for a free fermion field the field-
algebra commutators are in fact excluded. However,
one expects? in Eq. (4.3) large effects due to the inter-
action term [we shall exhibit below a model for the
nucleon currents for which the right-hand side of Eq.
(4.3) vanishes], in sharp distinction from Eq. (1.46)
in which the deviation from the twice-integrated cur-
rent-algebra commutators is due to ST’s in [J¢%(x),
947 ,b(y)], a term which is usually assumed to arise
only in electromagnetic or weak interactions. Inci-
dentally, note that the associative law and canonical
rules do not allow for a ST in the ETC between the
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time component of a canonical current and a canonical
field. The presence of such terms® in [Jo*(x),0%4 .8 (y)]
in case of minimal electromagnetic coupling shows an
immediate conflict between formal reasoning, PCAC,
and minimal electromagnetic coupling.

We next investigate

[4(®)# (¥)ro]=0 (4.7)
which, using the Jacobi identity involving
[[]Oa(x%-,kb(y)])‘;(z)'yoj ) (48)
is equivalent to
[Vi(@) ¥ ()vo]=0. (4.9)

In order to motivate the above choice, we first
mention that Egs. (4.7) and (4.9) are simple conse-
quences of the canonical rules if current-field identities
and PCAC hold. Next note that the above choice is the
simplest possibility to express current-field commutators
as linear forms in ¢ and its space derivatives which is
compatible with the algebra of fields. As another
justification of Egs. (4.7) and (4.9) we will give a model
for f, for which these equations hold.

Consider the part of the nucleon current f, which
may be written as

(@)= (iv*9,—m)Y ()= {P(¢(x))
+[CvV 2 (@) +cad (@) ys ey (x), (4.10)

where P(¢(x)) denotes any polynomial in the pion
field with the right quantum numbers. Concerning the
part of the nucleon current not contained in Eg.
(4.10), it will be sufficient for our conclusion to assume
that its equal-time commutator with J¢® contains no
FOST.

We assume field-algebra commutators for the currents
and define the ¢-number ST by

[Joo(®),7 k*(y) 1= ie2®eJ *(x)3(x—y)

d
+icdot—5(x—y).

(4.11)
Jdxk

Next we remark that owing to Eq. (4.11), PCAC,
Eq. (1.46), and the absence of ST’s of order higher
than 1 % in the ETC [J¢*(x),07,%(y)], we may write

[ast=ie@eon-o. @)
We define normalized =, 41, and p fields by
94,2 (x)= m,,2f,,¢°‘(x) ) (4.13)
0, (%)= fa, [ fr0u9*(x)+4,5(x)], (414)
and
v2(x) = f V(%) (4.15)

36 This fact is derived in Appendix A of the present paper (state-
ment Al) using the methods of Refs. 2 and 3.
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Next we integrate Eq. (4.3) over y and obtain
[t EmI=50 areymn
+ / @y i(z=y)u[Jo* (), fu' (B)vo].  (4.16)

Upon use of Egs. (4.10), (4.12), and (4.16), it follows
that

/ oL@ FO)r0]= (—reA DI Tove.  (417)

Using the Jacobi identity for S d®xd®y[[Jn%(x),J»*(y)],
¥(2)v0], one sees that Eq. (4.17) is incompatible with
the assumed commutativity of the space components
of the currents unless

2¢ccy=1 (4.18)
and

2cca=1. (4.19)

We now use Egs. (4.13)—(4.15) to express the nucleon
current in Eq. (4.10) in terms of the normalized ,
Ay, and p fields as

fm(x) = {P(¢ (x))+ [—gwautﬁ"(x)vs-i—gp“V,‘“(x)

+ga,0 (@) vs Iy (Gr) W (x), (4.20)
where we have defined
gx=2¢sfx, (4.21)
ie.,
g‘lrfw'—1= 1/6 ) (4.22)
gafa = /e, (4.23)
and
&fit=1/c. (4.24)
Comparing Eqs. (4.23) and (4.24), we obtain
ga:fo="E8oS 4, (4.25)

A more detailed result is obtained if one saturates
the vacuum expectation value of (4.11) for a=1-3 by
the p-meson intermediate state. Then

c= fotmg~ (4.26)
which, combined with Eq. (4.24), gives
go=m,2fL. 4.27)
Combining this with Eq. (4.25) we have
ga,=fa,(m*/f.7). (4.28)

Assuming the validity of the usual saturation of the
Weinberg spectral-function sum rules,?” one has

[fal =17l

3 S. Weinberg, Phys. Rev. Letters 18, 607 (1967).

(4.29)
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Thus Eqgs. (4.25) and (4.28) may be written as

lga,] =& (4.30)

and

|gAx| =my*/ fp= ('mp/mAl)zmszlfAll_l. (4.31)

Having discussed a nucleon current such that Egs.
(4.7) and (4.9) hold, we would next like to obtain the
consequences of covariance for this case. From Eq.
(4.3) we obtain

() GT)vmd (y—2)
=1(=2)ulJo" (), fu! W)v0]  (4.32)
or, equivalently,

0= (y—2)m[047,(y),¥ (2)70]

= (y—2)u[To* () ¥ (@)vo], (4.33)

i.e.,, the result obtained for the nonconserved axial
current from assuming absence of NCT in Egs. (1.15)
and (1.17) now holds due to covariance even if NCT
are present in these equations.

Next we use Egs. (1.15) and (1.18) to write the
Jacobi identity involving [4T0o(x),[J:%(y), ¥ (2)ve]] as

CiToo(x), [T 12() ¥ (@) vo]1=[J:%(y),04 (x) v, 16 (x —2)

d
—1 :3;_[ T2(y) (@) 16(x—2) + 50T 2() ¥ () yi ]
k

)
X Bx—5(x— 2)+[J0(®) ¥ (2) 7015 (x—y) =¥ (%) GT)ve

d
X

Under the present assumptions of Egs. (4.7) and (4.9),
the left-hand side as well as the [J,2(x),¥ (v)vo] terms
on the right-hand side vanish. Multiplying the above
equation with (x—2), and integrating over X, we thus
obtain

(y—2)m[J0* (), ¥ (2)y0]=0;

i.e., in canonical realizations of current-field identities
. . . A
with canonical fermion fields ¢, we have

(4.35)

(y—z){ —Jof(ym(zm}o (4.36)

3(30J:(v))

because of the canonical rules. Multiplying Eq. (4.34)
by (x—»)» and integrating over X, we obtain a rela-
tion which is identical to Eq. (4.34) if use is made of
the Heisenberg equation of motion. It reads

E=9)ul11%(9),040 ()7 J=¥ () GT)1d (y—2).  (4.37)
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Note that as a consequence of the Heisenberg equation
of motion one may also write

f LT (), ), 12 —x)

=—[Jo*(®),¥(z)v0]. (4.38)

Finally, we would like to obtain the restrictions which
Lorentz covariance imposes on currents obeying the
algebra-of-fields commutators. To this end, we first
write the Jacobi identity for [iT0o(x),[J1%(¥),J:%(z) 1]
as

L22(2),T o) Jo(x—y) —[J4*(),J (%) Jo(x —2)

d
=ie"“°];c°(x)5(x—y);6(x—z) —1e2vc J ()6 (x —2Z)
%

d
X —d(x—y)+Z(x,y,2). (4.39)
Jdxk

Note that the c-number ST contributions have dropped.
As usual, Z has the property stated in Eq. (1.44).
Multiplying Eq. (4.39) by (x—2). and integrating over
X, we obtain

(—9)u[J>(2), T 0 () J= e gumT i° (y)* (y—2).  (4.40)
From this we see that canonical realizations of current-
field identities® require derivative couplings involving
the vector and axial-vector fields. From Eq. (4.40)
we also obtain absence of ST of order higher than 1
in the ETC [J;*(2),J0x*(y)]. Note once again that
only covariance is required in this application.

Next consider the Jacobi identity for [4Tg(x),
[Jo*(),J:%(2)]1], which under the present assumptions
reads

[onTu2(x),J:"(2) o (x—¥)+[Jo*(0),J (%) Jo(x—2)

d
=1e*vJ ()6 (x—2)6(y —Z) -—ie“’WJOC(x)B—l—B(x —z)
%
a
Xo(y—1z) +ie“”°]0°(x)6(x—y)a—l~5(x —z)
%

+Z(x,,2). (4.41)

We multiply the above equation by (x—7¥), and
integrate over X to obtain

E=)m[J 0" () 0 (%) ]= e gmi] * (0)8(x—Y) . (442)
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Multiplying Eq. (4.41) by (x—2) and integrating over
X, we obtain

(y—2)m[947,(9),7:°(2) ]=0.

Equations (4.42) and (4.43) show that ST’s of orders
higher than 1 are absent in the ETC involved. Finally,
those weaker relations which follow by use of the
Heisenberg equation of motion alone may be obtained
from Eqgs. (4.39) and (4.41) by integration over x
and read

d
[J:2(2),Jox(y) 1= [T (), 0:%(2) ] =i€b“°fk°(y)5;

(4.43)

i}
Xé(y—z) ~ie“b°Jl°(z)ﬁé(y—z) (4.44)
2
and

[0 u2(),J1(2) J4-[J o*(y),J 0:®(2) ]=1e>T 0:°(3)
X&(y—2z) —ie““]o"(z)ga—& (z—y). (4.45)
zl

Note that for conserved currents Egs. (4.42) and (4.45)
are equivalent.
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APPENDIX A

In this Appendix we would like to note more fully
some consequences of Eq. (1.3) and of the Jacobi
identity given in Eq. (1.43). We start by noting that
as an immediate consequence of the Heisenberg equa-
tion of motion, we may write

[0%(e0), 20T 4%() ] f ByT(),047,(5)]
— ieabcaOJOc(x) ,

(A1)

where charge—charge-density commutators have been
assumed. Combining Egs. (1.47) and (A1) one obtains
as a consequence of assuming Eq. (1.3)

[0%(x0),0"7:2(x) ]
et T () — / BT o (),047 () ]

—[Jo*(»),00(x) ]} . (A2)
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Next we compare this equation with Eq. (1.46) under
the assumption that at most a second-order ST con-
tributes to [Jo%(x),047,%(y)]. For later use we write,
for any R,

L o%(%),047 () J=0"(x)3(x—y)

] 9
——(x—y), (A3)

R
+ 2 ot ®(y)
o=1 Xh1 Xl
and obtain for R=2, upon comparing Eqs. (1.46) and
(A2), no restrictions on ¢ and o¢;%?, whereas for
o12*? it follows that [as a result of Eq. (1.3)]

0%9%01,,%%(x)=0. (A4)

A more involved relation would be obtained for general
R.

We next obtain—using the method of Refs. 2 and
3—the consequences of covariance if at most a FOST
is present in [Jo%(x),J:*(y)]. In what follows, we do not
specialize to R=2 in Eq. (A3). Multiplying Eq. (1.43)
by (*—2%). and integrating over X, we have

(Z_y)MEJDa(y))a”JMb(z)]=i3bavjmc(y)6(y-‘z)
—[0%(@),Jm®() I+ [T o0(9), T m?(2) ]

0
+(Z‘“y)mgz—{f o), Jt(@)].  (AS)

In the special case of R=2, it follows from this that
[multiplying (A5) by (z—%)» and integrating over z]

2050 () = S n**(Y) = S nim*?(2). (A6)
Assuming, for general R, the absence of ST’s of order
higher than 1 in [J4*(y),J:%(z)], we multiply Eq. (A5)
for R>2 successively with (z—9)m; (2= Y)mp,"* *»
(z—%)m;(2—y)m, and obtain that at most a ST of
second order is contained in [J¢%(y),0%J,%(2)]. For
this, therefore, Eq. (AS5) holds. Especially for field-
algebra commutators with only the usual first-order
c-number ST, we find from this result, Eq. (A6), and
Eq. (1.46), that no ST are contained in [Jo*(x),
T, (y) 1.

We collect our results for the conserved vector
current and the nonconserved axial-vector current in
the following two statements:

Statement A1. If the usual field-algebra commutators
of charge densities with currents hold, [Jo®(x),
9#J,(y)] contains no ST’s.

Statement A2. Assume

=)l Jo* (), (y) J=Sym** ()8 (x—Y). (A7)
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Then R=2 in Eq. (A3),

SminVa"8=S . V8V | (A8)
and
SmynVbla=Sp, n4aVE, (A9)
Furthermore
Omn®?=0 (A10)
is equivalent to
Smyndedb=FS,, 484 (A11)

Moreover, from Eqs. (A4) [as a result of Eq. (1.3)]

amanSm; nAaAﬂ: amansn;mAﬂAu .

(A12)

The reader should notice that Eqgs. (A8), (A9), and
(A11) have been obtained in Ref. 2 from different
assumptions by essentially the same method. For
another method to obtain analogous results see Ref. 7.

APPENDIX B

In this appendix we list the relation between the
FOST in [4Ton(y),X(2)] and the second-order ST in
[T on(y),Y (2)], with X (2) and Y (z) as defined in the
text. We start by writing Eq. (2.7) once again:

f 05 (y—2)LiTon(3) B E)yo]= — } / Py (y—2)m

X(y—2) n[”:TOO(y);a”‘;(Z)'Yu:|+%gmn‘p(z)70+%‘;(z)

XY (Ym¥n—Yn¥m) +0"Xmn(2)vuvo. (B1)

The analogous results for the other cases may be
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written as
/ Py(y=2)[iTon(3),6(2)]

——1 / By —2)[iTeo0),00(2)]
+60¢mn00(z) y
/ =L Ton(3),J0(@)]

- / By(y—2)n(y =21 T00(3),07u(2) ]
g o) 8% (2)
f B9y =) [iTon(3), T o(5)]

_ / By(y=2)0(y=2)n[iToo(3),Tar(z) ]
10T (&) 001 () = D12
f By(y—2)[iTon(3),90(2)]
— 3 / y(y—2)u(y—2)nLiT(3) 6 (2)]

+ gmn009(2) 4+ 90bo; mn*(2) + %0 1dma(2) ,

an

f 95—l Ton() Tr(2)]

— = [50=0=-[Tl0)0070(6)]

— 38T 0n(2) +321nT om(2) + 00T 01;mn®(2) .

(B2)

(B3)

(B4)

(BS)

(B6)



