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$„,$„*,t„) in terms of the Green's function E'&"& and the phase-space distribution function C 'n&:

n

d'(zy}d'zo II exp[ts&g'+pj's*'+(), +s) ~ &i ~

'+&xzg* —&x*zx]
)l,=l

n

XII«"'(. ..*,l
I

—2.( *—()+-,')(, *+2t t +(&+l)b *,t )
X=2

XE "'(zl,zi*)tii zo)zo*, tp)4 " (zp)zp*)tp). (D17)

The normally ordered time-ordered correlation function I'a &~& may be obtained from (D3) and (D17). We stress
that in (D17) 0 is arty mapping characterized by a 61ter function of the form given by (D1). With the special
choice corresponding to mapping according to the antinormal rule one has tt= p=. O, ) = —s (cf. Table IV of I)
and Eqs. (D3) and (D17) may then be readily shown to give formula (5.38) derived in the text.
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The use of covariance and the Jacobi identity in the study of equal-time commutators is investigated.
Denoting by 7„„the conserved and symmetric tensor density of Poincard tranformations and by X any of
the operators p, Bpd Jp Jp ol' Jp[ we use the most general form of the equal-time commutators piTp„(x),
X(y) g and LiTpp(x), iTpp(y) ) compatible with covariance, together with the Jacobi identities for Pt iT pp(x),
iTpp(y)), X(s)j, to derive relations between the equal-time commutators PiTp (x), X(y)] and (iTpp(x),
F(y) g, where F is any of the operators denoted by X or 04, 3&ip», 3&J„,and Bp1p . This information is first
used in deriving equal-time commutators in canonical models. We then show that the assumption of SU(2)
&U(2) charge-current commutators together with [A @(x)pJ'(y)]„~pppg (x) r yps(x y) (wh—ere A„~ denotes
the axial-vector current and ib denotes a spinor Geld) implies (as obtained earlier by the authors under differ-
ent assumptions) PA p (x),f(y) pj p~p= &P(x)ypypr 3(x y)+i(y )x—pALp(x) f—t(y)&pg„„p Lwhere f denotes
(iyp3„m)p j —For the . conserved vector current an analogous relation holds. The incompatibility of field-
algebra current commuta tora with J' d(pxA (px) iI (y) ypg„„p pp |k (y) y py p is noted. Taking ib to be the nucleon
field, it is shown that a certain form of the nucleon current leads to the above unless the right-hand side
vanishes. Imposing this requirement, one then obtains gx, =g„where gz,ap (x)p»" (r /2)ip(x) Lg,o„'(x)&"
&&(r~/2)ib(x)g denotes the contribution of Ar (p) to f in terms of the renormalized'field a„(o„).From this
and the usual saturation of the Weinberg spectral-function sum rules by single-particle intermediate states,
we obtain the universality relations gp=m, P/fr and ga, = (m, /mz, )Pm&is/fz„where fz, (f,) is defined by
pzr (mp) =fgrpb (mp —mzrp) Lpp (mp) =fppb (mp mpp) j Fot curre—nts obe.ying the algebra-of-fields commutators,
we obtain restrictions on Schwinger terms contained in equal-time commutators involving time derivatives
pf the currents. These relations show, for example, that in canonical realizations of current-field identities one
needs derivative couplings of the spin-1 field.

I. INTRODUCTION
' 'T is generally assumed' ' that in relativistic local
i - 6eld theories a conserved and symmetric local tensor
operator T„„(x)exists with the property that the genera-

~ Supported in part by the DAAD through a NATO grant and
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tors of Poincare transformations may be written as

and

d'x Tp„(x)

Mp = d s/xpTp„( )—x„jp„(x)]. (1.2)

Denoting by p, f, J„, and J,„(defined as J„„=—B„J„—8J'„) local operators with spins 0, rs, 1, and 2, respec-

(1969); M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).

r T. K. Kuo and M. Sugawara, Phys. Rev. 163, 1716 (1967).
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tively, one finds that the equal-time commutators
(ETC) between T„„and these operators (and between
the T„„'s themselves) are partly determined by co-
-ariance' '' [see Eqs. (1.14)—(1.20) and (1.24)—
(1.29)]. As may be read off from Eqs. (1.14)—(1.20),
the non-Schwinger terms (NST) and the first-order
Schwinger terms (FOST)—the canonical terms —in the
ETC [iTpp(x), X(y)] are completely specified by co-
variance, whereas in the ETC [iTp (x),X(y)] only the
NST's are completely determined this way while the
FQST's are shown to satisfy relations (1.30)—(1.35).
These ETC's have some immediate applications which
we discuss next.

Turning first to Eq. (1.17), we remark that itfollows
from this that the Gell-Mann condition' '

(13)

is equivalent to"

(Jp) 8 8
—jo, Is.i"(x)=0.

et=2 ggJ„ggA~
(1.4)

d'y[zT p„(x),Jp(y)]=0. (1.5)

From (1.26) we see that (1.5) is equivalent to

N0~(Jp)

-jp;(s.)' (x) =0.
BSI,I BXk~

(16)

In Sec. III it is seen that in certain models" —"
jo,. ~~„I'"g

o H. Genz and J. Katz, Nuovo Cimento 69A, 15 (1970).
9 H. Genz and J. Katz, Nucl. Phys. 813, 401 (1969).
"In Ref. 6 this relation has been used to derive the transforma-

tion properties of current divergences assuming the behavior of
Tpp under the chiral group. Since (Ref. 6 and, e.g., Ref. 14) this
application provides possible experimental tests, it is of interest to
derive further consequences of Eq. (1.3) I-as done in Eq. (1.47)
and in Appendix Ag.

"We denote the set k&, ...,k (n&~ 2) by (0 ) (where summation
over repeated (k }is understood).

» The absence of NCT in Eq. (1.17) has been obtained for
canonical currents in Ref. 2 by means of Schwinger's action prin-
ciple (Ref. 1). Another derivation of this result has been given in
Ref. 3 and in the Appendix of Ref. 9 (using the formalism of
Ref. 32)."We restrict our attention to the contributions of basic canoni-
cal Gelds with spin 0 and 2.

'4J. Ellis, Nucl. Phys. 813, 153 (1969); P. R. Auvil and N. G.
Deshpande, Phys. Rev. 183, 1463 (1969).

» We restrict our attention to the contributions of basic canon-
ical f elds with spins 0 and ~~ and assume a Lagrangian not involv-
ing derivatives of the fields carrying spin (see also Ref. 16).

~6 It has been shown (Ref. 17) that canonical realization of

As we shall also see below, for canonical currents the
noncanonical terms (NCT) jp js l" are absent"" so
that Eq. (1.3) holds in this case. In addition it is

frequently assumed' " that only the scalar part of T„„
break. s the symmetry so that

vanishes so that Eq. (1.5) holds insuchmodels. Further-
more (Sec. III), for Acids P proportional to canonical
ones, the NCT's in Eq. (1.15) are absent, " and thus

d'X[z&oo(x)A'b')vo]='V(x)v, ,'8'—p—(x)y, (1.7)

in analogy to Eq. (1.3). [Conditions under which the
additional Eqs. (3.37)—(3.42) hold are also investigated
in Sec. III.]

As a consequence of Eq. (1.31) [Eq. (1.33)] the ETC
of Tp„with fields of spin —', (space components of
spin-1 fields) must at least have first-order ST. Since
the ETC between the time-space components of the
canonical energy-momentum tensor Op with any field
which is proportional to a canonical one does not have
ST, this property distinguishes the generators of local
Lorentz transforrnations T„„(the symmetric energy-
momentum tensor in canonical theories) from O~„,.
Canonical models in which both coincide therefore only
contain basic fields of spin 0 (the generalization of the
argument to canonical variables with spin higher than 1
should be obvious) and thus no fermion operators at
all. Therefore, in the models of interest to us, one can-
not assume Eq. (1.2) with 0'„„replacing T„„.However,
it turns out (e.g. , Sec. III) that the commutator
i[Tp„(x)—Op„(x), jp(y)] vanishes in a large class of
models and thus the calculation of i[Tp (x) jp(y)] may
be ™Pliedby considering instead i[Op„(x)jp(y)].

It is the main purpose of the present paper (Secs. II
and III) to derive restrictions on the canonical and
noncanonical terms in Eqs. (1.14)—(1.20) and (1.24)—
(1.29). It is in view of the applications made' ''''"
of these relations (see also Sec. IV and Appendix A)
that a systematic investigation is desirable.

The results obtained in Secs. II and III are of dif-
ferent generality. Whereas in Sec. III we calculate
ETC's in canonical models (the results are described
instatements 1—3), Sec. II depends only on the assumed
validity of the Jacobiidentities" for [[iTpp(x), iTpp(y)],

PCAC and current-6eld identities require couplings involving
derivatives of p (which we allow here). We shall see (Sec. IV) that
for any (i.e., without restrictions on the basic fields) Lagrangian
realization of these identities derivatives of the spin-1 Geld are
also present in the interaction Lagrangian.

'7 H. Genz and J. Katz, Nuovo Cimento (to be published).' In Ref. 3 this conclusion has been obtained for canonical
theories involving only basic 6elds of spin 0 (i.e., no fermions
at all).

~9 This conclusion has been obtained in Ref. 8 for theories ful-
Glling the condition of Ref. 15.

"Of course, 0+„„may be used in any canonical theory as long
as it is not interpreted as a generator of local Lorentz transforma-
tions (see Refs. 3, 8, and 9 for examples).

21 We will assume in this paper that the equal-time limits con-
sidered exist and that the Jacobi identities employed are valid.
)See J. Katz and J. Langerholc, Phys. Rev. 184, 1577 (1969),
for a discussion of equal-time limits and their possible nonexis-
tence. g Occasionally we shall also assume theassociativelaw. For
brevity we shall refer to the consequences of assuming the Jacobi
identities for (PiToo(x),iToo(y)7, X(z)] without imposing any re-
strictions on the possible NCT in the ETC PiToo(x),X(s)g and
P'Too(x), iToo(y) J as "consequences of covariance. "
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X(«)] (where X denotes any of the operators d, Italo,
Jp J~ Jpr or Bpp) and on the transformation properties
of T„„and Xunder Lorentz transformations. The results
of Sec. II are then used in obtaining" some of the con-
sequences discussed in Sec. III [Eqs. (3.20), (3.24), and
(3.25)], but we would like to illustrate here possible ap-
plications by deriving the commutator [iToo(x),Joi(y)]
in the Sugawara model, ' in which we have

o)oP(t)v =&(y)—r)'X b). (1.12)

Writing Eq. (1.11) for y„=0, multiplying by x&, and
integrating over x, we find by use of Eq. (1.2) from the
known transformation properties of P under boosts

and will prove convenient in what follows. From the
Heisenberg equation of motion [using Eq. (1.1)], we
find

x b')=lit(y)v, (1.13)
d'y(y —«)-[To-(y),~i(«)]=e-~-(«) (1.8)

Then we use (2.21d) [and the absence of NCT in Eqs.
(1.17) and (1.18) for the Sugawara model) to see that
at most NCT of second order contributes to the com-
rnutator under discussion. Using (1.8) and (34), we
obtain

[iToo(x),&oi(y)]
8

=&'~p)(x)3(» —y)+~s~b) 3(»—y) (1 9)
8XI);

(Of course, the above result would also follow by direct
calculation, a procedure which involves ambiguities due
to products of fields at a point which is avoided by the
derivation presented above. )

Absence of NCT in Eq. (1.21) may be made plausible
by assuming Schwinger's action principle, ' which may
be used to obtain

[iTpp(x) iTpp(y)]

8 8
=iTpo(x) 3(»—y)+iTpob) ~(x—y) (1 1o)

OXIDE BXA;

which determines the CT in Eq. (1.15). Applying the
same reasoning to the other operators denoted by X,
one obtains the results" (see also Refs. 2—4, 8, and 9)

[iT„(x),y(y)]= a,y(x)a(x —y), (1.14)

One also obtains

[iTpp(x),Jp(y)]

p,
= Bp Bp.

a=8~J„(x)3(x—y)+J„(x)—3(x—y) (1.17)
AXED

[which has been discussed in Ref. 1 (second entry) as
well as in Ref. 24],

8—Jo(x) r) (x—y), (1.18)
BX'

[iTpo(x),~t (yh o]
= ~V(xh. ~(»—y)+sit (x)V.&'&(x—y), (1.15)

where we have defined

However, our results do not depend on this assumption.
Next we would like to make explicit" the con-

sequences which Eqs. (1.1) and (1.2) together with
the transformation properties of X have for the com-
mutators [iTp„(x),X(y)].To describe a possible deriva-
tion, we consider the commutators involving
Assuming only existence of the equal-time limit, we
may write

8
[iT (x),k(y)Vo]=x(x)3(x —y)+X.(x) 3(x—y)

OXIDE

and

8
+r)sd (x) -3(x—y), (1.20)

OXIDE

, 8
[iToo(x),iToo(y)]=iTos(x) 6(x—y)

BXp

8
+A~(y) b(x —y), (1.19)

t9XIg

L'T«(*) r)p4(y)] = 4(x)3(»—y)

a
+iTpo(y) 3(»—y) . (1.21)

OXIDE

(4) 8 8
+ P &)r-. ) "(y) . —5(x—y). (1..11)

BXyI BXP~
NST are absent in Eq. (1.21) since g&T„„=g~T„„=0

Note the particular choice of the arguments of the ST m "h«»ns«rmation properties of T„(x), it also
in the above equa, tion. This may always be achieved follows that

(r)lr)xfs ))too;fs ) (x)=0 (1.22)
"An analogous derivation of Eqs. (3.24) and (3.25) was given

in Ref. 3.
& ~e have not written explicitly the contributions of ST of at

least second order. As in Eq. (1.11) they are understood to be
written with arguments at y. For example, their contribution to
Eqs. (1.17) and (1.18) is given by j„..) o )"(y) (&/Bx)s ))b(x—y).

rr (o)/o)x) s.))too; ) s.)op(x) =0.
'4 H. Pagels, University of North Carolina report (unpublished);

(private communication).
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We next use Eq. (1.1) for tt=m to obtain"

[i&o-(x)A (3)]= ~-4 (x)6(x—y)

+4 ' (3) ~(x—y), (1 24)
OXIDE

['2'o-( ),&bh 1=~-&( )3 ~( —y)

For the fermion field, we will occasionally assume""

[~:(x),4(3)1=—r~4(x)d'or ~(x—y). (137)

It follows" from this (by an appropriate choice of the
phase of A), assuming the usual ETC between charge
densities, that

(1.38)

+X""(3) ~(x—y), (1»)
t3XIf,

pa &a fol a= 1—3

for a =4-6.
(1.39)

[iTo (x),JO(y)] = —Jo(x) &(x—y)
8$

l9

+jo, ""(3) ~(x-y),
t9XIf;

[i&o-(x),Jt(3)]= ~-Jt(x) 6(x—y)
8

+j;""b')—6(x —y)
cIXI(;

[ijo (x),Jot(y)]=f) Jot(x)&(x y)—

(1.26)

(1 27)

(1.28)

Turning next to the applications of Eqs. (1.14)—
(1.21), we note that the connection between usual
ETC of charge densities, ST in [Jo (x),c)t'J„o(y)], and
current-albegra commutators has already been partly
discussed. ''7 The discussion given in Refs. 2 and 3
made use of Eq. (1.17) and assuined for the main con-
clusions that NCT were absent, while in Ref. 7 use
was made of I.orentz invariance, and it was assumed
that the ETC occurring in that derivation (T„„was
not used in Ref. 7) contain at most a FOST. It wa. s
then shown' '~ that usual current-algebra commutators
follow, provided that

and
(x—3)-[Jo (x),~"J.'b)]=0 (1.40)

[iTO„(x),t)op(3t)]= —ctop(x) 8(x—y)
BX

8
+eo;""(3) ~(x—y). (1 29)

BXIf,

Using Eq. (1.2), we further obtain

i.e., the above ETC contains no ST.
In Refs. 8 and 9 it was shown that in certain models

it follows from Eq. (1.37) that'r

[J- (x),4 (3)3o]= l4(x)1' V-6(x—y)
+i(3 x)-I Jo (—x),f-'b)vo], (141)

where f is defined by

—A'"(3)+4-'"(3')=o (1.30) f„(x)= (ip&r)„m)P(x—) (1.42)

om(3t) +3f on (3t)

,'%(3)vox-v- k-4 (3)Vog-—
—jo;""(3)+jo;-"(3)= 0

j l;k (3t)+j l;m b) =glkJm(3t) glmJk(y) 1

jot; s (3t)+j ot;—~ (3t) —gts Jom(3t) —gtmJos(f),

and

(1.31)

(1.32)

(1.33)

(1.34)

for any m. [As noted in Ref. 9, Eq. (1.41) may be ob-
tained for conserved currents, using direct consequences
of covariance, "from the Heisenberg equation of motion.
Also for conserved currents the x-integrated Eq. (1.41)
is a simple consequence of the Heisenberg equation
of motion. ] Absence of ST in the ETC's [Js'(x),
P(y)yo] and [8"J„(x),lf (x)] was also derived in Refs.
8 and 9."This result may be combined with Eq. (1.41)
to see that [Jo'(x),ft(y)yo] contains at most a POST.

—A;.0™(3)+A;-"b)=0. (1.35)

[Jo (x),JO'(y)]=ie'"Jo'(x)tt(x —y). (1.36)

Before discussing applications of the results described

above, we proceed to introduce our basic assumptions
and notations concerning ETC between currents and
fields. We will restrict our attention to chiral SU(2)
SU(2) and assume the usual ETC between charge
densities. The currents A„(x) and V„( ) (n= 1—3)
will be denoted by J~'(x) (it = 1—6) with J„'(x)= V„(x)
for tt = 1—3 and J„'(x)=2„'(x) for tt = 4—6. The
structure constants e ~' are then de6ned by

"This commutator has frequently been used in the literature
(Refs. 8, 9, and 26) and no contradictions with experiment have
been found. [See S. Weinberg, Phys. Rev. 166, 1568 (1968), for
another proposal. g See also the following: J. Rothleitner, Nucl.
Phys. B3, g9 (1967); M. Sugawara, Phys. Rev. 1'72, 1423 (1968);
M. K. Banerjee and C. A. Levinson, University of Marlyand
Technical Report No. 857 (unpublished); A. M. Gleeson, Phys.
Rev. 149, 1242 (1969);H. Genz, J. Katz, and S. Wagner, Nuovo
pimento 64A, 218 (1969);H. Genz, Phys. Rev. D 1, 659 (1970).

~6 H. Genz and J. Katz, Nuovo Cimento 64A, 291 (1969)."To obtain the results given in Refs. g and 9 it was assumed in
Ref. 8 that NCT were absent in the ETC PiOoo(x), JO'(y)] and
[iO~M(x),P(y)yo] The absence .of these terms was derived in Ref.
g for canonical currents and for fields proportional to canonical
ones in Lagrangian field theories. In Ref. 9, the absence of NCT
in (iToo(x),jo (y) g and t t'Too(x) g (y)vo) was assumed.
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It is the first purpose of the applications made in Sec.
IV to derive Eq. (1.41) from covariance and Eq. (1.37)
alone and to discuss the dependence of the results of
Refs. 8 and 9 on the absence of NCT in Kqs. (1.15)
and (1.1/) (as is the case for certain models discussed
in Sec. III).

We next illustrates applications of Eqs. (1.14)-
(1.21) by considering the Jacobi identity for LsTss(x),
LJp(y), Jss(s)jj.' We thus write

se—'"r) J (s)b(x —y)b(y —z)

8
=LJo'(s),J"(x)3 &(x—y) —P"()),J"(x)j

BRA;

8
5(x—z) —t'e"'J '(x) 6(y —z)

BSA;

8
X —5(x—z)+Z(x, y,s) . (1.43)

Bxy

d'x Z(x,y,s) = d'x x&Z(x,y, s) =0. (1 44)

Note that if one assumes Eq. (1.3), then one may also
write

In the above equation, we have denoted by Z the sum
of terms which depend on jo.{I, I .Owing to covariance,
we have

From Kqs. (1.40) and (1.46), evidently the usual
charge-current conunutators follow. ~'~ From covari-
ance we derive in the Appendix the absence of ST in
L'Js (x),c)"J„s(y)$ for currents which obey field-algebra
commutators with charge densities. Also in the Ap-
pendix the usuaP symmetry re1.ations for the FOST in
LJp~(x),J s(y)) are obtained from assuming at most a
FOST in this commutator. The Appendix, in which we
employ the methods of Refs. 2 and 3, is independent of
NCT in Eq. (1.17) and contains also a discussion of
the further consequences of Eq. (1.3). This investiga-
tion is motivated by noting that only for canonical
currents absence of NCT Lin Eqs. (1.17) or (3.4)j has
been obtained. '"'

It is the main purpose of Sec. IV to investigate
consequences of Eq. (1.41) for KTC between currents
and fermion fields. It is argued in that section2' that
large effects due to the interaction term in Kq. (1.41)
are to be expected, in contrast to Eq. (1.46) in which
these effects are expected to be small. The relaton in
Eq. (1.41) shows that it is in fact because of the inter-
action of the spin--,'field that deviations from the
quark-model result for $J& (x) ll(y)ysj are Possible
(as pointed out in Ref. 9). Since proportionality of the
NST of this ETC to ltl' y is incoinpatible with com-
mutativity of the space components of the currents,
we immediately see that the algebra of field-current
cornmutators is exlcuded if the fermion Geld is free.
In order to investigate the compatibility of Kq. (1.37)
with Geld-algebra commutators, we present in Sec. IV
the following model for the nucleon current:

dsydsz Z(x,y,s) =0. (1.45) f-( )= f -I'(~(*))
+Pcv V„(x)+c~A„(x)ysfpl"r g (x), (1.48)

Next we multiply Eq. (1.43) by (x—y), integrate
over x and z, and use Eq. (1.44) to obtain (as a result
of covariance, and the ETC between charge densities
only)

LQ'b.),J- (y)) =se"'J-'(y)

+ d's(y —)-LJo (r),~"J.'(s)3 (1 46)

Assuining Eq. (1.3), we then obtain from Eqs. (1.43)
and (1.45)

which may be interpreted by use of current-field
identities. t In Kq. (1.48), P(g(x)) denotes an arbitrary
polynomial of the pion Geld with the right quantum
numbers. ) If algebra-of-fields current conunutators are
assumed, together with Eq. (1.48), then the second
term on the right-hand side of Eq. (1.41) (the inter-
action term) is proportional to the first term. Thus
field-algebra current commutators are compatible with
Eq. (1.41) La consequence of (1.37)j and Eq. (1.48)
only if the right-hand side of Eq. (1.41) vanishes,
which yields the relations (4.18)—(4.31).

Therefore, Eqs. (1.41) and (1.48) suggest that"

P"(*),~(y)3=o (1.49)
The above relation has been derived in Ref. 7 by use
of I.orentz covariance and the assumption that at most
a FOST is present in the ETC's P's~(x), c)"J„s(y))and

LJp (x) Jss(y)$. In Ref. 3 it was obtained assuming
absence of NCT in Eq. (1.17). Our derivation shows
that it is a simple consequence of Eq. (1.3).

"This derivation divers from that given in Ref. 2 in that Kq.
(1.40) is not assumed and from that given in Ref. 3 in that we allow
for the possible presence of NCT in Eq. (1.17).

in case of algebra-of-fields commutators. (Note that the
above equation is also a consequence of the canonical

» A di6erent discussion is given in R. Jackiw, CERN Report
No. 1065 (unpublished).

"Note that Eq. (1.49) is the simplest possibility to express
LJs'(g), iI(y)yog as a linear form in tI and its space derivatives
which is compatible with rotational invariance and 6eld-algebra
commutators.
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rules in case of canonical realizations of current-Geld
identities. ")

In the remaining part of Sec. IV consequences of
Eqs. (1.15) and (1.17) are first discussed when they
are combined with Eqs. (1.3'7) and (1.49) and finally
the consequences of Eqs. (1.17) and (1.18) for cur-
rents obeying Geld-algebra commutators are obtained.
The xnain results are Eqs. (4.40) and (4.42), which are
obtained without any assumption about the NCT
in (1.17) and (1.18). We would like to note here that
Eq. (4.40) shows that in canonical realizations of
current-Geld identities, one needs derivative couplings
involving the spin-1 field."""

IL CONSEQUENCES OF COVARIANCE

In the present section" we assume the Jacobi identi-
ties involving [[iTpp(x), iTpp(y)], X(s)] and utilize

Eqs. (1.14)—(1.22) and (1.24)-(1.29) to obtain rela-

tions connecting the ST in [iTp (x),X(y)] with the
NCT in [iTop(x), I'(y)]. In the above, X (I') denotes

any of the operators p, Pvo, Jp, J&, Jpi, or Bop (8+v&,
8"J& Jp 8 Jpi or PP). Our present considerations
are model independent since we only make some rather
general assumptions about the existence of equal-time
limits and the validity of the Jacobi identity. Since all

the relations below are obtained by analogous manip-

ulations, we shall only choose the commutators involv-

ing f to illustrate the calculations and xnerely give the
results for the other cases.

We start by writing the following Jacobi identities:

[[iTop(x),iTop(y)], X(s)]
= [iTpp(x), [iTpp(y), X(s)]]

—[iTpp(y), [iTpp(x),X(s)]]. (2.1)

In this equation, X denotes any of the operators in-

dicated above. For X(s)=g(s), we use (1.15) and

(1.21) to rewrite this as"

8
[iTpp(x), 0(sh o] ~(x—y)

Bx@

=[ Too( ),&V(y)v, ]&(x—z)—'[ Too( ),~V(y) v ]
X&(y —z) —['Too(y), ~"P(x)v„]b(x—z)

+p [iToo(y), ~V(x)v.]~(x—z)

For a consistency check, we Grst multiply the above
equation by (y—s) and integrate over x and y to
obtain

d'x[i Tp„(x),g(s)vp]

d'y(y s)-I—:~T»(y),~"0(s)v.]

+ -' d'y(y —s)-[iToo(y), ~V(s)vi]

+-,'a'P(s)vxvpv„+p 8 P(s)vo (2.3)

Using once again Eq. (1.15), as well as Eq. (1.25), we
then obtain, after some rearrangements,

d'y(y —s)-[iTop(y), &"k(s)v.vo]

p(—~"P(s)v,)v (2. 4)

Therefore, coxnparison with Eq. (1.15) shows that
8~$( )vs„ tr anfosr mslike a spin--,' field, as it should.

Employing the same reasoning as above and using
Eqs. (1.14) and (1.17)—(1.21) for each of the cases
X=4, Jo, Ji, Joi, and Bog, respectively, we then obtain
the correct transformation properties for Bpg, 8"J„,
Joi, BPJoi, and C]4.

We now return to Eq. (2.2) and multiply it by
(x—y) and integrate over I, with the result"

—2[iTo-(y),4(sh o]

d'x(x —y)-[iTop(x), ~"4(y)v.]~(y—z)

—
p d'x(x —y)-[iToo(x) ~V(y)vp]~(y —z)

B—p4'(y)v vovx: &(y—z) —(s—y)„

X[T„(),y(.) „]+-;(, y)„
&&[iT o(y), ~V(sh.]. (2.5)

Note that there are no contributions from the higher-
order ST in Eq. (1.21). Therefore, the resulting ex-
pressions are identical to those which would be ob-
tained by use of Schwinger's condition.

Using Eqs. (2.4) and (1.15), the above equation may
then be written as

+g(x)vivovp ~(x y) ~(y —z)
Bx~ Bp'I

B B—S(y)v vov ~(x-y)- ~(x-z). (2 2)
Bp~ Bxy

"T.D. Lee and B. Zumino, Phys. Rev. 163, 1667 (1967), and
references therein; R. Arnovritt, M. H. Friedman, and P, Nath,
NucL Phys. B10, 578 (1969), and references therein.

[iTo (y),f(s)vo] = —
p (y —s) [iTop(y), 8+(s)v„]

&Q(y)v—„v-vol(y z)+8 P—(y)vo&(y z)—
B

—:4(s)vo ~(y —z)+8( ho(v v- —v v.)
By

X &(y—z) . (2.6)
Byj
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Employing the same reasoning as above, the collec-
tion of formulas obtained for X=&, Jo, Jg, 80$, and
J0~ may be easily written, but we shall not do so in the
present paper in order to keep its size manageable.

We next proceed to obtain the relation between the
FOST in LiTO (y)g(z)70) and the second order ST
in LiT«(y), Oh'(z)7„). In order to do this, we multiply
Eq. (2.6) by (y —s) and integrate over y. This gives

d'y(y z)„—[iTp„(y),P(z)7p]

= —«d'y(y —z)-(y —«).I:iT«(y), ~V(z)v.]

+2gmA (Z)70+«/(s)70(vmvn Vn7m)

+~"x -"(z)v.vo (2 7)

The analogous results for the other cases are given in
Appendix S. From these relations it may then be seen
that Eqs. (1.30)—(1.35) (which have not been used in
the preceding calculation) emerge upon antisymmetriza-
tion in ns and n.

Next we multiply Eq. (2.2) with (x—z), integrate
over x, and use Eq. (1.15) to obtain"

LiTo-(y), k(z)vo)+l (y —z)-Li~'T»(y), 0(z)vo)

=
z ~-0(z)7o~(y —E)+sV(z)70(v.v —v 7~)

—2x „,'"i(z)=0, (2.13)
the desired result.

We next derive the analogous results for the ST's
of the third order by multiplying Eq. (2.8) by (y—s)„,
(y —s)„,(y—s) „ integrating over y, and using Eq.
(1.25). We obtain

3Lxnin2n3 (z) Xmn2na («) Xnamna (z)

'"'(z))=3 d'~(~ s) ['Too(&) X i 2 I"(z))

+3Xnsnmna (z) ~ (2 14)

Once again it follows from the above that X, ,„, =0
implies that X„,„, ,' =0. To see this we write Eq.
(2.28) when X„,„,„,'0= 0. We obtain

Xn~nmng («) Xmnmna (z) Xnymns (z)
—X-,-,-'"'(z) = o (2 15)

Xmn2na («) Xn~mnl
' (z) Xn~n~m (z)

—x„,„,„,' (s) =0. (2.16)

Adding and subtracting these equations, we get

X„,„„,o"~(z)+x„,„,„'"8(z)=0 (2.17)

and
ong(z) X om(z) x Onz(z) 0 (2 12)

Adding these relations, we then obtain

8
X — -&(y-z). (2.8)

and
x. „„,'"'(s)—x„.„,„.o"i'(z) =0. (2.18)

Choosing rn'=eg) eg' ——ms) e2'=m) ~3'=eg) and using
the symmetry of X,n...' in the lower three indices,
we obtain from (2.18)

LNote that the higher-order ST's in Eq. (1.21) do not
contribute to the above equation. ]

Similar results may be obtained for the remaining
cases by an analogous procedure. However, we only
wish to note here the result

(2.19)0 g(z)nx On 8 (z) 0

which upon comparison with Eq. (2.17) shows that
X„,„,„,' (s) vanishes. Clearly an analogous reasoning
may be performed for higher-order ST's but we shall
not do so in this paper since the generalizations are now
apparent.

Our results may be schematically expressed as

LiTo-(y) Jo(z)]+z(y —z)-Li~"To (y)»(z)]
=l~-J (y)~(y-z), (2.9)

since we shall make explicit use of it later. Note that
the only possible NCT which may contribute to
Eq. (1.9) fi.e. those of LiT«(x),J„(y))I have not been
written out explicitly for simplicity.

We would next like to obtain relations between the
higher-order ST's. To achieve this, we multiply Eq.
(2.8) by (y —s)„,(y —z)„„ integrate over y, and use
Eq. (1.25) to obtain

d'~(~ —y)- II (~—y)-, LiTo-(~),X(y))

4(4'&i "Ja )

~k(X&i" &z )
00 ' 003~ —Jpyg0; k1n "kg;gm; kj, "kg J

00 003~ J~&Jl; ky" kg gP k1" kg

00 w 005~gpyy~kI. ~ kg ~0' k1"~ kg J

00 00'1—~ Jp~(/0m; k1".kg; )l; k1" kg j

for X=@ (2.20a)

for X=$70 (2.20b)

for X=Jo (2.20c)

for X=Jq (2.20d)
Xn n 0™(s)+Xmnl (z)+Xngm (z) = d &(& z)m

XLiTpp(x), X„,„,"(s))+X„,„,"707„. (2.10) for X=Boy (2.20e)

for X=Jpi, (2.20f)From (2.10) it is easy to derive that X„,„,o™=0 whenever
X„,„,"=0. In fact, when X„,„,"=0, Eq. (2.10) gives

since analogous calculations may be performed for the
(2.11) other choices of X. In the above we have denoted by Z
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those linear forms in the ST obtained following the
procedure indicated. Note that they vanish whenever
the ST's vanish.

To obtain analogous results for commutators involv-
ing Tpp and F', with F= Bpg, 8"Py„, &"J„, Jp,
or BpJp, we return to Eq. (2.6). We mutiply this
equation by

(y —s). II b —s)-' (&=»3)
i=2

and integrate over y. The explicit non-ST on the right-
hand side do not contribute, and we are left with a
relation expressing the ST or order 8+2 in [iTpp(y),
8+(s)y„] in terms of the ST order or 2+1 in (i Tp~(y),
lt(s)Pp] and X&,s,PP, . . . , Xz,...ss,PP. Using Eq. (2.20),
we then obtain a relation expressing the ST of order
2+2 in [iTpp(y), 8"P(s)y„] in terms of Xs,p,PP, . . . ,
Xk,...k~,". Our results for the different I" may be
schematically represented as

d'x(x —y)-(x —y)- II (*—y).~[r Tpp(x), l'(y)]
j=2

00 003~P g'Yklk2 ) )+kl."'kR-l 2 J

00 003
k1k2 ) ~ ~ ~ )«k1" kg+2

for

fol

(2.21a)

I' = r)&fy„(2.21b)

~Bpf(Y'klk2 ) ' ' )'Ykl'' kg+2 ) 9 Oi klk2 ) ' ' ) Vp' kl ''kg+2

00 00. ' 00 Opi
Josh jol. k k ~ ~ ~ jol k "kg jl k k ~ ~ ~ jl-k "-kg

for

00 oo. oo . ops
JPy jo;k1ky ) ~ ~ ~ )jp;kI ~ ~ k~2 ) j))t;klk2 ) ' ' ') j~'kl"'kg+2 )

00 00 00 ' 00't=-p, ,'j, k, k, , . . . ,j,k, ."k~„,' jp, k,k, , . . .,jp. k, ...»„~ fOr

(2.21c)

(2.21d)

(2.21e)

(2.21f)

III. COMMUTATORS IN CANONICAL THEORIES

We obtain in this section some equal-time com-

mutators of Tp„with currents and fields in canonical
theories with basic canonical fields of spins 0 and —,.
We will sometimes also assume that the interaction
Lagrangian does not contain derivatives of the spin-~

Geld. If canonical variables of higher spin are present,
a generalization of our derivations under this assump-

tion requires absence of derivatives of any Geld carrying

spin from the interaction Lagrangian. In obtaining
these commutators we will also make use of the informa-

tion obtained in Sec. II.
We start with some remarks concerning the canonical

energy-momentum tensor O~„„and the syrrunetric

energy-momentum tensor T„„(the generator of local

Lorentz transformations). The canonical tensor is

given by Noether's theorem as

BL
o',.(x) = ~.4-(x) —g"L(x),

~(~A.(x))
(3.1)

while the symmetric energy-momentum tensor T„„ is

dehned by

The explicity form of the Z's (which vanish when-

ever the ST's vanish) may be obtained by performing
the manipulations described above, taking into account
the explicit forms of the equations used.

choose the adjoint of the T„„given there as our sym-
metric energy-momentum tensor. This will prove
convenient and is possible even if T„„is not Hermitian,
since the non-Hermitian parts cannot contribute to
Eqs. (1.1) and (1.2).

The canonical energy-momentum tensor 8„„has the
advantage that equal-time commutators such as'3

[iOpp(x) f(y)]= r)pit (x)8(x—y)

[&epp(x), Jp(y)) = r)"J„(x)3(x—y)

(3.3)

8
+Js(x) 5(x—y), (3.4)

8$k

(3.5)

and
8

[r'Op (x) Jp(y)]= —Jp(x) 5(x—y),
Bx

(3.6)

are readily calculated, while if we consider the analogous
conunutators with T„„replacing O~„„, we note that
[iTpp(x), l((y)] is different' from [iO'pp(x), P(y)] [see
Eq. (3.15) below), [iTpp(x), Jp(y)] is the sames4 as

[iOpp(x), Jp(y)], and [iTp (x),f(y)] and [iTp (x),
Jp(y)] are in general not completely determined unless

additional assumptions are made. '4 Incidentally we also

T..'(x) = o"(x)—d'f~" (*). (3.2)

We employ the formalism of Ref. 32. However, we

» G. Kallen, Quenteeelectrodyeumik Ijarldbuch der Physik, j3d.
V/1 (Springer-Verlag, Berlin, 1958).

» See Ref. 32 (and Ref. 9) for a derivation of Eq. (3.3). In Refs.
3 and 9, Eq. (3.4) was obtained, Eq. (3.5) obviously holds, and
Eq. (3.6) was derived in Ref. 3.

"This wQl become apparent after reading this section. .
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note that'

Ciepp(x), 0(y) Vp) =~"k(x)V.~(»—y)
8

+~( )~.
8$p

Evidently Eqs. (3.3) and (3.7) may not hold with

Top replacing 0~op owing to covariance Li.e., Eq. (1.2)).
Since for any canonical variable P„one derives' "

ol

Jp'(x) =

iver'—

(x)y'(x)F p, ', (3.16)

LiToo(x), k(y) vo) =~V(x)v.~(»—y)
8

+-,'f(x)y&- 8(x—y) . (3.15)
Bxg

Next, for the time component of a canonical cur-
rent defined by

Liepp(x)A. (y))= ~pl. (x)&(x—y)

one finds from covariance that
where Fp,' are the structure constants of the group3.8
considered, we use Eqs. (3.4) and (3.16) to obtain
(Jp is Hermitian)

(3 9) L'T o(*),Jo(y)) =~"J.(*)~( —y)~o~ = — dox x Boo(0,»)
8

+JI,(x) b(x —y) . (3.17)
Bxycan hold only if all the basic canonical variables have

vanishing spin. Similarly Eq. (3.5) with O~p replaced by
Tp would be in contradiction with Eq. (1.31). These
facts have already been discussed in the Introduction.
It should also be noted that even though the equal-time
comxnutators involving To„are in general different
from those involving O~p„, they give the same results
in some instances. ""

We will next derive X'0=0 without making any as-

sumptions about derivative couplings. To this end we

note that for spin —,', 5„„., s LEq. (4.18) of Ref. 32) is
given by

{Toderive the above equation it is sufhcient to realize
that (8"f&pp(x),Jp(y)) contains at most a FOST, and
thus the result follows by covariance. }

Next we assume the absence of derivative couplings
involving g and obtain from Eqs. (3.10) and (3.13)
Lusing Eq. (4.18) in Ref. 32)

~"fo.-(x)=
p ~"I:~(x)b-V- V-V-)0(x—)

+4g„.or (x)g (x)) . (3.18)

S„„,. p=-,'(y„y„—'r„y„).

Thus we may write LEq. (4.19) of Ref. 32)

f-oo(*)=-' (*)(&o.-—.-&o)4( ),
where or is canonically conjugate to g:

BLr

or(x) =-
rI(Bpg(x))

(3.») LiTo.(x) 4(y)~o) =-:~.f(x)vo~(» —y)

8
+pl(y)(V-V —V V )Vo ~(»—y)

Bx~
(3.12)

8—g(x)yp b(x —y) . (3.19)
Bxln the above, g denotes the canonical field to which f

is assumed to be proportional. We also note that if
derivative couplings involving P are absent, one has Now, since because of Eqs. (2.20b), (2.21b), (3.15),

and (3.19), at most a second-order ST is contained in

iLTpp( )x,f (y)pp) Pf has been defined in Eq. (1.42))
and at most a FOST in

I iTp (x),f(y)yp), we obtain
from Eq. (2.7) and covariance that Eq. (3.19) is
equivalent to

8'
—=sr(x)y yp.

~(~ 4(x))
(3.13)

Now, from Eq. (3.11) one easily obtains (using the
antisyminetry of f in the 6rst two indices)

~"f o ()=~ f- o(*)=-'~"L. ()(.o.-—&-&o)A*)).
E~Tpp(x) f-(y)~p) =~"f-(x)v.~(» y)—

8
+-,' f (x)y~ b(x —y) . (3.20)

8$g
Then from Eqs. (3.2) and (3.3) one obtains

Since the above expression contains only canonica
(3 10) variables, we may calculate LiTp (x),f(y)yp). We

obtain

I iToo'(x), 7o4(y)) =~"vA (x)~(»-y)
8

+-,'yl, g(x)— -8(x—y) (3.14)
8$y

3' Of course, O~, is defined only in canonical theories and the
more general results of covariance follower only from the commuta-
tors involving T„„.

Therefore, Eq. (3.20) is derived for canonical theories
which do not involve derivatives of P in the interaction
Lagrangian.

Our next task is to determine the commutators

I iToo(x),Ja(y)), LiTo~(x),Jo(y)), and fiToo(x), B&J„(y))
in canonical theories under the assumption that the
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interaction does not contain derivatives. of the fermion
6eld. We will make use of Eq. (3.6), obtained in Ref. 3,
and show under the present assumptions that the addi-
tional terms in the definition of Tp do not contribute
so that

8
[iTp (x),Jp(y)]= —J'p(x) 8(x—y) . (3.21)

8$

The relations in Sec. II will then be used to derive
[iTpp(x) Jo(y)] together with further commutators.

The derivation of Eq. (3.21) from Kqs. (3.6) and
(3.18) is a straightforward calculation. Using the
associative law and defining F „by

~mn PmPn Pnsm ~

we may write

LTo-'(x) —0o-(x),Jo'(y)]

l3

{[. (x)4.'(x), .'(y)4"(y)]1'-.'F."
+4g-[x- (x)P:(x),~.'(y)A'(y)]F"') =0 (3 23)

We next note that because of Eq. (2.9) it follows
from the absence of ST of higher order than 1 in Eq.
(3.21) and from Eq. (3.17) that.

t9—Jp(x) 8(x—y) . (3.24)
Bx

Note that in obtaining Eq. (3.24) from (3.21) the
special form of the POST was not needed. Therefore,
Kq. (3.24) depends only on the absence of ST's of
order higher than 1 in Eq. (3.21) and on the absence
of NCT's in Eq. (3.17). Now, because of Eqs. (2.20c)
and (2.20d) the absence of ST's of order higher than 1
in Eq. (3.21) and in the commutator [iTp&(x),J (y)]
follows from Eqs. (3.17) and (3.24). It also follows
from these equations [using Eqs. (2.21c) and (2.21d)]
that no ST's of order higher than 2 are present in the
commutators of Tpp with 8&J„and with Jp . Thus
[Eq. (2.20a)] in this case ST of order higher than 2 are
also absent in [iTp (x),B&J„(y)].

Next, assuming Eqs. (3.17) and (3.24), we show that
Eq. (3.21) and

are equivalent. Then, since Eqs. (3.17) and (3.21) are
derived for certain" models and since, as shown above,
Kq. (3.24) follows from Eq. (3.21), this establishes the
validity of Eq. (3.25) in these models. To prove the
equivalence, we note that Eq. (3.21) follows from Eq.
(3.25) since [Eq. (2.20c)] at most a FOST is contained
in this conunutator which [Eq. (83)] is as given in
Eq. (3.21). Assuming Eq. (3.21), we first note [Eq.
(2.21c)] that at most a second-order ST is contained in

[iTpp(x) 8+J&(y)]. This ST also vanishes [Eq. (83)],
and Eq. (3.25) follows from covariance. Thus, Eq.
(3.25) is indeed a consequence of Eqs. (3.17) and (3.21).

Furthermore, we note that as soon as Kq. (3.25) is
established, the absence of ST's of order higher than 2

[iToi(x),ojo~"Jl, (y)] [Eq. (2.21a)] and of order
higher than 1 in [iTp (x),8"J„(y)][Kq. (2.20a)] follows
[note also Eq. (82)]. In addition, from Eqs. (3.17)
and (3.24) it may be seen that ST's of order higher than
2 are absent in [iTpp(x) 8~J&(y)] [Eq. (2.21c)] and in
[iToo(x),Jot(y)] [Eq. (2.21d)] and that ST's of order
higher than 1 are absent in [iTp (x) Jt (y)] [Eq.
(2.20d)]. Note also that the relation

d'y(y —s)-(y —s)-

X[iToo(y),Joi(z)] (3.26)

[Kq. (84)] connects the ST in [iTp (y) J~(s)] with
those in [iTpp(y), Jp~(s)].

We would like to investigate next scalar fields p(x)
which are proportional to canonical ones. For example,
the divergence of the axial-vector current in La-
grangian models of partial conservation of axial-vector
current (PCAC) has this property. Since, for such
Qelds 9,32

(3.27)
and

(3.28)
we have

I T o(*)A(y)]=~o4( )~( —y) (329)

If the coupling does not contain derivatives of the
fields carrying spin, we have (since g is Hermitian)

[To-( )A(y)]=~-4( )~( —y). (3 3o)

[The absence of ST's of order higher than 1 is already
a consequence of Eqs. (2.20a) and (3.29).] From Eqs.
(2.21a) and (3.29) we learn that at most a second-order
ST is contained in [iTpp(x), Bop(y)] and that this term
vanishes due to (3.29), (3.30), and (82). Thus it
follows (using covariance) that

[iTpp(x) Bop(y)]= g(x) 6(x—y)
8

+Bo@(x) b(x —y) . (3.31)
Bxy

This relation, which may have been obtained easily
from the formulas given in the Appendix of Ref. 9 if
oIpg is canonically conjugate to g (i.e., if derivative
couplings involving g are absent) now is seen to be valid
even when the coupling contains derivatives of g.

Using Eqs. (82), (2.20a), and (3.29), one may evi-
dently also derive Eq. (3.30) from (3.31).From (3.29),
(3.31), (2.20e), and (2.21e) it follows that ST's of
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order higher than 2 (1) are absent in the ETC
CiTpp(x), C]g(y)] (CiTpp(x), Bpg(y)]). From Eqs. (3.31)
and (85) we thus obtain equivalence of the relations

statement 1b]

d'rCiT. p(x), f-(r)vo]= ~"f-(x)v. l —~'f-(x)v' (3 34)

aild

8
L To-(x),a,y(r)] = a,y—(x) S(x—y) (3.32)

Bx From Eqs. (3.21), (3.24), (3.25), and with the assump-
tion of Eq. (3.34), we have (using statement 2c)

CiTpp(x), ( +m')~(r)]
= ( +m') Bpg(x) 8(x—y) . (3.33)

d'yCiT, (x),Jo(y)]=0, (3.35)

Note that Eq. (3.32) is a consequence of the canonical
rules in case that derivative couplings are completely
absent.

The following statements summarize the content of
the above discussion:

Statement Ia. Assume Eq. (3.15). Then (1) there are
no ST's of order higher than 1 in CiTp (x),P(y)];
(2) Eqs. (3.19) and (3.20) are equivalent.

Statenseet 1b. For a nucleon field proportional to a
canonical Geld g, Eq. (3.15) holds. If the interaction
Lagrangian does not contain derivatives of P then, in
addition, Eq. (3.19) holds Cand consequently Eq.
(3.20) holds].

Statememt Za. Assume Kq. (3.17) and at most a
FOST in CiTp (x),Jp(y)]. Then Eq. (3.24) follows.

Statement Zb. Assume Eqs. (3.17) and (3.24). Then
(1) Eqs. (3.21) and (3.25) are equivalent; (2) ST's of
order higher than 1 are absent in the conlinutators
CiTp (x),Jp(y)] and CiTp (x) Ji(y)]. (3) ST's of order
higher than 2 are absent in the comrnutators
CiT»(x) ~~J (y)] CiTpp(x) Jp (y)] and CiTpp(x)
~"J.(y)].

Statement Zc. If J„(x). denotes a canonical current,
Eq. (3.17) holds. If the interaction Lagrangian does not
contain derivatives of g, Eq. (3.21) holds Cand con-
sequently Eqs. (3.24) and (3.25) also hold].

Statement 3a. Assume Eq. (3.29). Then (1) Eqs.
(3.30) and (3.31) are equivalent; (2) there are no ST's
of order higher than 1 (2) in the ETC CiTp&(x), Bp@(y)]

Statement 3b. Assume Eqs. (3.29) and (3.30). Then
Eqs. (3.32) and (3.33) are equivalent.

Statement 3c. If p(x) is a canonical spin-0 field, Eq.
(3.29) holds. If the coupling does not contain derivatives
of g, Eq. (3.30) Cand consequently (3.31)] holds. If
all derivative couplings are absent, Kq. (3.32) Cand
consequently (3.33)] also holds.

Finally, we note relations analogous to Eq. (1.3)
which may also be obtained. This relation itself (as
noted in the Introduction) follows from Eq. (3.17)
and has thus been derived for canonical currents.
Analogously we may derive Eq. (1.7) from Eq. (3.15)
(which holds for all spinor Gelds f proportional to
canonical fields). If the coupling does not contain
derivatives of tt, we may write Cfrom Eq. (3.20) and

d'r CiT«(x),J-(r)]=Jo-(y), (3.36)

d'yCiTpp(x) a"J.(y)]=cIpcI"J.(x) (3 37)

If g is proportional to a canonical field, it follows from
Eq. (3.29) and statement 3c that

d'rCiTpp(x) A (y)]= ~pl (*). (3.38)

If the coupling does not contain derivatives of g, it
follows from statement 3c and Eqs. (3.30) and (3.31)

aIld

d'rCiTp-(x) A (y)]=~-0(*)

d'rCiT pp(x), ~pl(y)] = 4 (x) .

(3.39)

(3.40)

If the coupling does not contain any derivatives of the
canonical variables, we obtain from Eqs. (3.32),
(3.33), and statement 3c

d'yCi Tp„(x),8pP(y) ]=0 (3.41)

d'yCiTpp(x), ( +m')P(y)]=( +m')Bpg(x). (3.42)

IV. SELECTED APPLICATIONS

Applications of the relations obtained in the preced-
ing sections may be distinguished as to whether the
result depends on absence of NCT or as to whether it
depends on the specific farm of the FOST in Eqs.
(1.24)—(1.29) obtained in canonical theories. Those
applications which only depend on general assumptions
such as existence of equal-time limits and Jacobi
identities will as such be of a much higher generality
than the others.

First let us consider the applications to the ETC
assumed in Eq. (1.37). We then note" the validity
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of Eq. (1.38) Lassuming the usual SU'(2) jgjSfJ(2)
commutators between charges and currents] and write

the Jacobi identity for fiToo(x), PJo'(y) g(s)7o]], mak-
ing use of Eqs. (1.15) and (1.17):

a 8 8
LJ"(x),O(s)7» ~(x-y) =-:~ e(x)1'.7.~(x—z)~(y-z)+!~(x)1.7. ~(»—z)~(y-z)+S(y)1.7. ~(x-y)

Bxgj, OX' BXIj;

8
)& 8(x—z) —-',p(y) I"7 — 5(x—z) b(y —z) —Loj J„(x),p(s)7o]b(x —y)

BYE;
—LJ"(y),~V(x)7.]~(x—z)+Z(x,y,s) (4.1)

Integrating the above equation over y, we obtain

d'y(y —s) -I:~"J.'b),4(s)7o] =o, (4.5)

i.e., the above ETC has no FOST if one writes its ST
with arguments s. This result has been obtained in
Ref. 26 by a more explicit use of covariance. Multiply-
ing Eq. (4.4) by (y —s)„and integrating over y, we
obtain

d'y(y —s)-t J- (y),4(s)7 ]

d'y(y —s)-(y —s)-r~"J.'b),4(s)7o] (4 6)

Thus for conserved currents FOST are absent in

LJ (y) g (s)7o]. Furthermore it may be seen by
multiplying Eq. (4.4) with (y —s)„, . (y —s)z, inte-
grating over y, and using a little algebra, that for

In the above equation Z(x,y,s) denotes the sum of the
contributions from NCT; it has the property stated
in Eq. (1.44). We have also defined

~@= (~opoA) ~ (4.2)

In Refs. 8 and 9 this equation with Z=O has been
obtained if NCT are absent. Multiplying Eq. (4.1) by
(x—y), integrating over x, and using Eq. (1.44), we
obtain

P- (y),k(s)7o]=0(y)(sl' )7-~(y—z)
+~(s—y)-t Jo (y),f-'b)7o], (43)

where f has been defined in Eq. (1.42). Note that
Eq. (4.3) ha, s been obtained in Refs. 8 and 9 assuming
absence of NCT and is thus seen to hold independent
of this assumption. We next discuss the dependence of
the further results of Refs. 8 and 9 on the model-
dependent assumptions made there.

We multiply Eq. (4.1) by (x—s) and integrate over
x to obtain

8
I:J- (y),4(s)7o]+b' —s)- LJ"(y),N(s)7o]

~Pk

= (y —s)-L~"J. (y),0(s)7o] (4 4)

conserved currents also no ST of higher order are
contained in this commutator. This result has also
been obtained in Ref. 26 by a direct use of covariance.
In Ref. 9 this result has been used to obtain Eq. (4.3)
for the conserved vector currents. YVe note in passing
that the x-integrated Eq. (4.3), for conserved currents
is a simple consequence of the Heisenberg equation of
motion.

Applying the manipulation described above to Eq.
(4.6) for B&J„NO relations between ST are obtained.
To obtain the most powerful results of Refs. 8 and 9,
one must assume the validity of Eqs. (3.15) and (3.17).
Then Z=O in Eq. (4.1) and integration over y sohws
the absence of ST's in the ETC LB&J„~(x),P(y)7o].
Multiplying Eq. (4.1) by (x—s) (x—y)„, integration
over y shows then also the absence of ST's in the ETC
LJi, (x),f(y)7o] for nonconserved currents.

It is evident that Eq. (1.37) is a natural assumption
for current-field commutators in a model in which f is
proportional to a canonical field and J„'(x) is a, can-
onical current since this equation is then a formal con-
sequence of the canonical rules and the associative law.
Since formal agreement with current-algebra commuta-
tors might therefore be expected, no such direct formal
argument for algebra-of-fields commutators exists,
and it is not at all clear from the outset if the assumed
current-field commutator (1.37) would be in formal
agreement with algebra-of-fields comrnutators. The
answer depends on the ETC between space components
of the currents and the fermion field. Since'' propor-
tionality of 1'd'xLJ '(x),p(y)7o] to p(y)1' 7 (the
quark-model result) excludes (using the Jacobi identity
for 1'd'xd'y(LJ„(x), J„'(y)]pp(s)7o]) conunutativity
between the space components of the currents, Kq.
(4.3) shows that for a free fermion field the field-
algebra cornmutators are in fact excluded. However,
one expects" in Eq. (4.3) large effects due to the inter-
action term Lwe shall exhibit below a model for the
nucleon currents for which the right-hand side of Eq.
(4.3) vanishes), in sharp distinction from Eq. (1.46)
in which the deviation from the twice-integrated cur-
rent-algebra commutators is due to ST's in LJo (x),
8&J„o(y)], a term which is usually assumed to arise
only in electromagnetic or weak interactions. Inci-
dentally, note that the associative law and canonical
rules do not allow for a ST in the ETC between the
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time component of a canonical current and a canonical
6eld. The Presence of such terms' in Ps (x),8&A„'(3')7
in case of minimal electromagnetic coupling shows an
immediate conQict between formal reasoning, PCAC,
and minimal electromagnetic coupling.

We next investigate

Next we integrate Eq. (4.3) over y and obtain

d'yP- (r), 0(~)7o7=0(s)(kP )7-

+ d'3'i(~ —3')-Po (3'),f '(~)7 7. (4.16)

L~s"(*),k(3')7o7= o

which, using the Jacobi identity involving

EP o (*),~~'(3')7,i'(s)7s7,

is equivalent to

(4.7)

(4.8)

Upon use of Eqs. (4.10), (4.12), and (4.16), it follows
that

d'*P-'(*) &(3')»7=(—c"+l)1"(3')p'7' (4»)
E~"(*),1'(3')7o7= o. (4.9)

In order to motivate the above choice, we first
mention that Eqs. (4.7) and (4.9) are simple conse-
quences of the canonical rules if current-field identities
and PCAC hold. Next note that the above choice is the
simplest possibility to express current-field commutators
as linear forms in P and its space derivatives which is
compatible with the algebra of Gelds. As another
justification of Eqs. (4.7) and (4.9) we will give a model
for f for which these equations hold.

Consider the part of the nucleon current f which
may be written as

f-(*)—= ( 7"'.— )~(*)= (P(4 ( ))
+LC I. (*)+ ~. (*)777" )k() (410)

Using the Jacobi identity for J'd'xdsyLP '(x),J„&(y)7,
"(s)7s7, one sees that Eq. (4.17) is incompatible with
the assumed commutativity of the space components
of the currents unless

2ccy= 1 (4.18)

2ccg= 1. (4.19)

We now use Eqs. (4.13)—(4.15) to express the nucleon
current in Eq. (4.10) in terms of the normalized ",
A~, and p fields as

f-(*)= (P(4 (~))+L—g-'A (*)7s+r,"~. (~)
+t',a, (~)7s77"(2'))'t'(~), (420)

where P(p(x)) denotes any polynomial in the pion
Geld with the right quantum numbers. Concerning the
part of the nucleon current not contained in Eq.
(4.10), it will be sufhcient for our conclusion to assume
that its equal-time commutator with Jo contains no
FOST.

We assume Geld-algebra commutators for the currents
and deGne the c-number ST by

Po'( ),~ '(y)7= '"~.'( ) ( -y)

where we have defined

fx=2czfx,
1.e.)

g-f='= 1lc,

g",f", '=1/c,
aild

f~f~ =1/c

Comparing Eqs. (4.23) and (4.24), we obtain

(4.21)

(4.22)

(4.23)

8
+icb ' 8(x-y). (4.11)

Bx~
Aifi =Elf'i (4.25)

(4.26)c= fp'mp '

A more detailed result is obtained if one saturates
Next we remari' that owing to Eq. (4.11) PCAC the vacuum exPectation value of (4.11) for a=1—3 by
Fq. (]..46), and the absence of ST's of order higher the p-meson intermediate state. Then
than 1 ss in the ET( Lje'(x),8"J„s(3')7,we may write

d"( —3')-L~"( ),~'(3')7=0.

We deGne normalized x, 2 &, and p Gelds by"

8&A (x)=m, 'f qP(x), (4.13)

which, combined with Eq. (4.24), gives

an=~a'f. '.
Combining this with Eq. (4.25) we have

g' =f' (~'/f').

(4.27)

(428)
a„(x)= fg, 'ff B„y (x)+A„(x—)7, (4.14)

e. (~)=f, 'V'(*). (4.15)

3 This fact is derived in Appendix A of the present paper (state-
ment A1) using the methods of Refs. 2 and 3.

lf~, l
= If. l. (4.29)

"S.Weinberg, Phys. Rev, t,etters 18, 607 (1967).

Assuming the validity of the usual saturation of the
Weinberg spectral-function sum rules, '~ one has
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Thus Eqs. (4.25) and (4.28) may be written as

lg~ l=lg. l

and

(4.30)

Note that as a consequence of the Heisenberg equation
of motion one may also write

lg~il =~.'/f~= (~ /~~ )'~~ 'I f~il ' (431)

Having discussed a nucleon current such that Eqs.
(4.7) and (4.9) hold, we would next like to obtain the
consequences of covariance for this case. From Eq.
(4.3) we obtain

(r) (-,r )v„s(y—z)

=ib —s)-[J b),f-'b)vol (432)

or, equivalently,

o= (r—s)-[~"Jp (r),0(s)vo]
= (r—)-[~J..(y),~( )r.l, (433)

i.e., the result obtained for the nonconserved axial
current from assuming absence of NCT in Eqs. (1.15)
and (1~ 17) now holds due to covariance even if NCT
are present in these equations.

Next we use Eqs. (1.15) and (1.18) to write the
Jacobi identity involving [iToo(x),[J~'(y),P(s)rog] as

L To ( ),LJ (r),4( )r 13= [J (r),~"0( )r.j~( —)

8—l —[J (r),4(x)v.]~(x—z)+l[J (r),4(x)v j
8$1,

d'y[J (y), P(x)y„](z—x)

= —[Joy (x),P(s)ro). (4.38)

Finally, we would like to obtain the restrictions which
Lorentz covariance imposes on currents obeying the
algebra-of-fields commutators. To this end, we first
write the Jacobi identity for [iToo(x),[Ja'(y),Jio(s)]]
RS

[J (.),J.. (x)j~(x-y) -[J.(y),J.,o(x)]8(x-z)

8
=ie"'J&'( x)8(x y) —8(x z) —ie'—"Jp(x)$(x z)—

Bx'

8
X — ~(x—y) yZ(x, r,s). (4.39)

Bx~

Note that the c-number ST contributions have dropped.
As usual, Z has the property stated in Eq. (1.44).
Multiplying Eq. (4.39) by (x—z) and integrating over

x, we obtain

(z—y)„[J&'(s),Jo& (y)]=ie'-g&„J&'(y) (y —z). (4.40)

&(x—z)+[J«'(x),4(s)Voj~(x —y) —4(x) (o 1")Vo
8$y

a
Xb(x—z) 8(x—y)+Z(x, y,s) . (4.34)

8x'

Under the present assumptions of Eqs. (4.7) and (4.9),
the left-hand side as well as the [J& (x)g(y)ro] terms
on the right-hand side vanish. Multiplying the above
equation with (x—s) and integrating over x, we thus
obtain

(y —s)-I:J«(r) 4(s)voj=o

i.e., in canonical realizations of current-6eld identities
with canonical ferrnion f elds g, we have

From this we see that canonical realizations of current-
6eld identities" require derivative couplings involving

the vector and axial-vector fields. From Eq. (4.40)
we also obtain absence of ST of order higher than
in the ETC [Jio(s),Joo'(y)$. Note once again that
only covariance is required in this application.

Next consider the Jacobi identity for [iToo(x),
[Jo'(y),Ji'(s)]g, which under the present assumptions

reads

[~ J..( ),J '()3~( -y)+LJo (y) J, (*)j~( —)

=ie'"Joi'(x)t'(x z)6(y —z) —ie'"—Jo'(x)—|'(x—z)
Bx'

(y-z)-
-~(~oJib))

—Joi (y),4(s)yo =0 (4.36) X5(y—z)+ie "Jo'(x)8(x—y) 5(x—z)
(9x

because of the canonical rules. Multiplying Eq. (4.34)
by (x—y) and integrating over x, we obtain a rela-
tion which is identical to Eq. (4.34) if use is made of
the Heisenberg equation of motion. It reads

+Z(x,y,s) ~ (4.41)

We multiply the above equation by (x—y) and

integrate over x to obtain

(s—r)-[Ji'b), ~"4 (s)7.3=4 (s) (ol' )vo~(y —z) (4 37) (z—y) [Jo'(y),Joi'(x) &= ie'"g iJo'(y) ~(x—y). (4 42)
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Multiplying Eq. (4.41) by (x—s) and integrating over
x, we obtain

(4.43)

Next we compare this equation with Eq. (1.46) under
the assumption that at most a second-order ST con-
tributes to [Jo'(x),81J„b(y)$. For later use we write,
for any E,

Equations (4.42) and (4.43) show that ST's of orders
higher than 1 are absent in the ETC involved. Finally,
those weaker relations which follow by use of the
Heisenberg equation of motion alone may be obtained
from Eqs. (4.39) and (4.41) by integration over x
and read

8 8
+2 ~t..~"(y)

8$p& Bxk
8(x—y), (A3)

[Ji'(s),J» (y)3 —LJ"(3) J«'(s)7=~e"'Jb'(3)
goal

8
Xb(y —z) —ie "J'(s) 5(y —z) (4.44)

Bs~

and

[~"J.(y),Ji'(s) 3+LJo b),J«'(s) 3=~""J«'(s)

8
X~(y-z)-b'"Jo (.) ~(z-y). (4.45)

Bs'

Note that for conserved currents Eqs. (4.42) and (4.45)
are equivalent.
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A more involved relation would be obtained for general
R.

We next obtain —using the method of Refs. 2 and
3—the consequences of covariance if at most a POST
is present in [Jo (x),Jib(y)g. In what follows, we do not
specialize to R= 2 in Eq. (A3). Multiplying Eq. (1.43)
by (x—y) and integrating over x, we have

(s —3)-[Jo (3),~"J.b(s) j=ie -J-'(3)~(y —z)

—LJo'(s),J- (3)3+[Jo (3),J-'(s)1

l9

+(s—y)= [Jo (r),J"(s)1 (A5)
OSIS

In the special case of Jl=2, it follows from this that
[multiplying (A5) by (s—y)„and integrating over z$

2 -"b)=5'-;-"(3)—~-;-"(s) (A6)

and obtain for R=2, upon comparing Eqs. (1.46) and
(A2), no restrictions on O.~b and o.b'b, whereas for
0-bi ' it follows that [as a result of Eq. (1.3)j

8"8'gbi b(X) =-0.

APPENDIX A

In this Appendix we would like to note more fully
some consequences of Eq. (1.3) and of the Jacobi
identity given in Eq. (1.43). We start by noting that
as an immediate consequence of the Heisenberg equa-
tion of motion, we may write

[Q (&0) ~'Jo'(&)j— d'y[JO'(~) ~"J. (3)j
=ie 'O'Jo'(x) (A1)

where charge —charge-density commutators have been
assumed. Combining Eqs. (1.47) and (A1) one obtains
as a consequence of assuming Eq. (1.3)

=~'"~"Jb'(*)— ~*3{IJ"(~),~"J.'(3)j

Assuming, for general E., the absence of ST's of order
higher than 1 in [Jo~(y),J&b(s)j, we multiply Eq. (A5)
for R&~2 successively with (s—y), (s—y) „,
(s—y), (s—3t), and obtain that at most a ST of
second order is contained in [Jo'(y),BI'J„b(s)] For.
this, therefore, Eq. (A5) holds. Especially for field-

algebra commutators with only the usual first-order
c-number ST, we find from this result, Eq. (A6), and

Eq. (1.46), tha, t no ST are contained in [Jo (x),
~"J.'(3)).

Ke collect our results for the conserved vector
current and the nonconserved axial-vector current in

the following two statements:
Statenseet 2I. If the usual field, -algebra commutators

of charge densities with currents hold, [Jb (x),
B&J„b(y)] contains no ST's.

Statesfeet AZ. Assume
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Then R=2 in Eq. (A3),

S-.-V Vp=S-. -VPV

and

written as

«'y(y a)—-L~To-(y) A (a))

Furthermore

is equivalent to

VpArx g A+ Vp
t

0- „"=0

A~Ap g ApA~
't t

(A9)

(A10)

(A11)

«'y(y —s)-(y —~) I:tToo(y) ~o4'(~))

+cjoy „„"(s), (82)

«'y(y —s)-&To-(y),~o(s))

Moreover, from Eqs. (A4) I
as a result of Eq. (1.3)]

= —
3 «'y(y —a)-(y —a)-I:tToob), ~"~p(a))

+g-~o(a)+~"j',-"(s), (&3)
AaAp —pm' ~g ApAN

t t (A12)
«'y(y —a).LtTo-(y) ~~(a))

The reader should notice that Eqs. (A8), (A9), and
(A11) have been obtained in Ref. 2 from different
assumptions by essentially the same method. For
another method to obtain analogous results see Ref. 7.

APPENDIX B

In this appendix we list the relation between the
POST in LiTo (y),X(s)] and the second-order ST in

LiTo (y), Y(s)), with X(s) and F(s) as defined in the
text. We start by writing Eq. (2.7) once again:

«'» —&)-L~&o-b),&(s)vo) = k«'y(y ——s)-

x(y —.).L'r.,(y),ay(.)~„)+-,'g„„p(.)~.+-;P(.)

&&Voh-V. 7-7-)+~"~-—"(a)7pvo (H1)

«'y(y —s)-(y —s)-Lt&oo(y), ~«(s))

+gt.~-(s)+~oji;--"(a)—~ijo;-"(s) (&4)

«'y(y —s)-Lt2'o-b) ~o&(s))

«'y(y —s)-(y —s)-Lt2'oob) 4(s))

+g ~o4 (a)+bolo; ."(a)+&"~kg "(s), (&&)
and

«'y(y —s)-I:t2'o-(y), ~o~(s))

«'y(y —a)-(y —a)-I t2'oo(y), ~o~oi(a))

The analogous results for the other cases may be oglm~on(s)+ogln~om(s)+~oj oi;ma (s) . (ll6)


