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The new ¢c-number calculus for functions of noncommuting operators, developed in Paper I and employed
in Paper II to formulate a general phase-space description of boson systems, deals with situations involving
equal-time operators only. In the present paper extensions are presented for the treatment of problems
involving boson operators at two or more instants of time. The mapping of time-ordered products onto
c-number functions is studied in detail. The results make it possible to evaluate time-ordered products of
boson operators by phase-space techniques. The usual Wick theorem for boson systems is obtained as a
special case of a much more general theorem on time ordering. Our method of derivation appears to provide
the first direct proof of Wick’s theorem as well as a clear insight into its true meaning. A closed expression is
also obtained for the time-evolution operator in terms of the solution of the c-number differential equation
for the phase-space equivalent of this operator. The new calculus is also applied to the problem of evaluating
normally ordered time-ordered, and also the antinormally ordered time-ordered, correlation functions.

I. INTRODUCTION

N Paper I and Paper IT of this series,!*? we developed
a new calculus for functions of noncommuting
operators, based on the concept of mapping a function
G(4,8") of noncommuting boson operators ¢ and 4" onto
a c-number function F(z,2*) of complex variables z
and z*. We showed that this calculus leads to a general
phase-space description of boson systems and provides
a systematic method for solving a great variety of
quantum-mechanical problems by ¢-number techniques.
In these papers only problems involving operators
that satisfy the equal-time commutation relations
[4(2),at()]=1 were considered.

In the present paper, we extend the theory to situa-
tions involving noncommuting boson operators at two
or more instants of time. We study in detail the mapping
of the time-ordered product of a set of operators onto
c-number functions. In Sec. II we derive a general
formula which makes it possible to evaluate time-
ordered products in terms of products ordered according
to some prescribed rule. The well-known Wick
theorem®* for boson systems, usually established by
induction, is shown to follow readily from this new
theorem as a special case. Our method of derivation
seems to provide the first direct proof of Wick’s theorem
and gives a new insight into its true meaning. In Sec. ITI
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we obtain a new identity which makes it possible to
express time-ordered products of a set of operators,
which are functionals linear in the positive- and the
negative-frequency parts of the field operators, in
normally ordered forms. This identity is essentially a
generalization of a formula given by Anderson,®¢ which
like Wick’s theorem is frequently used in field theory.
In Sec. IV, we present a closed-form expression for the
unitary time-evolution operator of a boson system in
terms of the solution of the ¢c-number differential equa-
tion satisfied by the phase-space equivalent of this
operator. We illustrate this result by deriving the
explicit expression for the time-evolution operator for a
forced harmonic oscillator. In Sec. V, we introduce the
concept of multitime mapping of unequal-time boson
operators onto ¢-number variables; we then show how
this correspondence may be used to evaluate the
normally ordered time-ordered, and also the anti-
normally ordered time-ordered, correlation functions.
Some of the results of this section are analogous to
those obtained recently by Lax” in connection with
c-number techniques for the solution of problems in
areas such as the theory of the laser and the statistics
of photoelectrons. In Sec. VI, we present a brief sum-
mary of the main results obtained in these three papers
and for comparison we display in a table the main
quantum-mechanical equations, both in their con-
ventional operator form and in our phase-space
representation.

II. EVALUATION OF TIME-ORDERED PRODUCTS
OF HEISENBERG OPERATORS BY PHASE-
SPACE TECHNIQUES AND GENERALIZED

WICK THEOREM

A well-known theorem of Wick?¢ allows the evalua-
tion of time-ordered products of operators in terms of

5 J. L. Anderson, Phys. Rev. 94, 703 (1954).
6 T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
? M. Lax, Phys. Rev. 172, 350 (1968).
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2 NONCOMMUTING OPERATORS AND PHASE-SPACE METHODS

normally ordered ones. The theorem is of basic im-
portance in calculations, based on perturbation tech-
niques, relating to the behavior of the unitary time-
evolution operator of a quantum-mechanical system.

In this section we establish, with the help of the
c-number techniques developed in the earlier parts of
this investigation, an interesting generalization of
Wick’s theorem for boson systems. This generalized
theorem allows the evaluation of time-ordered products
of Heisenberg operators—whether linear or nonlinear
in the annihilation and the creation operators—as
products arranged according to a prescribed rule of
ordering. Normal ordering plays, of course, a preferen-
tial role in field theory because of the significance of
vacuum expectation values. However, as already
pointed out in I, other rules of ordering are occasionally
employed and some arise naturally in other branches
of physics, e.g., Weyl ordering in quantum statistics?
and antinormal ordering in quantum optics.’ In any
case, the generalized Wick theorem that we will now
establish, and the considerations of Secs. IIT and IV of
the present paper, bring into evidence a fact not
previously explicitly recognized, namely, that the
phase-space representation of operators plays a basic
role in time-ordering problems.

Let T denote the time-ordering operator and let us
consider the time-ordered product T{G1(t)Ga(tz) - -
Gu(ta)} of M Heisenberg operators Gn(m=12,... .M ).
The operators G, will also depend on & a.nd a* (1 e.,
Gm=Gn(d,8"tn); [8,6"]=1), but as a rule we will not
exhibit this dependence explicitly. We may express the
time-ordered product in the form

T{é1(t1)' Gultu)}y =2 0(tu—ti) -~
I
B(Jiu_x_tiu)éil(til) . 'GiM(tiM) ) (2‘1)
where
6(r)=1 if >0
=0 if <0, (2.2)

and > n denotes the summation over all the permuta-
tions of the indices 1,2,...,M. Let F;®(z,5*%;) be the
@ equivalent of the operator Gj, i.e.,

G;(8,a%3t;) = Q{F ;D (3,2%;1,)}

Fyj®(,2%t;) = O{Gy(d,8" %)}, (2.3)

where @ is an arbitrary linear mapping operator defined
in Sec. IT of I and @ isits inverse. Then the  equivalent
Fio.a®(2,2%11- - -ty) of the product Gi(4,d';ty)- - -
Gu(8,4%;tar), i.e., the c-number function such that

G1(d,(if;t1) . 'GM((i,(iT;tM)
= Q{Flz...M(Q)(Z,Z*; fye - lM)} , (24&)
Flg...M(Q)(Z,Z*; l'1,. .o ,lM)
= ®{Gl(d)df ;tl) o GM(d7dT;tM)} ) (24b)

8 See, e.g., H. Mori, I. Oppenheim, and J. Ross, in Studies in
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is given by the following formula, which is a generaliza-
tion, for a product of an arbitrary number of operators,
of Theorem V (Product Theorem) given in Sec. III of
II, and which is derived in Appendix A of the’present
paper:

Q * .
F12---M( )(Z,Z ,f1,. .o

) =exp{2 2 Aij}

7 o<y
M
Xcum."M(Q) H Fm(n)(zm,zm ,tm) ‘ Zm=2; 2m*=2%y (2'5)
m=1
where
179 0 a 9
Ay= —(—— — - ~> : (2.6)
2 aZi (92:;‘* 6zi* (32j
M 5} g
Wig @ =TT g< , __>
m=1 \9zn,* 02m,
WS THENPY
><9< , __> ex)
m=102,*  m=102p

In Eq. (2.7) the function Q(a,B) is the filter function for
Q mapping and Q(e,8)=[Q(a,8) 1! is the filter function
for the mapping that is reciprocal to €.

We note that under the interchange of the indices
¢ and 7, the operator A; changes sign, whereas the
operator Uiz...r® remains unchanged. Hence it
follows from (2.4a), (2.5), and (2.1) that

T{Gi(t) - - -Gar(tar)} = expl T T Aijeti—1)]
Jj i<J
M
KUs2ee2r @ TT F o (ZiyZm*; bm) ] mmzim*=2*} 5 (2.8)
m=1
where
e(r)=—+1 if >0
=—1 if r<0. (2.9)

The right-hand side of (2.8) may be expressed in many
different functional forms. In particular, it may be
expressed as an Q-ordered form. This form will be ob-
tained on replacing the mapping operator 2 on the
right-hand side of (2.8) by the substitution operator
S@ for Q mapping® [see Eq. (1.2.16)]. We then obtain
the following formula:

T{G(t) - - -Cour(tan)} =S @{exp[ 3 3 Aje(ti—1;)]

Joi<J

M
X WUig..onr P H Fm(m(zm;zm*§ tm) l om=zs 2m ="} - (2-10)
m=1

This formula expresses the time-ordered product
T{G1(t)) - - -Gu(tar)} as an Q-ordered form. We will refer

Statistical Mechanics, edited by J. deBoer and G. E. Uhlenbeck
(North-Holland, Amsterdam, 1962), Vol. I, p. 217.

9 L. Mandel, Phys. Rev. 152, 438 (1966).

10 Equations prefixed by I and II refer to equations in Refs.
1 and 2, respectively.
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to (2.10) as a generalized Wick theorem for boson
systems.

Let us now consider the special case when each of the
operators G, is a linear combination of the annihilation
and the creation operators. We will take the G,’s in the
interaction picture, so that their time dependence is the
same as that of the free field operators, i.e.,

Gu(t) = A mie—ot Bdteit (2.11)

where 4 ,, and B,, are ¢ numbers. Consider now the class
of mappings whose filter functions are given by
Eq. (1.3.38), i.e.,1!

(a,8) = exp(ua’+rB°+Aap) . (2.12)

It then follows, according to the results expressed by
Egs. (1.3.34) and (1.3.36), that the @ equivalent of the
operator Gu(t) is given by

Fr®(z,2%; 1) = A ae~*t4-Bpz*e@t.  (2.13)

We note that for each operator G (?) of the form (2.11),
the @ equivalent [given by (2.13)7], for any choice of Q
belonging to the class characterized by (2.12), is
independent of the particular choice of Q.

For the class of mappings characterized by (2.12), the
operator Uy,s,...,»® defined by (2.7) may be expressed

.....

in the form
Uz, ... 0P = JI exp(u;®), (2.14a)
§,351<d
where [cf. (I1.3.10)]
a 9 d 0
uij P = —2p— — —2 T
aZi aZj (92,'* (')Zj*

d 0 d 9
+>\(-— _—t— ——) . (2.14b)
32; aZj* az,'* aZj

Hence (2.10) may in such cases be written as

T{G:(tr) - - Gur(tar)}
=S@{exp[ 3_ 2 Aie(ti—t)+ui; V]
7 i<i

M
XTI Fu'® Gz’ ; tm) | oz om®=2} - (2.15)
m=1

Let us consider first the special case when M =2. On
expanding the exponential in (2.15), and on using the
fact that the c¢-number functions F;®(z,2*;¢) and
Fy®(z,2*; f) are linear in z and 2*, we obtain from (2.15)
the formula

T{G1(t)Ga(t2)}
=S 1+ e(tr—to) Arat- 101 W JF1 D (21,21 11)
X F3® (32,25% st2) | aymzgms; 21" s =2"}
= SO (F,@(5,%; 1) Fy® (3,5%; 1))
+[Gr ()G (1) ]®,

U1 The restriction to filter functions of the form (2.12) is not
essential and is made here only for the sake of simplicity.

(2.16)
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where

[Gr ()G (2)]®
=SEO([Asse(ts—to)+ 212 P JF 1D (21,21*; 1)

Xy ® (20,255 1) | oymermri sy ®=my’=a"} . (2.17)

We shall refer to [Gy*(t1)Ge" (t) @ as the chronological
contraction of the operators Gi(t) and Gs(ts) for Q
mapping. If we recall the definitions of the operators
Asz and %32® [Egs. (2.6) and (2.14b) with 1=1, j=2]
and use the explicit expressions for F1® and F»® [Eq.
(2.13) 7], we readily find that

[Gy (t)Ga (£)]@
= —2uBByetotrttd) — 2y 414 ygio (trttD)
+ A1 B[ M2 e(t1—1p) Jeiw (i)

+ AsBi A de(ta—tr) Jeiott . (2.18)

More generally, if we expand the exponential on the
right-hand side of (2.15) in a power series, we obtain
the following expression for the time-ordered product
of the M operators G (tm):

T{Gi(tr)- - -Gar(tar) }

=S(m{ i i[ 2 2 Aije(ti—1) +uy; @

n=0p! j i<j

m=1

M
X 1I Fm(m(zm;zm*;tm)l2m=z;2m'=z*} . (2.19)
A typical 77 term for n=1 may be expressed in the form
SO{[Asjelti—t;)Fui @]

X H F (Q)(Zm,Zm ;tm) | em=2; 2m "=z }

m=1

M
II  Fa®(z,2*;tm)
m=1;m#z,j . .
X[Gi )Gy (1)1}

In a similar way we can simplify the contribution of a
typical 27 term for each value of #. It is obvious that
each term in the expansion of

=S@y
(2.20)

SEUL Y 3wy D +Agie(ti—15) ]

Jj oi<J

M
X H Fm(n)(zmyzm ;tM)l 2m=2;2m *=z }

m=1

will lead to 7 chronological contractions. Thus (2.19)
finally leads to the identity
Gu(t)} = Fo@D+F, D4+

T{Gi(t) - - (2.21)
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where!?

M
Fo@ =SOUI] Fn® (2% 1)},
m=1

M
I Fn®(z2%;tm)

m=1; m>3,j

FD=3 3 s@f

Jj i<j

. . (2.22)
X[Gi )Gy (1)1},

M

Fo W= —Z X xser 11

I joi<i 1 k<t m=1;m53,5,k,1
X[Gs (t)Gi ()1 PG (t)Gr ()] @},

etc. Formula (2.21), together with (2.22), expresses
the time-ordered product of a set of operators that are
linear in the creation and the annihilation operators
& and &', respectively, as the sum of all the Q-ordered
products of the G’s, with all possible chronological
contractions for the @ mapping, including the term with
no contraction.

In the special case when we choose © to represent
mapping according to the normal rule (superscript V),
and use the fact that for the normal rule the parameters
in (2.12) have the values u=p=0, A\=% (cf. Table IV
of I), the chronological contraction (2.18) reduces to

[Gr ()G ()]
= %E(tl - tz) [A 1B26_i"’ (r—t2) — 4 2B1€iw (tl—tz)]
+%[A 1326—'7’."’ (tl—t2)+A2B1€iw(h_t2)] . (2.23)

The contraction [Gy'(£)Ga ()] has a simple
physical meaning. This is readily seen by taking the
vacuum expectation value of (2.16) (with @ again
representing the normal rule). We then obtain

(] T{Gl(ll)éz(tz)} [0)
= (0| SDH{F 1™ (5,2%; 1) Fs ¥ (3,5%; 1) } | 0)
+{0|[Gr (t)Go (1) ]| 0).  (2.24)

The first term on the right-hand side vanishes, since it
is the expectation value of a normally ordered operator
in the vacuum state. The second expression is equal to
[Gy (t1)Go (8) ]9 since, being a c-number, it remains
unchanged on taking the expectation value. Hence

[Gr (1)Gy (1) ]V = (0] T{G1(t)Ga(t)} | 0), - (2.25)

showing that [Gy'(t)Gs () ] is precisely the chrono-
logical product as usually defined.?* It is now seen that
in the special case when Q is chosen to represent the
normal rule of mapping formula (2.21) is (except
for notation) nothing but Wick’s theorem?* for time-
ordered products of a boson system.

Fr®(2,2%; tm)

2 In more customary notation the expression S@OLF,® (z,2*; 1)
X Fy®(2,2%; t3)} with @ representmg the normal rule of map—
ping would be written as Gity) -+ GM(tM) :, where the colons
indicate normal ordering. However, the customary notation dis-
guises the important role that the phase-space representation
plays in the ordering problem.

ITI 2209

It is evident that our generalized Wick theorem,
expressed by (2.10), from which we have just derived
as a special case the usual form of Wick’s theorem for
boson systems, is of considerable generality. It allows
us to express time-ordered products of Heisenberg
operators Gy, . . .,Gur (not necessarily linear in ¢ and aF)
of a boson system as a Q-ordered form. In general, the
use of our generalized Wick theorem requires the solu-
tion of the dynamical equation for the @ equivalent
F,,® of each of the Heisenberg operators G In the
special case when all the operators G, are in the inter-
action picture, the solution of the dynamical equation
is given by the very simple expressions (2.13), which
are seen to be of the same mathematical form as the
G.’s themselves [Eq. (2.11)7]. It is presumably for this
reason that the role of the phase-space representation
of the Wick theorem has not been previously recognized.

Finally, we recall that there is also a Wick theorem
for the ordinary product of operators. It is shown in
Appendix A that a generalization of that theorem may
also readily be obtained and that it bears the same
relation to Wick’s theorem for the ordinary product
as (2.10) bears to Wick’s theorem for the time-ordered
product. This generalization is

-G (8,8")} =S @{exp[ 22 X Ay

Jo<J

{Gl(d)dT)

M
X‘um-.-M ® H Fm(m(zm>zm*) I Zm=2:zm*=z*} 1) (226)
m=1

where the differential operators A;; and Uqs...nr® have
the same meaning as before. It is also shown in Appendix
A that (2.26) leads to the following theorem.

Theorem. The ordinary product of a set of boson
operators that are linear in the creation and the
annihilation operators is equal to the sum of all Q-
ordered products of the G’s, with all possible pairings
for € mapping [defined by (A24)], including the term
with no pairing. In particular, when @ represents the
normal rule of mapping, this theorem reduces to the
usual Wick theorem for ordinary products.

III. GENERALIZATION OF ANDERSON’S
THEOREM ON TIME-ORDERED
PRODUCT OF FUNCTIONALS OF

FIELD OPERATORS

We will now derive an interesting generalization of a
result of Anderson®® which expresses the time-ordered
product of functions of field operators in terms of
normally ordered ones. For this purpose we choose © to
represent again the mapping according to the normal
rule of association. Then if we substitute in the right-
hand side of (2.10) from (2.6) and (2.14) (with u=»=0,
A=1, appropriate to the normal rule), and if we also
use the identity 8(7) =3[ 1+ ¢(7) ] between the functions
6(r) and e(r) defined by (2.2) and (2.9), respectively,
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we obtain the relation

T{G(tr) - - -Greltan)}
=5 {expli I B(ti—t,-)j—— -a—a—]

0z; Zj*

M
X H Fm(N)(Zm,Zm*; tm)l Zm=2; zm'=z*} . (3.1)

m=1

Let us again assume that each of the operators G, is
of the form (2.11), so that its phase-space equivalent is
given by (2.13). We will write this equivalent as

Fn™{a(0) 5% (1)} = Ama()+ Brz* (1) ,

where z(f) and its complex conjugate z*(f) are of the
form

(3.2)

() =zeot,  F*(§)=g¥eivt,

(3.3)

Identity (3.1) then becomes

T{GA(tr) - - -Gae(tan)} =S {exp[: =X 0t—t))

. a a
XeXp[_—lw(h—tj)]azi(l‘i) azj*(tj)J

XTT Fn (on(bn) )

2m (tm) =2 (tm); 2m " (tm) =2" (im) }

(3.4)

Now in view of the linearity of F,,‘¥, (3.4) may be
rewritten as

T{Gi(t) - - -Gu(tar)}

=S<N>{exp[/dt’/dtD(t'lf)azz,) 625(5):'

X I Futs) G} | 53)

where

D |)=06(' —t) exp[ —iw(’—1)], (3.6)

and 6/8z(f) denotes the functional derivative.

Identity (3.5) may readily be generalized to systems
with an arbitrary number of degrees of freedom, in
which the operators G (f) are of the form

Gult)= / [Am(p)a(p)ei“r+Bn(p)d" (p)e*» Jd%p, (3.7)

where the operators d(p) and 4f(p) satisfy the com-
mutation relations

[d(p),a'(p’)]=6®(p—p’). (3.8)

AGARWAL

AND E. WOLF 2

The phase-space equivalent of Gn(f) for the normal
rule of association is

Fu®™[2(p,0),2*(p1)]
- [ s+ B 001, 39)
where z(p,f) and z*(p,f) have the form

a(pf)=s(p)es*, 2¥(pt)=5"(p)e*s".
In place of (3.5), we then obtain the formula

(3.10)

T{Gy(ty) - - -GM(tM)}=S<N>{exp[ / ar'ddp’ / dtd’p

XD(tl’p, l t!p)

)
dz(p’,t") 62*(p,t)

M
XTI P Lal(phn) ()]}, (1D

with
D({',p'|4,p)=6®(p—p)D('|?).

We are now in a position to obtain the generalization
of the result of Anderson. Let ¢™ and ¢ be the
positive- and negative-frequency parts of a boson field
operator @. In the interaction picture, the commutator
[eD(x,t),6(y,0)] is a c-number. Let us make the
association’® (analogous to the association d—z, 47—z*)

(3.13)

(3.12)

@(‘F)—-}J’ @(—)—)J*,
where J is a c-number and J* is its complex conjugate.
In place of the operators G,(f) defined by (2.11), we
now have the operators

Gu()= / [An(x) @D (x,0)+Bn(x) 6 (x,1) Jd*x, (3.14)

i.e., linear functionals of the operators ¢™)(x,f) and
@ (x,0). The c-number equivalents of the operators
(3.14) for the normal rule of association are

Fn LT ({x},0,7*({x},0) ]
=/[Am(x)J(x,t)+Bm(x)J*(x,t)]d3x. (3.15)

It should be noted that (3.15) is of the same form as
(3.9) when transformation to the momentum space is
made. One may also show by straightforward functional

13 This representation of the field $+ (x) by the c-number J (x)
is very similar to one employed by J. Schwinger [ Proc. Natl. Acad.
Sci. 37, 452 (1951); 37, 455 (1951)7] in his external source repre-
sentation of the boson field.
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differentiation that
)
oJ (x,t') 6T*(y,t)

/ dt'déx / dtd®y D(t' x|t,y)

5
—, (3.16)
53(p',t') 02*(pyt)

= / dar'd*p’ / dtd®*p D(¢',p’ | t,p)

where
Dt x|t,y)=0(/ =[P (x,1),6 O (y,)].
Hence (3.11) leads to the following identity:

(3.17)

T{(G:(t) - - -Gulta)} =S {exp[/dt’d%/dtd%r

XD x|4,y)

o 0 :'
W (xt) 37 (r)
X I PrOLI ()51 00]) - 19

An identity that expresses the time-ordered product
of M operators which are linear functionals of the boson
field operator ¢(x,f) in terms of normally ordered
products was derived by Anderson® [his formulas (8),
(12), and (13)]. Our formula (3.18) may be regarded
as a generalization of Anderson’s identity when the
operators are linear functionals of the positive- and the
negative-frequency parts ¢ (x,) and ¢ (x,{) of the
field operator ¢(x,t). Moreover, as in our formulation of
Wick’s theorem given in Sec. II, formula (3.18) shows
explicitly that phase-space representation of the opera-
tors plays a key role for a clear understanding of this
identity.

1IV. PHASE-SPACE EQUIVALENTS AND CLOSED-
FORM EXPRESSION FOR TIME-
EVOLUTION OPERATOR

In this section we show that our phase-space tech-
niques provide a new systematic way of evaluating the
unitary time-evolution operator of a boson system. For
the sake of simplicity we will restrict ourselves to a
system with one degree of freedom only. The generaliza-
tion to systems with an arbitrary number of degrees of
freedom is straightforward.

The time-evolution operator U(4,d";4,4) satisfies the
Schrédinger equation

a U(d,(iT 5 t,lo)
iﬁ‘—'——'é—— =IJ(d,dT; l) U(d,df; l,to) N
14

(4.1)

where H(4,4%;1,t,) is the Hamiltonian of the system.
U satisfies the initial condition

U(d,df; lo,to) =1. (42)
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As is well known, the formal solution of (4.1) subject
to (4.2) is*

1: t
U(d,d*;t,to)=T{exp|:——/ H(d,d’f;t’)dt']} . (4.3)
_ hJuw
Let Fy®(z,2*; 4,ty) be the @ equivalent of the time-
evolution operator U, i.e.,
Fy®(z,2%; 180) = O{U(8,8"; ,t0)} -

We have shown in Sec. IV A of II that Fy® satisfies
the equation

(4.4)

AF y @
il

=8, Fy®, (4.5)

ot

where the ‘Liouville operator” £, is defined by
Eq. (I1.3.16a), viz.,

L Fy® = exp(A12) U1z PF g P (21,8:*; 1)
XFy@® (22,22*; If,lo) I 2y=zg=z; 21 =g ="

(4.6)

Here A1, and U™ are, respectively, the differential
operators defined by Egs. (I1.3.4) and (I1.3.5) and
Fp® is the @ equivalent of the Hamiltonian operator
H. Equation (4.5) is to be solved subject to the initial
condition

Fu®(z,2%;4,t))=1 for all z and z*.

@)

Equations (4.5) and (4.7) are just the Q equivalents
of Egs. (4.1) and (4.2), respectively.

Once the partial differential equation (4.5) is solved,
subject to the initial condition (4.7), one may readily
determine the time-evolution operator. For, according
to (4.4) and our mapping theorem I [Eq. (1.2.22)], U is
then evidently given by

U@,d';tt) =S@{Fu@ (255 40)}, ~ (48)
where S is the substitution operator for & mapping.
Let us rewrite (4.8) in a more explicit form:

'I: t
T{exp[— —/ H(a,a'; t’)dt’]}
ey

=SW{FyD(z,2%;t00)}. (4.9)

This formula shows the following: The time-evolution
operator of a boson system may be determined by first
solving the phase-space equation of motion (4.5) for the
Q equivalent of the evolution operator [subject to the
initial condition (4.7)] and then applying to the solution
the substitution operator S for Q@ mapping.

In the special case when Q represents the mapping
according to the normal rule of association, identity
(4.9) is at the root of the normal-ordering techniques
developed in recent years for solving quantum-
dynamical problems with time-dependent Hamil-
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tonians.'* We will see shortly that (4.9) is, in fact,
intimately related to our generalized Wick theorem.

¥ We will illustrate the use of the new identity (4.9)
by determining the time-evolution operator for a forced
harmonic oscillator, with the Hamiltonian

H(t) = hwd'é+1f(E) (68", (4.10)

where f(?) is real and represents the driving force. The
interaction Hamiltonian in the interaction picture is,
in this case, given by

Hi()=hf(t)(de ot dleiet) . (4.11)

The formal expression for the time-evolution operator
is, according to (4.11) and (4.3), now given by

Ut)=T
X {exp[—i /o t f(t')(de—iwt'+a*ew')d¢']} , (4.12)

where we have chosen #=0.

Let us now apply our technique to evaluate (4.12).
We will restrict ourselves to the class of 2 mappings for
which the filter function is again of the form (2.12).
The Q equivalent of the Hamiltonian (4.11) is given by

Fr®(z,5%; 1) = hf(t) (ze~i0t+z%e™e") . (4.13)

If we substitute from (4.13) into (4.6), we readily
obtain the explicit form of £,Fy® [cf. Eq. (11.3.18a)],
and from (4.5) we then obtain the following equation
for the @ equivalent of the time-evolution operator for
the present problem:

19F ¢ ®

a
N I:f(t) el f*(etz* —2u (1) ei”%—*
1¢]

[¢]
=2 f(O)e " '— +(\+35) f(eo'—
9z dz*

d
+<A—%>f<z>efwf—]ﬁv<m. 4.14)
0z

The parameters A, u, and » characterize, of course, a
particular mapping.

Let us take as a trial solution of (4.14) an expression
of the form?!®

Fy®(z,2*;1)=exp[A()+ B)z+C(#)z*]. (4.15)
The initial condition (4.7) requires that
A(0)=B(0)=C(0)=0. (4.16)

We next substitute from (4.15) into (4.14). Each side is

14 See, e.g., W. H. Louisell, Radiation and Noise in Quanium
Electronics (McGraw-Hill, New York, 1964).

15 This form of the trial solution is suggested by a theorem of
J. H. Marburger [J. Math. Phys. 7, 829 (1966)] relating to solu-
tions of c-number equations for systems whose Hamiltonians are
quadratic in & and 4.
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then of the form of a product of Fy® and a polynomial
in 2z and z*. By equating the coefficients of equal powers
of z and * on the two sides, we obtain the following set
of equations:

$9B/ot= f(t)e=ot, (4.17a)
§9C) at= f(t)ewt, (4.17b)
$04 ) dt= —2uf(t)eC(f) — 20 f(t)e=B(1)

+ A+ [ CO+N~3) f(Be“B(1). (4.17c)

This coupled set of differential equations, subject to
the initial conditions (4.16), is readily solved and the
result is

B(l)=—1 / fetdr (4.18a)

Ct)y=—1 / t f@evdl =—B*(@), (4.18b)

A(t) = —uC(1) —vB2(H)+(\—3)B(C()
—i f fe v C@)dr. (4.18¢)

It follows from (4.9), (4.12), and (4.15) that

T {expli —i/ 4D (de‘*""—l—d*e“’")dt':l }
0

=S®{exp[A({)+B®z+C()z*]}, (4.19)

where A(¢), B(t), and C(¢) are given by Egs. (4.18).

In particular, let us consider the special case when ©
represents the normal rule of association (u=»=0, A=%;
cf. Table IV of I). We note that of the three coefficients
given by (4.18) only the A coefficient depends on the
particular choice of association and for the normal rule
(suffix V) it becomes

t o
Ay=— / f)evat / e ar
0 0

2

1 t
=—- / J()eerdt
21/

=—1|B@)|2. (4.20)

Noting also that, according to (4.18a) and (4.18b),
C(t)= —B*(¢) [since f(¢) is real], (4.19) now reduces to

T[exp[—-i/ f(t')(de"""”-{—d*ei”")dt':l}

=S {exp[ —%|B(#)| ] exp[ B(1)z] exp[ —B*(¢)z*]}
=exp[ —3|B(1)| %] exp[ —B*(1)d"]

Xexp[B()d], (4.21)
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where B(?) is given by (4.18a). The identity (4.21) has
been known for a long time.! More recently, it was
derived by c-number techniques by Heffner and
Louisell."”

Returning to the general case, we see that the possi-
bility of obtaining a closed-form solution for the time-
evolution operator by phase-space techniques depends
strongly on whether a closed-form solution of the
differential equation (4.5) can be found. However,
Eq. (4.5) may always be solved by a standard pertur-
bation procedure. For this purpose let us write the
perturbation-series solution of (4.5) in the form

FyW=3 [Fyg¥],, (4.22)
n=0
where
1: n t t1 tn—1
[Fum):]n=<—") / dh/ dta- - / dtn
/2 0 0 0
XL4(t) - L4 (ta)Fu P (2,2%;0).  (4.23)
Now according to (4.6),
L1(ta)Fu@(2,2*;0)
= eXp(Am)‘u,lz (Q)FH(Q) (21,2'1*; tn)
XFy®(22,20%;0) | symzimizy®mzy®=a” (4.24)

The operator U@ is, in view of Egs. (I1.3.30) and
(I1.3.5), of the form exp(u12®), where u12® is a power
series in 9/0z; and 8/9z* (i=1,2), and Ay, is a quadratic
function in these differentials. Since, according to (4.7),
Fy®(z2%;0)=1, it follows at once that the operators
exp(Ass) and Uy in (4.24) may be replaced by unity,
and (4.24) then reduces to

L) Fu®(2,2%;,0)=Fg®(2,2*;1,). (4.25)
If we use (4.25), (4.23) may be rewritten as
,i n t i1 tn—1
[FU(Q)]n=("" —> / dh/ dtay- - / dty
nl Jo 0 0
XL (t) - Lo(tn1)Fa®(z,5%;t,). (4.26)

It is shown in Appendix B that the integrand of (4.26)
may be put in the following form:

Li(t) - L1 (ta) Fa®(2,5%; 1) =exp{ 20 2 Asj}
7 oi<J
XWUi2eeen® TT Fa® (2my2m™; tm) 4.27)
m=1

* *
Zm=2; 2m =2

On substituting from (4.27) into (4.26) and on using
the symmetry properties of the operators A; and
Up..., P under permutation of the indices [see the
remarks that precede Eq. (2.8)], it follows that the

16 R. P. Feynman, Phys. Rev. 80, 440 (1950); 84, 108 (1951);
R. J. Glauber, ibid. 84, 395 (1951).
17 H. Heffner and W. H. Louisell, J. Math. Phys. 6, 474 (1965).
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nth-order term [Fy®7], in the perturbation expansion
(4.22) of Fy™ may be expressed in the form

’L. n.l t t
[FU(Q)]n-"—'("‘“') _// dty- - - diy
h n! 0 0

Xexp[ 2 X Awe(ti—t;)]

7 i<J

n
XUiz...n @ H FH(Q)(ZM;Zm*; tm)

m=1

, (4.28)

* *
Zm=z; 2m =2

where the function ¢(7) is defined by (2.9).
From (4.8) and (4.22), we finally obtain the following
expression for the time-evolution operator:

U(4,a%;1,0)= 3 [U(4,d";1,0) ]n, (4.29)
n=0
where
LU(a,d";40)]u=SD{[Fv®(2,2*;4,0)1n} . (4.30)

The significance of the expression on the right-hand
side of (4.30) can be seen at once by observing that the
integrand in expression (4.28) for [Fy®7], has pre-
cisely the same form as the expression on the right-
hand side of our generalized Wick’s theorem expressed
by Eq. (2.10). It therefore follows from the generalized
Wick theorem and from (4.28) that

SO{LFy @ (2,2%34,0) 1n}

i1 ¢ t
=(_____> _// diy- - - dit,
w/ n! 0 0

XT{Hn)---H(t)}y . (431)

- But the expression on the right-hand side of (4.31) is

precisely the nth-order term in the usual perturbation
expansion of the evolution operator (4.3). Thus Eq.
(4.30) implies that the nth-order term in the perturbation
expansion of the evolution operator U may be obtained by
applying the substitution operator S for Q mapping to
the nth-order perturbation solution [Fy®7], of Eq. (4.5)
for the Q equivalent Fy®=0({U} of the time-evolution
operator.

V. MULTITIME CORRELATION FUNCTIONS AS
PHASE-SPACE AVERAGES

In Sec. IT of Paper II of this series, we considered the
problem of calculating by phase-space techniques the
trace of the product of two operators and we showed,
in particular, how the phase-space methods may be
used to determine the expectation value of an observable
when the system is in a state characterized by the
density operator p. In that paper, operators that were
functions of annihilation and creation operators at one
time only were considered.
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We will now show that these techniques may be ex-
tended to calculations of the expectation value of an
observable that is represented by an operator which is
an arbitrary function of the annihilation and the
creation operators at different times. Expectation values
of operators of this type have recently become of im-
portance in quantum optics, particularly in connection
with the theory of the laser'® and in problems concerning
the coherence properties of light beams.!® The calcula-
tion of such expectation values is, in general, a rather
involved problem.

Let d(f) and 4%(¢) be the boson annihilation and
creation operators at time ¢. These operators at different
times do not commute in general, i.e.,

[6(6),8(t)J=0  if Ly, (5.1)

Let G[a(t),d"(t); .. .;d(ta),d7(t,)] be an arbitrary
function of the boson operators, considered at different
times fy,fy,. . . ,tn, Where?®

t> a3 1. (5.2)

Further, let 21,2,...,2, be the c-numbers associated
with the annihilation operators d&(ty),...,d(t,) and
z1%,...,2.* (where z;* is the complex conjugate of z;)
be the c-numbers associated with the creation operators
4%(ty),. . .,8"(t,). We now introduce a linear mapping
operator Q7™ defined by the formula?!

QT(N){(ZI*)il- .o (zn*)’in(zl)fl. .o (zn)fn}
=T{[a"() ] - -[a" () I} T{La() I - -[a(tn) I}
=[a"(t) ] - -[a'(t) I [a(En) Jm- - - [ Jr. (5.3)
Here 41 - s, j1-* - jn are any non-negative integers and
T and I denote the chronological and the anti-

chronological ordering, respectively. We also introduce
the inverse operator @), defined by the formula

OrM{T{La"(t) T - -[d" (tn) )
XT{[a(t) ] - -[a(t) 1} }
= (zl*)il. .o (zn*)in(zl).ﬁ. . (zn)fn'
It is seen from (5.3) that the operator Q7 replaces all

the ¢c-numbers by the corresponding annihilation and
creation operators according to the rule

(5.4)

g;—>d(t), z*—d'(t;), (5.5)

18 Such correlation functions, which occur in the theory of
lasers, based on the van der Pohl oscillator model have been com-
puted by several authors. See, e.g., H. Risken, Z. Physik 191,
302 (1966); R. D. Hempstead and M. Lax, Phys. Rev. 161, 350
(1967) ; H. Risken, C. Schmidt, and W. Weidlich, Z. Physik 193,
37 (1966); 194, 337 (1966).

19 P, L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).

20 We will retain the labeling implied by (5.2) throughout this
section.

2 The expression on the right-hand side of Eq. (5.3) can,
of course, be written in many different functional forms by the use
of the commutation relations. By analogy with Eq. (1.2.16), we
may also introduce an associated substitution operator Sz such
that Sp{(21%)51- « « (2.%)3n(21)71- « + (30)7n} = [81 (82) 1. - - [81 (¢) T
X[&(ta)Yn- - -[4(#) )1, where the identity sign is used in the same
sense as before [cf. the discussion following Eq. (I.2.13)].
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and it places all the creation operators to the left of the
annihilation operators and puts all the annihilation
operators into chronological order and all the creation
operators into antichronological order. Following Lax,’
we call the product occurring on the right-hand side of
(5.3) a mormally ordered time-ordered product. Such
products arise naturally, for example, in the analysis of
photoelectric detection of photons.!® In such an analysis
one is led to correlation functions of the form

Iy = (LA - [A ()]
XTLAD@ T [ADT), (56)

where 4 () and A <) (¢) are the positive- and negative-
frequency parts of the appropriate field operator 4.
We will refer to (5.6) as a normally ordered time-ordered
correlation function. When the field consists of a single
mode, (5.6) reduces to

1y = ([t (@) [ (0) ]
XLa(t) I - [a) ).

In a similar manner, one can introduce other linear
mapping operators. For example, the operator Qp(4)
associated with the antinormal rule of association is
defined by the property that

QA {(2¥) 1+« (3,%)n(31) 71+ - - (24)7)
—[a(@T - -[a) oLt @) T - [a ()]

By analogy with (5.7), we define the antinormally
ordered time-ordered correlation function Tz as

Tr@=([a(t) ] - -[a(t) ]
X[at(ta) ]t - -[a* (1) ]

Correlation functions of this type occur in the theory
of photon detectors which operate via emission rather
than absorption of photons.®

In this section, we will consider in detail the mapping
characterized by the operator Qr®). Let Fr¥) be the
c-number equivalent of the operator G in this mapping:

th(tl):df(h% Tt d(tn):‘iT(tn)]
= Qe Fp ™ (z1,5,*; .

(5.7)

(5.8)

(5.9)

(5.10)

e %nyZa) )
Then the expectation value of G may be expressed as

(G)={(G[a(t),a"(t); - . .3 A(tn), a1 (1) ])

= Qr{Fr ™ (z1,51%; . . .5 20,227)}) -

Equation (5.11) may be rewritten in the form

(5.11)

(G)=<QT(N)l/. "/dz{fn}FT(N)(21,21*; e EaE)
Xﬁ 5(2)(z)\~—ék)}>, (5.12)
=1

which, in view of the linearity of Q7" can be expressed
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as
<G)=/ ° '/d2{§n}FT(N)(21721*; e ;Zmén*)
X

q)T(A)(Elaél*,tl; v ;znyén*:tn) ’

(5.13)
where

B (Z1,20% 115 - o -3 ZnyEn )

=<9T<N>{}:I SO —2))). (5.14)

We see from Eq. (5.13) that the function ®74) plays

the role of a multitime phase-space distribution

function.?? We can rewrite (5.14) as follows:
QT(A)('é-l;gl*;tl; e ;Znyzn*,tn)z <AT(N)> 3 (515)

where Az is the mapping A operator for the rule of
association characterized by Qr™®, and it is given by

Ar@® =0, ML TT 6@ (2y—2))}

A=1

(5.16)

On using the integral representation for the § function,
relation (5.16) reduces to

A 1 "
AT(N) = T / . /d2{a} H exp[—(a)‘é)\*—a)‘*é)\):]
Ten A=1

n

XQr M TT explarzn*—ar*s)}
A=1

1 n
= —; / .. /dz{a} gl eXp[—(a)ﬁ)\*-—a)\*é)\)]

Xexpl:aldf(tl)]' . 'exp[andT(tn)]
Xexp[ —an*d(tn) ] - -exp[ —ar*d(t)], (5.17)

where (5.2) and (5.3) have been used. Relations (5.13),
(5.15), and (5.17) are natural generalizations to the
case of multitime operators of our results expressed
by Egs. (I1.2.9) and (I1.2.8) and (1.3.14) (with Q= Q®).
From (5.13) we obtain, in particular, the following
expression for the normally ordered time-ordered
correlation function (5.7):

PT(N)=/. . '/d2{zﬂ}®1'(‘4)(z1,zl*,t1; o BngBa o ln)
XTI {&*)n@)d}.  (5.18)
A=1

This formula is a generalization of Eq. (I1.2.19).

22 This relation should be distinguished from one introduced
not long ago by M. Lax [Ref. 7, Eq. (5.3)]. Lax defines a multi-
time phase-space distribution function P, by the formula which
in his notation is P, = (8(81*—b! (t1))- - -6(Bn*—b1 (£2))6(Bn—0(¢n))
X+ »-8(81—b(t1))). This definition is seen to involve § functions of
arguments that are not real c-numbers; their use is not always
without ambiguities.
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We will now derive an explicit expression for the
multitime phase-space distribution function ®74), We
will show that ®7(4) can be expressed in terms of the
Green’s function of the ¢-number equation of motion
for the phase-space equivalent of the density operator.
The main properties of this Green’s function and its
application to calculations of multitime correlation func-
tions has been discussed in another publication.?? We
will first recall some of the results derived in Ref. 23.

Let K®(z,2*¢|20,20%,t)) be the Green’s function
associated with the equation of motion for the Q
equivalent F,®(z,5% ) of the density operator p. This
Green’s function satisfies the equation of motion
(I1.4.7), viz.,

K@ /ot = (£, — L)K@ (5.19)

[with the operators £, and £_ being defined by
Egs. (I1.3.16)], subject to the initial condition

K® (Z,Z*,to!Z(),Zg*,fo) =§® (Z—Zo> . (520)

It was shown in Ref. 23 that K® may be expressed in
the form
K@ (z.2% t] 20,20% t0)
=m Tr{A®(3—a, 2* —a") U(4,t0)

XAD (z—d, ¥ —aNU(tt)}. (5.21)
We now introduce the mapping A operator
AD(z—a3, z*—3at;¢) in the Heisenberg picture. It is
related to the mapping A operator in the Schrodinger
picture by the unitary transformation:
A (z—3d, z*—a'; t)= U'(1,to)

XA®(z—a, 25 —a")U(tt,). (5.22)

On combining (5.21) and (5.22), we find that
K ®(3,2%,¢| 20,20% o)
=7 Tr{A®(zy—a, z0* —d")
XAD(z—d, z¥—¢T5 )} . (5.23)

This relation has a simple meaning. For in view of
Theorem III [Eq. (1.3.25)], it follows that

K@ (zy,2.% ] 2,25 1) = O{AD (2, — 8, z* —at; 1)}, (5.24)
or, on inverting,
A® (z1—4, 3% —a"; 1) = YK D (z1,21%,| 2,2%,L0)} . (5.25)

Hence K@ is the & equivalent of the A operator for {
mapping in the Heisenberg picture. It is shown in
Appendix C that the Green’s function K® satisfies a

2 G. S. Agarwal, Phys. Rev. 177, 400 (1969). The results in
this reference were established under the assumption that Q(e,8)
was a symmetric function of & and 8 and that it was of the form
(2.12). These restrictions are easily relaxed (cf. Agarwal, Ref. 25).
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relation of the Chapman-Kolmogorov type, viz.,
K(m(Z,Z*J[Zo,Zo*Jo)=/K(Q)(Z,Z*,tl21,21*,tl)

XK(Q) (21,2!1*,t1 ‘ Zo,Zo*,to)dzzl y (526)

for all values of #;, such that 2> # 2> f.

We will now write the operator G[4(f),d"(f) ] in terms
of a complete set of operators at some earlier instant
of time, say f;. We have, according to Theorem II

[Eq. (1.3.13)],

GLa(),6' (@)= / Fa®(z,z)

XAD(z—ad,z*—at; 1)d%, (5.27)
where Fg®(z,2*) is the Q equivalent of G[4,d"]. Now,
from (5.25) and Theorem II [Eq. (1.3.13)], we have

AD(z—4, zl*—dT;t)=/K<5)(zl,z1*,tlz,z*,t1)

XA®D (z—a,2*—ad'; 4)d%. (5.28)
Hence, on substituting from (5.28) in (5.27), we obtain
the required expression for G[4(¥),dt(¢)]:

GLa(),a' ()] = f f Fo® (5,9 K (s,0%, 1| 2yar1)

XA(Q)(Zl—d, 21*—dT; tl)dzzdzzl ) (529)
where #; ({,< 1< £) is an arbitrary instant of time.2*

We will now show that by the repeated use of (5.29),
specialized to the case of the normal rule of mapping,
we may obtain an explicit expression for the normally
ordered time-ordered correlation function I'z¥ defined
by (5.7). We first make use of Egs. (I1.2.8) and (I1.2.9)
to express 'z in the form

PT(N)=/d220@<‘1)(zo,20*,¢0)

XFG(N)(Z%Z()*; to’tl, cen ,tn) ) (530)

2 Result (5.29) leads to the following two interesting formulas:

(52(tz)>=jfdzzd2lez(9) (2,2 K® (2,24t | 21,21%,t1)

XAAD (z1—8, m*—dl; 1)) (t2h),
and

(Galtn)Ga (1)) = f f 2d21Fy® (2,5 KD (3,5* fa] 21,30% 1)

XAD (31—, 5*— a1 )G (1)) (122 11).

These formulas imply that if the average of an operator at time £ is
expressed in terms of the averages of our mapping A operators at
an earlier time #; (which, of course, form a complete set), then the
average of the product of two operators is simply obtained by
replacing (A®) by (A®G;). This statement is essentially the
content of the important “quantum regression theorem’ formu-
lated by Lax (Ref. 7).

AGARWAL AND E. WOLF 2

where Fg®™ =@ ™{G} is the Q equivalent, for the nor-
mal rule of association, of the operator

G=[a"(t) ] - -[a'(ta) J[a(ta) Jm- - -[a() ], (5.31)
and
DM (30,20, 10) = (1/m) O L {p} .

Consider now the product of the two operators in
Eq. (5.31) with the latest time argument £,, i.e., the
product [4%(¢,)*[d(#.) ]». Since this product is
normally ordered, its equivalent for the normal rule of
mapping is clearly (z*)#(z)7». Hence (5.29) gives

[ (1) Toa() Tin= f / B (2,%) ()

XKD (g2, 1, 212" tns)
XA (' —@, 5% —d 1, 1), (5.32)

It follows that the operator G may be expressed in the
form

XKD (32,5 10| 218" b 1)
X[at ()15 - - [a(ta-r)
XAM (' —a, 2'*—a%; t,_y)
XLa(tn—a) Lt - -[a(t) 1" (5.33)

Next we make use of the fact that the c-number
equivalent, for the normal rule of mapping, of the
operator

(4" (tna) JP1 AN (2 =@, 2% — "5 tay)[A(tn1) I

is the function (g*)»~1(2)/»~1§® (3’ —2), so that in view
of (5.29) we have

L' (ta1) I AN (&' —a, 2% =" tu-1)[(tn) ]
=//d2zn_1d2z”(zn_1*)i"—l(zn_l)""—lé(2)(2'—2,,_1)

XK(A)(Zn—l,Zn—l*,tn_ll Z”,Z"*,tn._2>
XAM (" —3, 5" —at 1, 5). (5.34)

On substituting (5.34) in (5.33) and on integrating, we
obtain the formula

G=/ / / P2nd0ad’s (2" (20 (30 o) o )

XK@ (2,,2,% | 2n1yZn1¥ytn—1)
XKD (g, 1,50 1% tn1|2 8" tn_2)
X[t ()] - - [a" (tns) ]2
XAMN(g' —@,5"*—at; t,_2)

X[a(tas)Ji=2- - -[a()]%.  (5.35)
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On repeating this procedure again and again we finally
arrive at the following expression for G':

om [ 10

XIT {(&*)Man) 2K D (2o, 0] 2a-1,20—1%,0-1)
A=1

XA(N)(Z()—"d, Zo*'—dT; to) . (536)

From (5.36) and Theorem II [Eq. (I.3.13)], it follows
at once that the c-number equivalent of the operator G,
for the normal rule of mapping, is given by

FG(N)=/.../f_Il{(z)\*)ix(z)\)J')\
X

K(A)(Z)\,Z)\*,If)\lZ)\_l,Z)‘__l*,l)\..l)}d2{Z)\} . (5.37)

Finally on substituting from (5.37) into (5.30), we
obtain the following expression for the normally ordered
time-ordered correlation function '™ in terms of the
phase-space distribution function > and the associ-
ated Green’s function K4):

FT(N)=/. . 'fq)(A)(Zo,Zo*,io) H {(z)\*)i)‘(z)\)jx
=1

XKD (@,a* | an-pyin-1®, -1 }d2 {2} d%0.  (5.38)

In a similar way, we may derive an expression for the
antinormally ordered time-ordered correlation function
I'r™ defined by Eq. (5.9), and we find that

PT(A)=/' . ‘/‘IJ(N)(ZO,ZO*JO) II {*)ir(an)»
A1

XK M (ana* | areg,za-1*,h-1) }d{ 2} d2%0. (5.39)

We now consider the multitime phase-space distri-
bution function ®7(z1,21%41; . .. ;20,2.%,0n) defined
by (5.14). We substitute (5.17) in (5.15) and expand
each of the operators exp[e:d'(#;)] and exp[ —a*d(t:)]
in a power series. Then on using (5.38), we find that

@T(A)=/¢(A)(ZO,ZO*JO)
XH K(A)(Z)\,Z)\*,i)‘]Z)\_l,Z)\_l*,t)\._1)d2Z(). (5.40)
A=1

The integration over z, can be carried out by noting
that

/<1>(A)(zo,zo*,lg)K(A)(z,z*,t | 20,20% t0) @220

=dW(zz%). (5.41)
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Hence the multitime phase-space distribution function
&7 can be calculated in terms of the Green’s function
K4 and the single-time distribution function 4 by
means of the formula

Br W (21,80% 115 + « 3 ZnBn™stn) =P (31,21%01)
n
XII K9 e i snepon-1¥iae1) . (5.42)
=2

This remarkable result was first obtained by Lax’ in
quite a different manner on the basis of his “quantum
regression theorem.”

It is also possible to give an expression for ®74) in
terms of ®® and K@  for any rule of mapping €,
characterized by a filter function of the form (2.12).
The result and the proof?® are given in Appendix D.

VI. SUMMARY AND COMPARISON OF QUANTUM
EQUATIONS IN GENERALIZED PHASE
SPACE WITH THEIR CONVENTIONAL

OPERATOR FORM

In view of the considerable length of the three papers
of this series and because of the great generality of our
analysis, it might be helpful to summarize our main
results. This will now be done.

Basic in the present theory is the concept of the
mapping of a function G(4,d") of the noncommuting
boson operators @ and &' onto functions of ¢-numbers
F(z,5%). In Sec. II of I we introduced a class of linear
mappings, each characterized by a mapping operator
Q [G=Q{F}]. We also introduced the inverse mapping
operator ©® [F=0{G}]. We have shown that such
mappings are intimately related to the problem of
ordering of functions of the noncommuting boson
operators according to some prescribed rule. In fact,
the mapping and the ordering problem were found to be
essentially equivalent to each other. In Sec. ITT of I we
showed that each mapping @ (satisfying some obvious
regularity conditions) is characterized by an entire
analytic function Q(a,8) of two complex variables a
and 3. We also derived in Sec. I1I of I closed expressions
for the c-number function corresponding to a given
operator and for the operator corresponding to a given
c-number function, for any prescribed mapping of this
class. The solution to the mapping problem is expressed
with the help of the operator A®, which we called the
mapping A operator and which acts as a transformation
kernel. This mapping A operator is the operator onto
which the two-dimensional Dirac § function is mapped
by Q.

In Paper II we showed how this new calculus may
be used to calculate systematically quantum-mechanical

25 Alternative proofs of Egs. (5.38) and (D17) based on the
equation of motion for the @ equivalent of the generating func-
tional for normally ordered time-ordered correlation functions
were given by G. S. Agarwal, Ph.D. thesis, University of Ro-
chester, 1969 (unpublished).
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TasrLE I. The main quantum-mechanical formulas in phase-space form and in conventional form.

Conventional operator theory

Present phase-space theory

Arbitrary operator G.

State of system characterized by density operator 5.

Expectation value of G:
(G)Y=Tr(3G).

Schriidinger:s equation of motion for the unitary time-evolution
operator U (¢,0) :
ol /ot=H0.
Schrédinger’s equation of motion for density operator p:
ihdp/ot=[H 5.
Equation of motion for Heisenberg operator G:
indG/di = —[H,G1+ihdG/ot.

Bloch’s equation for unnormalized density operator 5 of system
in thermal equilibrium:

ap/08=—15.

Time evolution of density operator 5:
PO=T0pOT0).
Time evolution of a Heisenberg operator G:

Goy=Ut®G0)T@).

Basic (group) property of time evolution operator U:

Tt =TTt 22t

Product of M operators:

Time-ordered product of M operators:

T{él(tx)é2(t2) b ‘éM(tM)}~

Wick’s theorem for ordinary product of two operators?” that are
linear in ¢ and 4t:

élGAz = :Gléz Z+é1 62

Phase-space equivalent of G:
Fe® (z,2%) = 0{G(@,8h} = Tr{GA® (z—4g, z*—a')}.
State of system characterized by generalized distribution function:

2D (z,2%) = (1/m) O{p (8,81}

Expectation value of G expressed as phase-space average:
(Gy= / ®® (z,5%) Fe'® (2,5 d%.

Philse—space equation of motion for the Q equivalent Fy® of
U(tpo): )
ihaFy® [ot =L, Fy®.

Phase-space equation of motion for the distribution function ®® :
9B /ot = (£,— L_)D®),
Phase-space equation of motion for Q equivalent Fe® of G:
ihdFe® /di= — (£, —L_)F¢® +ihoF @ /0t.

Equation for @ equivalent F,® of 5:

OF, /9B =—£,F,®.

Time evolution of phase-space distribution function ®®:
@ (z,z*,t):/K‘“) (2,2%,t| 20,20% 10) @D (20,20* £0) d220.
Time evolution of @ equivalent Fe® of G:

Fe® (z,2%3f) = /K@ (2,5t | 20,20% ) F ' (20,20* ;80) d20.

Basic property of time-evolution kernel K :

K® (3,5* t] 20,20% f0)

= /‘K“D (z,z*,tlzl,zl*,tl)K(m (zl,zl*,tl l Zo,Zo*,to>d2Z1 (t > t 2 to).

Phase-space equivalent of product of M operators:
Fior® =0(G\Gs- - -Cor)
M
=exp{ Z Z Aij}cum'"M(mH Fm(ﬂ) (zm7zm*) l me=z;zm*=2*.
i i<{ m=1
Phase-space equivalent of time-ordered product of M operators:

Frot® = O{T{C1(tr) - - - Car (tar) }}
=exp{> T Agelti—1;)}Urz..a®

i i<i
M
XH Fp,® (zm,zm.*; tm) I zm=z; 2 =2
m=1

New identity for the ordinary product of two operators?” that
are linear in 4 and 4t:

6162 =5® {Fl(sz(m} —’r[&f&z']P(m.
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TaBLE 1. (Continued)

Conventional operator theory

Present phase-space theory

Wick’s theorem for time-ordered product of two operators?’ that
are linear in ¢ and 4:

T{fh (tl)éz (t)}= e (51)62 (t2) 2+@1'(t1)62' (t2).

Normally ordered time-ordered correlation function:

T70 = Te(ALa! (4) Je - - (81 () T ) Fio- - [() J).

New identity for time-ordered product of two operators*” that
are linear in d and 4¢1:

T{G1(0)Ga (1)} =SO{FL® (1) Fo® (12)) +[Gr ()G (1) 1.

In the special case when Q represents the normal rule of mapping
this identity is equivalent to Wick’s theorem.

A more general identity for time ordering of the product of »
operators that are not necessarily linear in ¢ and d' is given by
Eq. (2.10).

Normally ordered time-ordered correlation function expressed
as phase-space average:

rT(N)=/.../q>(A) (20,20*,0)

XIT {@*) @)K @ (ay,20% | 2r1,20-1* o) }d2{ 22 } P20

A=1

expectation values by ¢c-number techniques. We found
in Sec. IT of II that the expectation values may be
expressed in the same mathematical form as the
expectation values in classical statistical mechanics, i.e.,
as weighted averages of c¢-number functions in a
(generalized) phase space. The phase-space distribution
function associated with a given (generally mixed) state
of a quantum-mechanical system, one for each choice
of mapping Q, is proportional to the ¢-number function
onto which the density operator is mapped. The phase-
space equation of motion of the distribution function
and of the c-number equivalent of the time-evolution
operator and of a Heisenberg operator were derived in
Sec. IV of IT and the phase-space form of the Bloch
equation for the unnormalized density operator g of a
system in thermodynamic equilibrium was given in
Sec. VI of II. All these phase-space equations were
found to be of the form of generalized Liouville
equations.

In the present paper, we applied this new technique
to various time-ordering problems. In Sec. II of III
we found an interesting generalization of Wick’s
theorem for boson systems, and we showed that the
phase-space representation provides a clear insight into
the meaning of this theorem. In Sec. V of III we
discussed the mapping of functions of boson operators,
taken at different times, onto ¢-number functions, and
we provided methods for calculating the normally and
the antinormally ordered time-ordered correlation
functions.

The present series of papers dealt with closed systems
only. The extension of our techniques to open systems
(e.g., a system interacting with a reservoir) was given
in another paper.?

26 G. S. Agarwal, Phys. Rev. 178, 2025 (1969).

27 For the sake of simplicity, we display the Wick identities
and our new identities in forms that involve the product of two
operators only. The general forms of our new identities involving

Finally we display in Table I the phase-space form
and the conventional form of the main quantum-
mechanical formulas.

APPENDIX A: @ EQUIVALENT OF PRODUCT
OF M BOSON OPERATORS AND
GENERALIZED WICK THEOREM

FOR ORDINARY PRODUCTS

In this appendix we derive formula (2.5), which
expresses the Q equivalent of the product of M boson
operators in terms of the Q equivalents of each of the
operators. This result, which is a generalization of
Theorem V (Sec. ITI of II), will be shown to lead to an
interesting generalization of the Wick theorem for
ordinary products of boson operators.

Let F,,®(2,2*) be the @ equivalents of the operators
Gn(8,8") (m=1,2,...,M). An expression for each of the
Q equivalents F,,® in terms of the operator G,® is
given by Theorem III [Egs. (1.3.25) and (1.3.26)].
This expression may be written as

Fo®(z,5%)= / Qa,e*) gmla,a®) explaz* —a*z)d%, (Al)

where
gnla,a®)=(1/1) Tr{Gu(@,6")D' (@)},  (A2)

and D' () is the Hermitian adjoint of the displacement
operator (cf. Appendix B of I).

Next we make use of the operator analog of the
Fourier theorem [Eq. (I.C1)] to express the product
of the M operators G, in the form

G1(d,(’1‘11) M GM(dadT)
M o
=/. .o H gm(am,am*)D(am)dzam- (A3)
m=1

the product of any number of operators are given by Egs. (2.21)
and (2.26).
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We recall that the product of two displacement opera-
tors may be expressed in the form [Eq. (I.B10)]
D (O‘M)D (an) =D (am~tan) expma) , (A4)

where

Ymn =5 (amo* —am*ay) . (AS)

Identity (A4) may be generalized to the product of
an arbitrary number of displacement operators. The
result, which may readily be proved by induction, is

H D(am)=D( Z am) exp[ 2 X ¥mn]. (A6)

m<n n

Next we express the first term on the right-hand side
of (A6) in the form

D( Y_,:la,,,):f)( 2:,1 iy 2;,1 am*)

M

X L am T ant)D(E o),

m=1 m=1

(A7)

which obviously holds because the filter function
Q(a,e*) was defined as the reciprocal of Q(a,0*), and it
was assumed that Q(e,0®) has no zeros [cf. (1.3.23)].
Now in view of relation (1.3.17), which may be written
as

Q{exp(az* —a*z)} =Ua,0*)D(a),

it is evident that (A7) may be rewritten in the form

M

(Z am) =8( Z Oy

=1 m=1

> an’)

XQexpl - (ant*—an's)]}. (AS)

m=1

From (A6) and (A8) it follows that the product
111 D(an) of the M displacement operators may be
expressed as

T Dlen) =8 z iy 3

m=1 m=1

2 an®) expl 2 2 ¥mnl

m<n n

X Q{exp[ Z (ams* —an*2)]},

m=1

(A9)
and hence (A3) may be written as

M
IT Gu(8,8") =Q{F12...a ¥ (3,2%)},

m=1

(A10)
where

Fraeor®(2,2%) = / / 9(2 a,,Z a®)

=1

XH gilaia®) exp{ 2 2 ¥ij}

i<j J

Xexp[z (cig* —a;*z) Jd%y- - - d?apr.  (All)
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Equation (Al()) shows that the ¢-number function
Fro..r®(z,2%) is the Q equivalent of the product
G1(4,8") - - -Gu(8,87) of the M operators Gn. We will
next express Fig...;r'® in terms of the Q equivalents of
each of these operators. For this purpose we rewrite
Fio..yr™ in the form

F12...M(9) (Z,Z*)
= f(z1,21%; . . . s 2a0,200™) | spmii 2 'e®,  (A12)
where
f(Zl,Zl Yooy 3MBM ) / / H [gm(am,am )
X (mym™) eXP(Umzn™ =™ 2m) |
M M M
X IT etmen®) L tmy T an®)
m=1 m=1 m=1
XeXP[ Z Z ‘Pmn]d%ﬁl‘ . 'dZ(IM. (A13)

n m<n

Now by a strictly similar procedure as was used in
deriving (IL.B15), one may express (A13) in the form

f(z1,21%; .« 25 2a0,200™)
ad d\_/ M 9 M 9
Al
m=1 02 0%m m=1 02, * m=1 0Z,,
1y 5 d 9 d 9
rE ()]
P 0%m 02,F 02 02,

M
X H Fm(m(zm’zm*), (A14)
m=1

where relation (A1) was used. From (A12) and (A14)
it follows that the Q@ equivalent Fis...;r® (2,5%) of the
product of the M operators Gi(4,4%)- - -Gy (8,d") may
be written as follows:

Fro.0®(z,8%) =exp{ 2. 2° Asj}

J i<i

w® H F o ® (2, 2™)

XUsgz... (A15)

Here
170 0 Jd 0
itz
2 621; 32{]-* 621»* 6zj

M J i}
‘\ng...Mm):H Q( 5 >

m=1 \0zn,* 02Zm

x_ x
Zm=%; 2m =2

(16

J J

xa( £ o= -x ). @
m=10%y*  m=10%n

Formula (A10) together with (A15) expresses the

product theorem for an arbitrary number of boson

operators.
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The product G1(8,8") - - -Gu(d,d") may, of course, be
expressed in many different forms. In particular, it may
be expressed as an Q-ordered form, for a chosen rule of
ordering. According to (A10) and Theorem I [Egs.
(1.2.22) and (1.2.23)] the Q-ordered form of this
product is given by

u
G ®(g,a") =[Q-ordered form of ] Gn.(d,d")]

m=1

ES(Q){FH...M(Q)(Z,Z*)} ’ (A18)
where S® is the substitution operator for € mapping
[Eq. (1.2.16)]. Formula (A18), together with expression
(A15), for Fis...ur'® (3,2*) may be regarded as a general-
ization of the Wick theorem for ordinary products of boson
operators.®* To see the connection between (A18) and
the Wick theorem for ordinary products, consider the

- special case when each of the operators is a linear com-
bination of the creation and annihilation operators, i.e.,
of the form

Gm(8,8") = A+ Bnd' (A19)

where 4, and By, are c-numbers. We again consider the
class of mappings whose filter functions are given by
(2.12), viz.,

Qe,8) =exp(ua?+v82+Naf) .

The Q@ equivalent of the operator G is then, in view
of Egs. (1.3.34) and (1.3.36), given by

Fn®(3,8%) = A nz+Bng*, (A21)

and is independent of the particular choice of Q. We
substitute from (A21) in (A1S) and expand the ex-
pressions on the right-hand side of (A1S), which
involve the differential operators A;; and Uyg...xr @, in
power series. We then obtain in a way strictly similar
to the derivation of (2.21) the following expression for
the product G-+ -G

G1(8,8%)- - -Gy(8,8") =30 D430, B+ - - |

where

(A20)

(A22)

M
3o@® =SOLT] Fpr®(z,2%)},
m=1

M
II Fu®(z%)

m=1;m5¢,j o (A23)
X[GiGy 1},

1 M
3:@=—323 3> 2SO JI Fa®(z")
21 7 oi<i 1 k<L m=1; m3,5,k,1
X[Gi Gy 1p@[GrGr1r @},

etc. Here [G ‘G; 1p®, which we call the pairing of the
operators G; and G i for Q@ mapping, is given by

[Gl’Gg']p(m = —zyB1B2—2VA 1A 2
+A41Bs(\-3)+4:B:(\—3) .

30, = Z Z S(ﬂ){

i i<i

(A24)
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Equation (A22) expresses the ordinary product of a set
of operators, which are linear in the creation and the
annihilation operators, as the sum of all Q-ordered
products of the G’s, with all possible pairings for @
mapping, including the term with no pairing.
In the special case when Q represents the normal rule
of association (u=vr=0, A=%), Eq. (A24) reduces to
[G1Gy]p ™) =A,B,. (A25)
This pairing has a simple physical meaning as is seen at
once by taking the vacuum expectation value of (A22),
for the case M =2, with Q representing the normal rule
of association. One then obtains
[GrGr 1™ =(0|G1G2|0), (A26)
ie, [Gr Gz 1p® is the vacuum expectation value of the
product G1Gs. Equatlon (A22) with the choice 2=Q®
together with (A26) is the usual Wick theorem for an
ordinary product®* of boson operators.

APPENDIX B: PROOF OF IDENTITY (4.27)
We will now derive identity (4.27), viz.,

Li(ta0)F @ (22" 1) =exp{ 2 X Ais}

J i<y

£+(t1) e

X‘lim a® H Fr® @mon™; tm) (B1)

m=1

* *
Zm=2;2m =2

Consider first the expression £;(t:)Fa'® () (4:<t).
From (4.6) and (A1) it follows that

L (t)F (1)) = / f Paid?Q(ai,0*) ey )

X gu(aie®; ti)ga(ee®; t;)
X €xp (Ai,-)‘u;,- @ exp(a,-z,-* -—a;*z,-)

X exp(ejz;* —a*%;) | simejmsi 2i®=es"=s*s  (B2)
where

gu(oia®; 1) =(1/7) Tr{H(8,";1)D" ()} . (B3)

Since the differential operators A;; and U;® in (B2)
[defined by Egs. (I1.3.4) and (I1.3.5)] act on the
exponential functlons, we may replace their arguments
d/0z; by —a*, 9/02* by s, etc., and we obtain the
formula

exp(As;) Wi exp(eiz® —ai*z;) explez® —a;*z;)
=exp[§(—a¥a;taie®) ] Uaie®) Uase*)
Xﬁ(ai-{—aj, ai*+aj*) exp(aizi* —ai*zi)

Xexp(ajz*—a*z;). (B4)
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Using (B4), (B2) becomes

£+(t,~)FH(m(t,)=//dzaidzajﬁ(ai—l—aj,a,-*—l—aj*)

Xgu(aiod®; 1) gulaga®; ;)

Xexp[ (eita;)z* —(a*+a*)z] exp(i;), (BS)
where ¥;; is the quantity defined by (AS), viz.,
Vij=3 (@i —ai*aj) . (B6)

We rewrite (B5) in the form

P () = f O T

Xexp(az*—a*z), (B7)
where
gija,a*) = f / Paid’a;gn(aied™; 1) gnas,e*; t5)
Xexp:)o®(a—ai—aj). (BS)

Next we apply to (B7) the operator £.(f). An
expression for the resulting quantity may be obtained
at once with the help of (BS) by noting that the right-
hand side of (B7) is of the same mathematical form as
formula (A1), with the function g;; of (B7) corre-
sponding to g. of (Al). Hence we see at once that

£+(tk) £+(ti>FH (m(ti>
= [/dzakdzaoﬁ(ak+Olo,01k*+a0*)gl-1(akyak*; tk)

X gii{co,a0®) expl (artao)z* — (a*+ad*)z]
XexpWro) (<ti<t). (BY)

On substituting from (B8) into (B9) we are led to the
expression

L4 () L4 (t) £4(2)
=///dzaid%,dzakfl(a,-—]-aj-l—ak, a* o tar®)

X gar(an,ai®; n) gu (o, 1) g (og0*; £7)
Xexp[ (aitaj+or)z* — (e +a+a*)z]

XexpWrit+v¥ii+¢i;). (B10)

By repeating the same procedure again and again, we
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finally arrive at the formula

L4t - L4 (tam) Fr P ()

[ [ e

XH gH(at,az H t5) eXp[ PIDM ‘»bw]

<j j

Xexpl Y (ais* —a*s) Jd%- - - d?a,.  (B11)

i=1
The expression on the right-hand side of (B11) is of the
same form as the expression on the right-hand side of
(A11) and hence the same procedure can be applied
to (B11) as was applied to (A11). The resulting formula,
which corresponds to (A15), is the required identity
(BY).

APPENDIX C: DERIVATION OF CHAPMAN-
KOLMOGOROYV RELATION FOR
GREEN’S FUNCTION K®

In this appendix we will establish relation (5.26), viz.,
K(Q)(Z)Z*ytl Zo,Zo*,to) = /K(g)(zy2*7t‘ Zl,zl*,tl)

XK(Q)(Zl,Zl*,tll Zo,Zo*,to)dZZl )

which holds for all values of ¢ such that {> 2> #

The Green’s function K®(z,5%|20,20%t0) is given
by Eq. (5.21), viz.,
K®(z,2* 1] 20,20% o)

=7 Tr{A®(z—a, 20 —dT) UT(l to)

XA(“)(z 8,7 —aNU@t)}. (C2)

Here A®(3—4,z*—a") is the mapping A operator in
the Schrodinger picture and is, therefore, independent

of time. We now make use of relations (5.22) and
(5.28) in (C2) and obtain the identity

(C1)

K®(z,2* t| 20,50, t0) =1r/K(m(z,z*,tlzl,zl*,tl)

XTr{A®(z9—a, z0* —a")
A(Q)(Z1— ¥ —at; t)}d%., (C3)
where it is assumed that ¢£2>#2> /. Let us use relation
(5.28) once again to express A®(z—d, z*—dt; 1)

in (C3) in terms of A®(3—4, z*—d';4,). We then find
that

K® (Z,Z*7t I 20720*:t0)

K(Q)(Z,Z*,ﬂ 21,215, 11) K @ (z1,21%,41 ‘ 29,29%,10)
XTHA® (z—d, 25— 1)
XA“”(Zz— a, 29 —~a* fo)}d221d222

=7

(C4)
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Now A@®(z—4d,z*—dt;4) is the A operator for the
@ mapping in the Schrédinger picture. Since the
Schrodinger and the Heisenberg picture were assumed
to coincide at the time ¢=1#y, we have

AD(z—d, 7% —3t; 1) =A@ (z—a, ¥ —d").  (CS)

Using (CS), it follows at once from the orthogonality
relation (1.4.8) for the mapping A operators that

Tr{A®(z,—a, 25— AN AD (z2,— 4, 2* — T 1)}
=(1/7)6@(z2—20) .

On substituting from (C6) into (C4) and carrying out
the trivial integration over z,, we obtain the required
identity (C1), i.e., a relation of the Chapman-
Kolmogorov type?® for the Green’s function K. This
relation is essentially a reflection of the well-known
group property of the unitary evolution operator U,
viz.,

(Co)

Utte) = U, t) Ultrte) (=112 10). (o))
APPENDIX D: EXPRESSION FOR NORMALLY
ORDERED TIME-ORDERED CORRELATION
FUNCTION ' IN TERMS OF
GREEN’S FUNCTION K AND
PHASE-SPACE DISTRIBUTION
FUNCTION &®

In Sec. V we defined the normally ordered time-
ordered correlation function T'r™ [Eq. (5.7)], and we
derived an expression for it in terms of the Green’s
function K4 and the phase-space distribution function
& [Eq. (5.39)]. In this appendix we will derive an
expression? for I'z™™ in terms of the Green’s function
K® and the phase-space distribution function ®®,
where  represents any particular mapping character-
ized by a filter function of the form (2.12), viz.,

Qa,8) = exp(ua’+r5>+Xaf) . (D1)

It will be useful to introduce the generating function
N(£1,E%,0; . .o EnyEn¥otn) defined as follows:

]V(Ehgl*stl; ey Eﬂygn*,tn)
=(T {exp[ T £d" ()BT {exp[—Z &*a (1))

= (exp[£8"(t2)]- - - exp[ 28" (ta) ]

Xexp[ —£:*a(ta) ] - -expl—&r*a(t) ]). - (D2)

In terms of this generating function the normally
ordered time-ordered correlation function I'r™) defined

28 The Chapman-Kolmogorov relation for the Green’s function
K@ in the special case when Q represents the Weyl rule was first
obtained by J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
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by Eq. (5.7) may be expressed in the form
Qirtiatec tintiite - +in
[p) =
(9E)" - (D) "(—08,*)- - (— 08
XIV(Shgl*:tl; cees Emgﬂ*:tn) (Ds)

{£i) =0, {£:*) =0

We will now find an expression for the generating
function V.

According to Eq. (I1.2.8), the generating function
may be expressed in the form

Nz/(b(n)(ZO,Zo*;lo)

XEa® (20,86%; Lo, { £} { £, {t:})d%0,  (D4)
where Fg® =0{G) is the { equivalent of the operator

G= exp[éld*(tl)] s eXP[Snd]t ()]
XeXP[ - En*d(tn)] e eXP[‘“ El*d(tl)] .

To find an expression for the & equivalent of G, we
consider first the operator

(DS)

gn=exp(£ad") exp(—£,*d). (D6)

According to Theorem III [Eq. (1.3.25)], the { equiva-
lent F,,® of g, is given by

Fo® =g Tr{exp[ £.d"] exp[ — £,*4]A @ (z— 4, 2* —dh}

1
= 1—r fﬂ(a,a*) Tr[D(En)DT(a)]
Xexp(}] £?) explaz* ~a*s)d%, (D7)

where Egs. (1.3.14) and (I.3.9) were used. D(a) is, as
before, the displacement operator for the coherent
state |a). On using the orthogonality property of the
displacement operators expressed by Eq. (I.B12),
Eq. (D7) reduces to

Fo® =Q(£4,8,%) exp(£2*—£,*2) exp(}] £.]?. (DY)

We now assume that the filter function Q(a,8) is of the
form (D1). If we use Egs. (5.29) and (D8) we find that

b= expl 011 expl — £,7(1,)]
=//d22nd22’9(£mgn*) EXP(EnZn*-Sn*Zn>

Xexp(3| £al DK D (20,2,% 1n] 2,2 10 1)

XAD (3" —d, 5" —41; 4,_,). (DY)
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Using (DY), it follows that the operator G, defined by involves the equivalent of the operator
(DS), may be expressed in the form -
gn1=exp[£n18'(t, 1) JAD (& —d,2"* —3T; 1, 1)
. Xexp[—&n1*@(tn—1)]. (DI11)
G=/fdzzndzzlg(£n;£n*) eXP(EnZn*—En*Zn) - p[ ! ' ] ( _
Denoting the Q equivalent of this operator by F,_;®,

Sexp(h| £u] DK@ (5.5 | 215 o 2) we have according to Theorem III [Eq. (1.3.25)]

P @ = 5 @ (5—4. *—gt

Xexp[ £16" (1) ]+ - - exp[ Ensd (tav)] Foy@® =1 Tr{g,1A®(z—4,5*—a"}. (D12)
ot n et Now by substituting from (D11) into (D12), expressing

XA®( =, 2" —a"; 1, 1) each of the two mapping A operators in the integral

—t, *8(t, D] - —e*(1)]. (D10) form (1.3.14), making use of the orthogonality relation
Xexpl —Eni"(a-y) ] -expl—&r"a() ]. (D10) (I.B12), and recalling that Q(e,8) is given by (D1), we

To simplify (D10), we make use of an identity that readily obtain the following expression for F,_,®:

_ 1
F, ®= —‘2 / eXP[an—12+VEn—1*2+()\+%) l En—ll 24 £, 12— b 12 2uak,
T

+2a* g 1* + (M3 (@bnr* o En-1) ] expl —a(e* %) +a*(s —32) Jd%
=explufn1+rEart**+ A1) | L] Ensz® — Ear™z]
d d )

a
X eXP|: —2pfn1—— +2E 1F— — O+ — +(+3) Sn—r——]tS (g —z). (D13)
az'* a7’ 9z'* 07

On representing the operator #,_; defined by (D11) in terms of its equivalent ¥ @ [Eq. (D13)] via the identity
(5.29) and on making use of that representation in (D10), it follows that G may be expressed in the form

G=/ / f Pl 11 expluba?tri**+(\+3) | & ]+ ha* — &H¥a]
1

A=n—
XK(Q)(ZmZn*,ln [ Zn1—2En 1% — ()\+”12') En1, Zn1*2utn 1+ (>\+%> én—l*,tn—l)
XK(Q)(Zn—lrzn-—l*;tﬂ—ll Z,:z,*’tn—2) eXP[&@T(tl)] e eXP[En—ﬂT (tn—z):]
XA®(F —4,2*—a; 1, s) exp[ — £ns*8(tas)]- - -exp[ — £*6(1)].  (D14)

On repeating the kind of procedure which led from (D10) to (D14), we eventually arrive at the following ex-
pression for the operator G:

G=/' . '/dz{zx}d"’zoﬁ explp&inirvH* (N +3) l E)\l H-hat—6H*a]
=1

X ﬁ K® (@ ] o1—22bh 1 — 3 by, sxa* H2ub 1+ N3 1%, 01)

A=2
XK ®(z1,21% 1] 20,0% 10) A® (30—, 26* — 5 1) . (D15)

From (D15) and Theorem II [Eq. (1.3.13)] it follows at once that the { equivalent of G is given by

Fo®= f e / {n} fI explub a0+ | & bt — &¥ad
=1

X [T K®(aan® ] onei— vbr* — A3 By, sna*+2uboat+ (A H3) or* ) K@ (21,20 4 | 20,20%t0) . (D16)
A2

Finally, making use of (D16) we obtain the following expression® for the generating function N(&y,&* ;.. .3

2% Since the analysis of this appendix was completed, the following papers appeared, containing some special cases of our formula
(D17): F. Graham, F. Haake, H. Haken, and F. Weidlich, Z. Physik 213, 21 (1968); R. Graham and F. Haake, Phys. Letters 264,
385 (1968).
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£n,E.% ) In terms of the Green’s function K® and the phase-space distribution function ®®:
N=/' ‘ -fd?{zx}deoH explubn2+rH*2+(\+5) | 6] H-ban* — fi*a]
=1

X IT K9 (ron® et | oac1— 2via1* — (A 3) o1, axr* - 2ubr—1+ (A -3) r-1%,10-1)

A=2

XK ®(z1,21% 1] 20,50%,£0) @ @ (z0,20% t0) . (D17)

The normally ordered time-ordered correlation function I'z"? may be obtained from (D3) and (D17). We stress
that in (D17) @ is eny mapping characterized by a filter function of the form given by (D1). With the special
choice corresponding to mapping according to the antinormal rule one has uy=»=0, A= —% (cf. Table IV of I)
and Egs. (D3) and (D17) may then be readily shown to give formula (5.38) derived in the text.
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Derivation of Equal-Time Commutators Involving the Symmetric
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The use of covariance and the Jacobi identity in the study of equal-time commutators is investigated.
Denoting by T, the conserved and symmetric tensor density of Poincaré tranformations and by X any of
the operators ¢, dop, Jo, Ji, or Joi, we use the most general form of the equal-time commutators [27,(x),
X (y)]and [iT0(x), iT00(y) ] compatible with covariance, together with the Jacobi identities for [T (),
iT00(y)], X ()], to derive relations between the equal-time commutators [370m (%), X ()] and [iT(x),
Y (y)], where Y is any of the operators denoted by X or (¢, 8“0, 947, and 3°J ,,. This information is first
used in deriving equal-time commutators in canonical models. We then show that the assumption of SU (2)
®SU (2) charge-current commutators together with [A¢*(),§ (¥) Jeg=yo < ¥ (%) 7#v58 (x—Y) (where 4, denotes
the axial-vector current and ¢ denotes a spinor field) implies (as obtained earlier by the authors under differ-
ent assumptions) [4 (%)% ()0 Jegmyo = 3¥ (¥) V57728 (X—¥) +3 (y—2) s[4 * (®),fm| (%) Y0 Jeg—yo [Where f denotes
(#y*d,—m)y]. For the conserved vector current an analogous relation holds. The incompatibility of field-
algebra current commutators with /"d3s[ A% (%) ,¥ (%) vvJeo=ye =< ¥ () vsvs is noted. Taking ¢ to be the nucleon
field, it is shown that a certain form of the nucleon current leads to the above unless the right-hand side
vanishes. Imposing this requirement, one then obtains g4, =g,, where g4, (%) vsv*(r%/2)¢ (x) [g,0,&(x)v*
X (72/2)¢ (x) ] denotes the contribution of 41 (p) to fm in terms of the renormalized field ¢, (v,%). From this
and the usual saturation of the Weinberg spectral-function sum rules by single-particle intermediate states,
we obtain the universality relations g,=m,%/f, and ga,= (m,/ma;)*ma.2/f4,, where fa, (f,) is defined by
pay (m?) =f4,26(m®—ma®) [p,(m?)=f;28(m?*—m,z?)7]. For currents obeying the algebra-of-fields commutators,
we obtain restrictions on Schwinger terms contained in equal-time commutators involving time derivatives
of the currents. These relations show, for example, that in canonical realizations of current-field identities one
needs derivative couplings of the spin-1 field.
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