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In Paper I of this investigation a new calculus for functions of noncommuting operators was developed,
based on the notion of mapping of operators onto c-number functions. With the help of this calculus, a
general theory is formulated, in the present paper, of phase-space representation of quantum-mechanical
systems. It is shown that there is a whole class of such representations, one associated with each type of
mapping, the simplest one being the well-known representation due to Weyl. For each representation, the
quantum-mechanical expectation value of an operator is found to be expressible in the form of a phase-space
average of classical statistical mechanics. The phase-space distribution functions are, however, not true
probabilities, in general. The phase-space forms of the main quantum-mechanical equations of motion are
obtained and are found to have the form of a generalized Liouville equation. The phase-space form of the
Bloch equation for the density operator of a quantum system in thermal equilibrium is also derived. The
generalized characteristic functions of boson systems are defined and their main properties are studied.
The equations of motion for the characteristic functions are also derived. As an illustration of the theory, a
generalized stochastic description of a quantized electromagnetic field is obtained.

I. INTRODUCTION

N Paper I of this investigation! (hereafter referred to
as I) we developed a new calculus for functions of
noncommuting operators. This calculus is based on the
notion of mapping functions of operators onto functions
of c-numbers and vice versa. We studied in detail a
class of mappings, each member of which is character-
ized by an entire analytic function of two complex
variables. We have shown that the most commonly
encountered rules of association between operators and
c-numbers (the Weyl, the normal, the antinormal, the
standard, and the antistandard rules) belong to this
class and are, in fact, the simplest ones in a clearly
defined sense. We have also shown that the problem of
expressing an operator in an ordered form according
to some prescribed ordering rule is equivalent to an
appropriate mapping of the operator onto a c-number
space.

In the present paper we obtain, on the basis of this
calculus, a general theory of phase-space representations
of boson systems. There is a whole class of such repre-
sentations, one associated with each type of mapping.
In Sec. II we show that the quantum-mechanical
expectation values may be expressed in the same
mathematical form as the averages of classical statisti-
cal mechanics. The distribution functions, however,
are not true probabilities in general, but can, neverthe-
less, be used with great advantage as an aid in calcu-
lations. In Sec. ITII we discuss the mapping of the
product of two operators. In Sec. IV we derive the
phase-space form of the main quantum-mechanical
equations of motion. All these equations are found to
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have the form of a generalized Liouville equation.
Some special forms of these equations are discussed in
Sec. V. In Sec. VI we derive the phase-space form of the
Bloch equation for the density operator of a system in
thermal equilibrium. In Sec. VII we define the general-
ized characteristic functions of a boson system and
study their main properties. The equations of motion
for the generalized characteristic functions are also
obtained. In Sec. VIIT we outline the generalization of
the theory to systems with more than one degree of
freedom. As an example of the theory we discuss in
Sec. IX the stochastic description of a quantized electro-
magnetic field.

Our generalized phase-space description provides a
new representation of boson systems, which closely
resembles classical statistical mechanics and the theory
of stochastic processes. Numerous results previously
obtained by specialized techniques follow logically as
special cases from our general formulation.

II. QUANTUM-MECHANICAL EXPECTATION
VALUES AS GENERALIZED
PHASE-SPACE AVERAGES

We will now make use of the calculus developed in
the first paper of this series to show that it is possible
to express quantum-mechanical expectation values in
the same mathematical form as phase-space averages of
classical statistical mechanics. We will see that there
is an infinite number of ways of doing this, one for each
rule of association (.

To begin with, we will express the trace of the product
of two operators Gi(d,d") and G:(d,4") in terms of the
c-number equivalents of the two operators. Let © be
any linear analytic mapping, whose filter function
Qa,a*) has no zeros,? and let ¢ be the mapping anti-
reciprocal to €, i.e., the mapping characterized by the
filter function ((a,0*) = [Q(—a, —a®) L. Let F1®(z,5%)

2 This assumption will be retained throughout this paper.
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be the @ equivalent of Gy, and F 2@ (2,2%) the & equiva-
lent of G.. Then,® according to Theorem III [Eq.
(1. 3.25)],

Fi® (21,5, =7 TI[G1AD (21— 4, 2% —a1)], (2.1)
Fa® (29,2,%) =1 Tr[GoA @ (20— 6, 22¥—a") ], (2.2)

where A® and A® are the corresponding mapping A
operators defined by Egs. (1.3.14) and (I.3.26). The
inverse relations are given by Theorem IT [Eq. (I.3.13)]:

G1(d,dT) =fFl(m(Z1,Zl*)A(m(Z1—d, Zl*—dT)d221, (23)

Gz(d,df) = F2(§)(22,Z2*)A(§)(Zz—d, Zz*—fiT)dZZz . (24)

_ Let us now take the trace of the product of G, and
G, expressed by Egs. (2.3) and (2.4). If we inter-
change the order of the trace operation and the inte-
grations and make use of the relation (I.4.8), viz.,

TI‘I:A @ (Zl —-d, Zl*—('l‘f)A(é)(Zz —d, Zz* ‘—(i*)]
=(1/m)s®(z1~2),

we obtain the following theorem.
Theorem IV. The trace of the product of lwo operators
G1(8,8") and G5(4,d") is expressible in the form

2.5)

. 1 .
Tr(G:Gz) = — /Fl(“)(z,z*)F2(9>(z,z*)d2z, (2.6)

™

where the c-number equivalents F1®(z,2%) and F»® (z,2*)
are given by Eqs. (2.1) and (2.2), respectively.

Consider now a quantum-mechanical system in a
pure or mixed state, characterized by a density oper-
ator p, and let G(4,d") be some dynamical variable of
the system. If we set Gi=G and Gy=p in (2.6), we
obtain the following expression for the expectation
value of G:

. 1 .
Tr(pG) = ——/F,,m)(z,z*)FG(m(z,z*)d2z, 2.7

™

where, of course, I¥ ,,<5) is the (i equivalent of p and Fg@®
is the Q equivalent of G. We see that the choice of Q in
(2.7) is quite arbitrary. It will be convenient to set

@ (3,5%) = (1/m)F, @ (5,5%)..
Then (2.7) becomes

(2.8)

Tr(ﬁ@)=/(1)@(z,z*)FG(m(z,z*)d?z. (2.9)

The integral on the right-hand side of (2.9) is of the
same form as the phase-space average of classical statis-

3 Equations prefixed by I will refer to equations of Ref. 1.
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tical mechanics for the average, denoted by ( )p.s., Of
Fe™® with respect to the phase-space distribution
function ®®, If we denote quantum-mechanical expec-
tation values b angular brackets without a suffix, we
may express (2.9) in the compact symbolic form

(@)= (Fs®)ps..

In spite of the formal similarity just noted, the right-
hand side of (2.9) cannot, in general, be identified with
a true phase-space average. For the function ®® may
not possess all the properties of a probability density;
it is not necessarily non-negative,*® and it may become
singular. It cannot therefore, in general, represent a
true statistical distribution function.

If we combine Eq. (2.8) and Eq. (1.3.25), we obtain a

more explicit expression for ®®:

(2.10)

dD (z9,20%) = Tr[PA® (20—, 20¥—adN)].  (2.8")

Further, if we make use of the relation (1.3.21), which
expresses the mapping A operator in terms of the Dirac
8 function, we obtain the interesting formula

D (2205 = Q3D (20—2)}). (28"

We see that the distribution function for @ mapping is
the expectation value of the operator onto which the
Dirac § function is mapped by @ mapping.$

This formula corresponds, in a sense, to the following
expression of classical probability theory:

p(x)= f P(%0)8(x—2x0)dixy
={(8(x—x0))-

Finally, we note that fb(ﬁ) is correctly normalized;
for if in (2.9) we take for G the identity operator 1, then
since F¢® =1 and Tr(p)=1, we obtain

/ PD(3,5%)d%=1. (2.11)

A c-number function such as ® which has some, but
not all, of the attributes of a probability density and
which may be used for the computation of expectation
values by means of integrals of the form (2.9) may be

4 Cf. M. S. Bartlett and J. E. Moyal, Proc. Cambridge Phil. Soc.
45, 545 (1949). .

§ An example of a phase-space distribution function, which is
non-negative for all values of its argument is provided by the
c-number equivalent of the density operator for the normal rule of
association, i.e., the phase-space distribution function for anti-
normal mapping. This distribution function corresponds to the
choice Q (a,a*) =exp (3aa*). In Appendix A, we show that thereis a
whole class of @ equivalents, namely, those corresponding to the
class of filter functions Q(e,e*) =exp(Aaa*), A>3, for which the
phase-space distribution functions are non-negative.

6In a recent interesting paper M. Lax [Phys. Rev. 172, 350
(1968)] also introduced a class of generalized phase-space dis-
tribution functions. He defined them as the expectation values of
the Dirac 8 function (with operator arguments) when this func-
tion was expressed in a ‘“chosen order.” .
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said to be a quasiprobability or a generalized distribution
Sfunction. In the past such functions have been frequently
used in special cases as aids in calculations, the oldest
one being the Wigner distribution function’;it isnothing

else than our function ®@® for the special case of the
Weyl rule of association.

Since according to (2.9) the function ®®(z,2*) is the
weighting function in integrals which contain the Q

equivalents of the operators G, we will refer to ®®
as the (generalized) distribution function for 2 mapping
(not for  mapping). Of course, since the choice of Q in
(2.9) is quite arbitrary, we may, in particular, write in
place of (2.9)

Tr(pG) = / DD (3,5%)F ¢ D (3,2%)d%. 2.9

The expectation value of an operator G is now expressed
in terms of the (generalized) distribution function for
{ mapping.

We have now generated a whole class of generalized
distribution functions associated with a given state of
a quantum-mechanical system, each such function
being associated with a particular choice of mapping.
It seems worthwhile to stress once again that in evalu-
ating the expectation value of an operator G by means
of the “phase-space integral” (2.9), the c¢-number
equivalent Fg of G and the generalized distribution
function ® are obtained from G and p via mappings that
are mutually antireciprocal. Only in the special case of
Weyl’s mapping (which is self-reciprocal) will the two
associated mappings be of the same kind.

Often one wishes to evaluate the average of an
operator which is ordered in some particular way, e.g.,
normally ordered field correlations in the quantum
theory of photoelectric detection.® In other words,
G(4,8") is given in the form g©®™*)(4,4") where g@®)
is in an ordered form [see Egs. (1.2.14) and (1.2.15)] for
some particular rule 2. In such a case it is convenient
to map G onto the phase space by means of the mapping
@, We then have (with ©® D being the mapping inverse
to QW)

FG(Q(I))(Z,Z*) = @ (1){G(d;dT)}
=QW{g@M(g4h}. (2.12)

In particular, we see from Egs. (1.2.13a), (I.2.13b),
and (I1.2.13c), and from the linearity of the mapping
operator, that if @M represents the normal, the anti-
normal, or the Weyl rule of association, then

@(1){9(9(1))(d’d1‘)}=9(ﬂ(l))(z,z*) s (2.13)
where
Q@) (5 %) = @) (G 4%) [ 4., 4t .. (2.14)
It follows from (2.12) and (2.13) that
o) =G (5,2%), 215)

7 E. Wigner, Phys. Rev. 40, 749 (1932).
8 See, e.g., L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231
(1965) ; see also R. J. Glauber, Phys. Rev. 130, 2529 (1963).
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i.e., the c-number equivalent of the operalor function G
may be written in the same functional form as G itself.
Using (2.15), one obtains from (2.9) the interesting
result that

Tr[pG@™(a,4")]= [ AM(5,%)G @D (5,2%)d%. (2.16)

This formula brings into evidence even more clearly
than before the close formal analogy between the
present representation and classical statistical me-
chanics. Specialized to the case when Q™) represents the
normal rule of association, this result is the essence of
Sudarshan’s theorem on the equivalence between the
semiclassical and the quantum theory of optical
coherence.? 10

We will illustrate these remarks by a simple example.
Let §™(4,4") be the normally ordered monomial

g(4,6N=dtman (2.17)

where m and # are non-negative integers. Then accord-
ing to (2.17) and (2.15)

Fo@W)(z,5%)=g*mgn, (2.18)

On substitution from (2.17) and (2.18) into (2.16),
with Q@ representing the normal rule (V) and Q@ the
antinormal rule (4) of association, we have

Tr(patma) = / &) (5,5*)z*mand2 (2.19)

or, more compactly,

<[L‘den> = <z*mzn>p.s. ,

(2.20)

where ( )p.s. represents the phase-space average with
respect to the generalized distribution function
& )(z,2%); the function &4 (z2*) is of course, 1/7
times the ¢-number equivalent of the density operator
for the antinormal rule of association.

III. MAPPING OF PRODUCT OF
TWO OPERATORS

In order to determine the phase-space form of the
basic quantum-mechanical equations of motion, we
need to know how the product of two operators is
mapped onto a ¢-number space. The result, derived in
Appendix B, is expressed by the following theorem.

Theorem V (Product Theorem). The Q equivalent of
the product G1(8,d")G1(4,d") of two operators G1 and G,
i.e., the c-number function F1,® (z,2*) such that

Gl(d)dT)GZ(d)éf) = Q{Fm @ (Z;Z*)} ) (3'1)
Fl? (9)(2":2*) = ®{Gl(d:dt)G2(d:d1’)} ) (32)

9E. C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963);
(b) in Proceedings of the Symposium on Optical Masers (Wiley,
New York, 1963), p. 45.

J. R. Klauder and E. C. G. Sudarshan, Fundamenials of
Quantum Optics (Benjamin, New York, 1968).
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is given by

F12 (“)(z,z*) = CXp(Alz) culg (Q)Fl @ (zl,zl*)

XFZ(Q)(ZZ;Z"z*) I zy=z9=2; 21 "=2y"=2") (33)

where F1®(2,2%) and Fy®(z,2%) are the Q equivalents
of the two operators, and Ays and U1 are the differential
operators defined by

179 0 g a
el
2 621 622* 621* 622

d a d a
%12(9) =Q< R '"')Q( y —‘>
9z 021 622* 029

/9 ) a9
xsz( -+ ,—~—~——>. (3.5)
azl* 622* 021 029

In (3.5) ©(a,8) denotes, again, the filter function for
mapping reciprocal to @(e,8), i.e., ¥(e,8)=[2(a,8)];
Q(a,B) will be nonsingular, since we assumed that
Qa,B) has no zeros.

The operator Ay, has a simple meaning. If we use
the relations z;= (¢;+1p,)/ (21)'?, z;* = (¢;—1p;)/ 27)'1?,
then (3.4) becomes

ih\/ 90 90 9 9
)
2/\8q10ps  9q2 9p1
ie., A1a/(i%/2) is just the Poisson-bracket operator.!!

We note that Ay is antisymmetric and U@ is
symmetric with respect to the two indices 1 and 2:

(3.6)
(3.7)

(3.4)

(3.4

Ag1=—Ar ,
WU =y B,

It immediately follows from Theorem V and the rela-
tions (3.6) and (3.7) that the @ equivalent of the
product G»(8,d")G1(d,4") is the c-number function

le(ﬂ)(Z7Z*) = exp(—A12)°lL12 (Q)Fl (9)(21,21*)
XF2 @ (22;22*) I z1=z9=2; 2] *uzz *=z*.

(3.8)

For the important class of mappings characterized by
filter functions of the form given by Eq. (I1.3.38), viz.,

(a,8) = exp(uc-+ "N, (3.9)

the differential operator U1, is readily found to have
the following form:

g 9 a [é]
‘um(m=exp|:—2v——— —"2”
. 9z1* 9z.*

021 032
d 9 Jd 9
+)\<——~ + -——):' (3.10)
dz1 0z,*  Ozp™ Oz

U F. Strocchi, Rev. Mod. Phys. 38, 36 (1966).
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With the help of Theorem V, we may immediately
write down a necessary and sufficient condition for the
distribution function ®®(z2*) to represent a pure
state. The density operator p of a pure state satisfies the
condition (which is both necessary and sufficient)

p1=5. (3.11)

On taking the Q equivalent of this equation, we obtain
the relation

FoW=F,®, (3.12)
Now according to Theorem V,
Fp2®(3,2%) = exp(A1z) Uz P F, P (21,21%)
XEF,®(25,2,%) , zy=eg=z;21 "=y =2+ (3.13)

From (3.12) and (3.13) we obtain, if we make use of
relation (2.8), the required phase-space form of the con-
dition for a pure state:

™ CXp (Am)fum(ﬂ)(IJ(Q) (2'1721*)(1)(9)(22,22*) l 2y=zg=2;2) “=ag =2
=dD(z2%). (3.14)

As an example, one may show on using (3.14) that the
function ®M(z,2%)=(1/7) exp(—|z|2) represents a
distribution function of a system in a pure state. The
corresponding density operator is

p=0M{exp(—|2]%)}=10)(0] .

In making use of the product theorem (Theorem V) to
derive the phase-space form of the basic quantum-
mechanical equations of motion, one of the operators
will be the Hamiltonian operator A of the system. We
will find it convenient to express the Q equivalent of
the products AG and GH in more compact form. We
will then write

O{AG} =L, Fe®, (3.15a)
O{GH}=£_Fe®, (3.15b)
where, in accordance with Theorem V,
L1 Fe® =exp(A1s) Ui @ F 5@ (31,2:%)
XFG(Q)(ZZ:Z2*) I s=zg=z; 21 T=ay "=z ") (3'168‘)
L_Fe®=exp(—A1) U1 F @D (31,21%)
XFG(H)(Z2,Z2*) l zimzg=zizy "zt =2 "y (3'16b)

Frp@®(z,2%) and F¢®(3,2*) being the @ equivalents of
the operators I and G, respectively.
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In this notation the Q equivalent of the commutator
[A,G]=HAG—GH evidently is'?

O{[H,Gy=(L4—L_)Fe®, (3.17)

For mappings given by the filter function of the form
(3.9), i.e., Q(e,0*) = exp(ua®+ra*?+Araa*), Eqs. (3.16a)
and (3.16b) become

d J
£+FG(9) =FH(Q)|:Z1__2,,_._ +()\+%) o

29 0z

zl*—-Zp

+(x—%>5‘:—2]

22*

XFG(Q)(Zz,Zz*) | n=z2=2; 21 =22"=2", (3'183‘)

9 0
£ Fe® =FH(Q)[ZI~2V— T =2,

%9 022

a 9
st +OH)—
322* 622

XFG(Q)(Z2;Z2*) ‘ 21=22=2; z1*=zz*;=z* .

(3.18b)

IV. PHASE-SPACE FORM OF QUANTUM-
MECHANICAL EQUATIONS OF MOTION

We will now derive the equations of motion for the
c-number equivalents (phase-space representations) of
the time-evolution operator, the density operator, and
of a Heisenberg operator.

12 More generally, let us associate with any two (sufficiently
well behaved) c-number functions Fi(z,2*) and Fi(z,2*) the
symbol

(F1,F2|Q)=[exp(A1z) —exp(—Ai)]

XU F1 (21,21%) F2(32,22%) | s1mzpmzar® wag®ms®s
Evidently, (F1,F3|Q) is the @ equivalent of the commutator
[@,,@g"_l, where @1=Q{F1}, (;\2=9{F2}. It may be shown that
(F1,F2|Q) is, for each @, a Lie bracket, i.e., it satisfies the following

conditions.
(1) Antisymmetry:

(F1,F2|Q) = — (F3,F1]Q).
(2) Linearity:

(Fr,00F 2 +asF;|Q) =ay(F1,F2|Q)+oas(F1,F3|Q).
(3) Jacobi identity:
(F1,(F3,F3|Q) | Q)+ (Fs, (F3,F1|Q) |2)+ (Fs, (F1,F: | Q) |2) =0.

The ansitymmetry and linearity are obvious from the defining
equation of this bracket. The validity of the Jacobi identity may
be established by a straightforward, but long, calculation involv-
ing the Fourier transforms of Fy, Fy, and Fs.

In the special case when Q represents the Weyl rule of associa-
tion, (1/i%)(Fy, F:|Q) is the so-called Moyal bracket [J. E.
Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949), Eq. (7.10);
see also H. J. Groenwold, Physica 12, 405 (1946), Eq. (4.38)]
when expressed in terms of z and z* rather than ¢ and p [see
Eq. (3.4')]. That the Moyal bracket is a Lie bracket was first
noted by T. F. Jordan and E. C. G. Sudarshan, Rev. Mod. Phys.
33, 515 (1961); see also C. L. Mehta, J. Math. Phys. 5, 677
(1964). The importance of the Lie bracket in the structure of
dynamical theories has been discussed by E. C. G. Sudarshan,
in Lectures in Theoretical Physics (Benjamin, New York, 1961),
Vol. II, p. 143.
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A. Schriédinger Equation of Motion for
Time-Evolution Operator

The unitary time-evolution operator'* U(tt,) of a
quantum-mechanical system satisfies the Schrodinger
equation L

ihdU(t k) /ot=HU(t 1), (4.1)

where A is the Hamiltonian of the system. This equation
must be solved subject to the initial condition

U(lfo,to) =1.

If we apply the inverse mapping operator ® to both
sides of (4.1), we obtain the equation

(4.2)

9 .
h—O{U}=0{HU}. (4.3)
ot
If Fy@=0{U} and Fz@=0O{H} are the © equivalents
of U and H, respectively, we have at once from (4.3)
and (3.15a)
1hoFy® /3t= L, Fy®, (4.4)

This then is the phase-space form of the Schrodinger
equation (4.1) for the time-evolution operator U. It is
to be solved subject to the initial condition

Fy®(z,2*; L,t))=1 when t=1, for all 2%, (4.5)

as is evident from Eq. (4.2) on applying the inverse
mapping operator ® to both sides of it.

B. Schrodinger Equation for Density Operator

If we apply the inverse mapping operator © to the
Schrodinger equation for the density operator 3, i.e.,
to the equation

ihop/ot=[H,5], (4.6)

and we use formula (3.17) for the @ equivalent of
a commutator, we obtain

1hoF,® /dt= (£, —L_)F, @, 4.7)

Now according to (2.8), F,®=73®, so that Eq. (4.7)
may be expressed as the equation of motion for the

phase-space distribution function:
1hoP®/Jt= (L, —L_ )P, (4.8)

One can also easily derive equations of motion for
the macroscopic averages (expectation values) of ob-
servables by combining (4.8) with Eq. (2.9).

C. Heisenberg Equation of Motion

In a strictly similar way, we obtain from the equation
of motion for a Heisenberg operator G(a(¢),d"(?)), viz.,

ihdG/dt= —[ A ,G1+i%3G/ ot (4.9)
the following phase-space equation of motion for the
3 We do not display explicitly the dependence of U on & and

&', Similar abbreviated notation will be used in connection with
other operators considered in this section.
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Q equivalent Fe@(3(t),2*(t)) of G:
1hdFe® /di= — (L, — L )F¢®+ihoFe®/ot. (4.10)

We note that the two phase-space equations (4.4)
and (4.8) are of first order in time. Since they are
equations for ¢-number functions they are, in general,
easier to solve than the original equations for the oper-
ators. Each of them is of the form of a Liouville equation

dX/dt= —igX, (4.11)

where £ is a differential operator that does not involve
differentiation with respect to time. Approximate tech-
niques for solving such equations are well known.!* If
all the operators are assumed to be in the interaction
picture, the perturbation series expansion of the solu-
tion of (4.11) is

X(t) ZX“”(t), (4.12)
where n—o
X0(0) = (—i)» / i f " . f "

0 xso(tl)£(t2) . 0 -L(t)X(0). (4.13)

In the special case when the ‘“Liouville operator” £ is
independent of time, one can immediately write down
the following formal solution of (4.11):

X () =exp(—iLt) X(0). (4.14)

However, in practical applications this exact formal
solution is of little use and one has to resort to approxi-

mations. For example, if
L=LoteLs, (4.15)

where € is a small perturbation parameter, then, by
using standard resolvent techniques,4 one can show that

1
X()=——  ds it S (Lo—z) !

21 n=0
X[—eL1(Lo—2)"1]"X(0),

where C is any contour that encloses the real axis.

(4.16)

V. EQUATION OF MOTION OF DISTRIBUTION
FUNCTION FOR SYSTEMS WITH
QUADRATIC HAMILTONIAN

We return to the equation of motion (4.8) for the
distribution function ®®(z,2*; 1), viz.,

DD/ t= (£, —L_@)D® (5.1)

and consider the form of it in the special but important
case when the Hamiltonian is a quadratic function of @

1 See e.g., P. Résibois, in Cargése Lectures in Theoretical Physics,
edited by B. Jancovici (Gordon and Breach, New York, 1966),
p. 139; see also R. Balescu, Statistical Mechanics of Charged
Particles (Interscience, New York 1963), Chaps. I and XIV.
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and @', i.e., when
H=wi'é+ a2+ s*at2+ya+y*at. (5.2)

Here w, §, and v are parameters which may depend on
time and w is real.

We will restrict ourselves to the class of mappings
for which the filter function is of the form

Qa,a*) = exp(uad+ra*24haa™) . (5.3)

As we saw at the end of Sec. ITI of I, the filter functions
for the usual rules of associations are of this form.

We will first determine the Q equivalent Fi® of the
Hamiltonian. Since the Hamiltonian is assumed to be
a quadratic function of & and 4", we know from the
general result derived in Appendix E of I that Fu® will
be quadratic in z and z*. Moreover, it is obvious from
(5.2) that for the special case of the normal rule of
association,

FpM =gz 6224 6% 24 yz+v "%, (5.4)

To obtain Fg@ for other rules of association, we apply
to (5.4) the connecting relation (I.5.25), which relates
the © equivalents for two different rules of association,
viz.,

9 9
F@O(5,5%) = Lzl(“"‘“ _)F @Mz, (5.5)
dz* 9z
where

Loi(a,a®)=0®(—a, —a*)QD(—a, —a*), (5.6)

and Q®(—a, —a*)=[Q®(—q, —a*) L If Q@ is the
filter function for the_normal rule of association, i.e.,
the function exp(3a*a) (see Table III of I) and if
Q®(a,a*) is the filter function (5.3), then

and (5.5) becomes

#iz-—a—2+(>\— ) o :I

dz*2 932 929z*
XEgM(z,2*). (5.8)

On substituting from (5.4) into (5.8), we obtain the

following expression for F g @ (z,2%):

Fr®(z,2%) = [wz*s4- 0224 8%5* 24 yat-v¥2* ]

+[—2ud*— 206+ (N—3%)w], (5.9)
and this expression is indeed quadratic in z and z* as it
ought to be.

On substituting (5.9) and (3.18) into (5.1), we obtain
the required equation of motion:

Fup®(z,5%) =exp|:
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IP@ 0@ 9@ p@
ik = C
ot 0z? 9z*? 9z*0z
IP@® 3@
+D p —D* pyral (5.10)
2z z
where
A =2vw—2\56%, B= —2uw+2)4,
C= —4vi+4ué*, D= —wz—y*—26%*. (5.11)

Equation (5.10) has the form of the Fokker-Planck
equation.!® However, since the quadratic form involving
the dffusion terms on the right-hand side of (5.10) is
not in general positive definite, the solution of this
equation is not necessarily non-negative and may be
singular. This observation illustrates our earlier remark
that in general the phase-space distribution function is
not a true probability.

For the special case of mapping via the Weyl rule of
association (u=»=\=0; see Table IV of I), ®®
becomes the Wigner distribution function ™’ and
(5.10) reduces to

Y SUSTIY:Y SUOR Y 10
it =D —D* (5.12)
ot 9z az*
Also for the Weyl rule of association
FugW) =wz¥s+ 0224 6% %24 yz+vy*s* —Lw, (5.13)
so that
W) /9= wz*+2
FuW)/0z=wz*+ 202+, (5.14)

AF W)/ 9z* = g+ 26%*z - *.

On comparing (5.14) with the expression for the coeffi-
cient D in (5.12), we see that

OFgW)/9z= —D*, 9Fg")/oz*=—D. (5.15)

Hence, the equation of motion (5.12) for the Wigner
distribution function &) now reduces to
FrCe AF g™ 3B JF 5 JM)
ih =—

+
ot dz* 0z 9z dz*
Now according to (3.4) and (3.4'), the differential

operator
1( a a a a >
ih 621 622* 651* 622

is just the Poisson-bracket operator. Hence (5.16) may
be written in the form

02 /9= —[@W Fr™p,  (5.16)

where [ - - - |» denotes the Poisson bracket. This result,
which in a somewhat less general form was first obtained
by Moyal,'6 shows that the Wigner distribution func-

(5.16)

15 For discussions of the Fokker-Planck equation, see, e.g
M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17 323
(1945) ; or M. Lax, 7bid. 38, 359 (1966

16 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
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tion for a system with a quadratic Hamiltonian obeys
the classical equation of motion.

VI. PHASE-SPACE FORM OF BLOCH EQUATION

For a system in thermodynamic equilibrium, the
unnormalized density operator p is given by

=exp(—BH), (6.1)

where H is the Hamiltonian of the system and 3=1/kT,
k being the Boltzmann constant and 7" the absolute
temperature. The operator (6.1) evidently satisfies
the differential equation

9p/0p=—Hp, (6.2)

known as the Bloch equation. It is to be solved subject
to the condition

=1 for B=0. (6.3)

In a way strictly similar to that used in connection
with the Schrodinger equation (4.1) for the time-
evolution operator, we obtain from the Bloch equation
(6.2) the following equation for the phase-space equiv-
alent F,® of the unnormalized density operator p:

OF, @/ 9B= —L,F, D, (6.4)

where the operator £ is again defined by Eq. (3.16a).
On taking the Q equivalent of (6.3), we see that (6.4)
must be solved subject to the condition

F,®(z2*;8)=1 when B=0, forallzand z*. (6.5)

The phase-space form (6.4) of the Bloch equation
may be used to determine the partition function of the
system and provides a new way for determining the
density operator of a system in thermal equilibirum.
Since (6.4) has the form of Liouville’s equation, with
time ¢ replaced by the variable —i@, similar remarks
apply here as were made at the end of Sec. IV.

Equation (6.4) provides also a new way for determin-
ing ordered forms of exponential operators exp(—gH).
We will illustrate this by determining the antinormally
ordered form of the operator

(6.6)

where w is a constant. This operator is of the form (6.1),
with the Hamiltonian

=exp(—Bwi’d),

-~

H=wd'a. 6.7)

Now the antinormally ordered form of (6.7) evidently
is w(d4"—1), so that the c-number equivalent Fy 4 of

H, for the antinormal rule of association, is
Fg®(z2%)=w(z%*—1). (6.8)

Now the filter function for the antinormal rule of
association is given by (3.9), with u=»=0, A= —% (see

17 For a discussion of the Bloch equation see, e.g., T. Matsubara,
Progr. Theoret. Phys. (Kyoto) 14, 351 (1955)
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Table IV of I), so that according to (3.18a) and (6.8),
LLAWF, @
=Fu® (31, 2% — 0/ 02) F, ) (22,32™) | symapmss 2y "=y "ms ™
=w[21(z1*—9/93z5) —1]]
XF ) (29,30%) | symgme; 21 "= *=e ™

=w(s*z—1—20/02)F , L. (6.9)
Hence Eq. (6.4) becomes, in this case,
OF , ) /9B= —w(z*3—1—20/3z)F,", (6.10)

and is to be solved!® subject to the condition (6.5) (with
F,® replaced by F,“). The solution is

F,®(z,2%; B)=exp[ Bw+ (1—ef*)z*z].  (6.11)

Hence, by Theorem I [Eq. (1.2.20)] the antinormally
ordered form of the operator p=exp(—pwd'd) is ob-
tained by applying to (6.11) the substitution operator
S ) for antinormal ordering:

exp(—Pwd'd) =S {exp[u-t(1—e*)z*3]}

o (1—efo)n
=5 g H° — z*"z"}
n=0 n!
o (1—ebfe)m
—efo Y — e grgtn. (6.12)
n=0 n!

VII. GENERALIZED CHARACTERISTIC
FUNCTIONS OF QUANTUM-
MECHANICAL SYSTEM

In the theory of probability, the characteristic
function,?® i.e., the Fourier transform of the proba-
bility distribution, plays an important role. In particu-
lar, the moments of the distribution may, in general,
be easily derived from it simply by differentiation. In
the present theory we have associated a class of quasi-
probabilities with a quantum-mechanical system,
namely, the. phase-space distribution functions
dD(z2*). By analogy with classical probability theory,
we will now introduce also the corresponding ‘“charac-
teristic functions” C®(a,a*). However, since ®®@
is not necessarily non-negative, C® will, in general,
not satisfy the criterion for characteristic functions,
expressed by Bochner’s theorem.? Nevertheless, func-
tions of this kind, which we will call generalized charac-
teristic functions, are of considerable value in appli-
cations of phase-space formalism, as is clearly evident
from treatments of special problems.2!:22 A generalized

18 The technique for solving differential equations of the type
(6.10) is similar to the one described in J. H. Marburger, J. Math.
Phys. 7, 829 (1966).

19 For a discussion of the characteristic function, in the classical
theory of probability, see, e.g., E. Lukacs, Characteristic Functions
(C. Griffin, London, 1960).

20 For a discussion of Bochner’s theorem see Ref. 19 or R. R.
Goldberg, Fourier Transforms (Cambridge U. P., New York,
1961), Chap. V.

2t T, P. Gordon, W. H. Louisell, and L. R. Walker, Phys. Rev.
129, 481 (1963); J. P. Gordon, L. R. Walker, and W. H. Louisell,

AGARWAL AND E.

WOLF 2

characteristic function appears to have been first em-
ployed by Moyal,® for the case of the Weyl correspon-
dence, and played a central role in his important investi-
gation on the statistical foundations of quantum theory.

By analogy with the classical theory, we define the
generalized characteristic function C®(a,0*) of a
quantum system for {} mapping as the two-dimensional
Fourier transform of the phase-space distribution
function ®®(z,2*):

CO (a,a*) = / @ (3,2%) exp[ — (az* —a*2)|d%. (7.1)

The integral in (7.1) may be expressed as a trace of two
operators by the use of the relation (2.9’), and one then
obtains the following expression for C@®:

C®(a,0*)=Tr(pl{exp[ — (az*—a*2)]}). (7.2)

Thus the generalized characteristic function C® is the
expectation value of the operator that is obtained by
mapping the ¢-number function exp(—az*+a*z) via
the mapping that is antireciprocal to Q. This result
corresponds to the fact that, in classical theory, the
characteristic function is the average of the exponential
function.
Since according to Eq. (1.3.17)

Mexp(—az*+a*s)}=0(e,a*) exp[ — (ad'—a*a)]. (7.3)
Equation (7.2) may also be expressed in the form
C® () = Q(e,0*) Tr{p exp[ —(ad'~a*a) ]},
where in accordance with Eq. (1.3.23),
Ue,a®)=[Ua,a®) T,

For certain states of the system, and for certain rules
of association, the distribution function ®®(z,2*) may
not exist as an ordinary function, and hence the defini-
tion of the generalized characteristic function C®
by means of Eq. (7.1) has to be interpreted with some
care. However, if C® is defined by the formula (7.4) it
will exist for every linear amalytic mapping Q, whose
Jelter function Qe,B) has no zeros; this follows from the
fact that the operator exp(—ad'™+a*d) is unitary and
that the expectation value of a unitary operator is
bounded. In fact, this expectation value is bounded by
unity and hence (7.4) implies that

[C®(a,a®)| < [Q(ea®)] . (7.5)

We also note that since by our earlier assumption
2(0,0)=1 and since Trp=1, Eq. (7.4) also implies that

C®(0,0)=1. (7.6)

ibid. 130, 806 (1963); B. R. Mollow and R. J. Glauber, :bid. 160,

1097 (1967); J. H. Marburger, thesis, Microwave Laboratory,

Stanford University [M. L. Report No. 1490 (unpublished)].
% See also, A. Yariv, IEEE J. Quant. Electron. QE-1, 28

(1965); W. G. Wagner and R. W. Hellwarth, Phys. Rev. 133,

?9155)(1964); A. E. Glassgold and D. Holliday, 7bid. 139, A1717
1965).

(7.4)



2 NONCOMMUTING OPERATORS AND PHASE-SPACE METHODS. II

From (7.4) we also obtain at once the following relation
between the generalized characteristic functions
CO)(q,a*) and C@)(a,a*) of the same system, ob-
tained via two different mappings ™ and Q®:

Q@ (a,0*)
QM (a,0*)

In Table I we list the generalized characteristic func-
tions for the normal rule of mapping for some typical
density operators.

The moments of the phase-space distribution func-
tions may be defined by the expression

CO®) (q,a*) =|: ]C(n“)) (a®).  (1.7)

M,,m(“)z/Q(“)(z,z*)z*"‘z"d%{ (7.8)
If we apply to the right-hand side of (7.8) the identity
(2.9%), we see that

M @ = Tr[p3{z*mz"} ]. (7.9)

This formula shows that M .,® is the expectation
value of the operator obtained by mapping the ¢-num-
ber function z*7z"* via the mapping that is antireciprocal
to Q.

It follows from (7.8) and (7.1) that the usual expres-
sion for the moments of a distribution in terms of the
characteristic function has a strict analog in the present
theory, i.e.,

It C® (a,0*)
M mn Oz .
3(—a)™3(a*)" | gma*=0

One may also derive an equation of motion for the
generalized characteristic function. The derivation is
given in Appendix C, and the result is

1hdC® /Jt= (I D —N_D)C® | (7.11)
where the operators 9, and %_ are defined by the

formulas
N, OC®
=exp(A1d’) VDF D (ay,a1*t)
X C® (09,05% 1) | aymas; apmai ar *=a*12 ap*=a*,  (7.122)
N_DOC@®
=exp(A1’) U DF 5@ (ag,0,*,1)

*
XC(Q)(‘I%‘X? Jt) l aj=—a/2; ag=a; a1 “=—a*/2; ay =a*.

(7.10)

(7.12b)

Here Ay’ and VU@ are the differential operators defined
as follows:

a 9 a 9
A12'=("—"‘-— - ——‘—‘>,
(90[1 60[2* 60[1* aaz

_ /0 3
’0(9)=Q(a,a*)ﬂ( *,———)

day day.

(7.13)

aJ ad
xsz(a— oot ~>. (7.14)

day oy
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Table I. The form of the generalized characteristic function for
the normal rule of association for some density operators. Here
L, is the Laguerre polynomial of degree n, J, is the Bessel function
of the first kind and zero order, and (#) = (ef—1)"1,

p CA) (a,0*)
|20)(z0] exp[ — (azo* —a*20) ]
[n)n| Ln([e]?)

exp (—pdtd)

—_— — al?
Tr e (—p2'a) exp (—(n)|a|?)

1 2
2—/ 6|7 exp (i6) ){r exp (i) | Jo(2r|al)
T Jo

In Egs. (7.12a) and (7.12b), Fz® is, of course, the {
equivalent of the Hamiltonian operator. The differential
operator Ay’ is proportional to the Poisson-bracket
operator [see the remark in the second paragraph that
follows Eq. (3.5)].

For the important class of mappings for which the
filter function is of the form (3.9), viz.,

e, 0®) = exp(ua®+ra*2+raa*) , (7.15)

the differential operator V® defined by (7.14) is readily
seen to be given by

9 ]
+2va*—

day

®

VW= exp( —2ua

aOL1

a a
—ha*—— —I—)\a——>, (7.16)

aa1 6a1

and expressions (7.12a) and (7.12b) then become

- [a a
N, OCWD =FH(9)[E + 2va* 4+ Nat+ ,

aaz
a* 9
— —2ua—Aa*— ———:I
2 aa’z
XCD(ag,a0*,0) | arma; as*=a*, (7.17)
- « a
N_DCW =FH(9)[— — +2va* 4 Na+ ,
2 8012*
a* F:}
— — —2ua—Na*— —:l
2 das
XC(Q) (az,ag*,t) 1 ag=a; az*=a*. (718)

Let us consider the special form of the equation of
motion (7.11) for the generalized characteristic function,
when the filter function @(e,a*) is given by Eq. (7.15)
and when the Hamiltonian of the system is a quadratic
function of ¢ and @', given by Eq. (5.2). On using Egs.
(7.11), (7.17), (7.18), and (5.9), it may be shown by a
straightforward but rather long calculation that the
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equation of motion for C® is, in this case,

1hdC® /3t= (aa*?+ba2+ caa™+vya+y*a*)C®

+dIC® /da—d*IC® /da*, (7.19)
where
a=2vw—2\6%, b= —2uw-+2X\é
" oo (7.20)
c=46—4ud*, d= —(wat26*a*).

We note that Eq. (7.19) for the characteristic function
is of the first order in the variables {, @, and o*.

We will illustrate the use of Eq. (7.19) by considering
a simple example, namely, an ensemble of driven
harmonic oscillators. We will derive the generalized
characteristic function for this ensemble for Weyl
correspondence.

The interaction Hamiltonian in the interaction
picture of a driven harmonic oscillator is given by (with
H.c. denoting the Hermitian conjugate) '

H()=n{f(t) exp[ —ig()Ja+H.c.}. (7.21)

Here f(¢) is the external time-dependent force and

g)= / w()dt', (7.22)

w(t) being the (time-varying) frequency of the oscil-
lator. Since the Hamiltonian (7.21) is linear in ¢ and 4*

{corresponding to (5.2) with w=6=0, y=7nf(?)

Xexp[ —ig(¥)]}, and the mapping is of the form (5.3)
(with u=»=A=0), (7.19) applies in this case and one
obtains

ACT) (a,a*,t)
i—’—at——*— ={/(t) exp[—ig(1) Jat-c.c.}

XCT) (a,0*1) .
The solution of (7.23) is readily seen to be

CM)(a,0*t) = CW)(a,a*,0)
Xexp{—ilap(+a*e*() 1}, (7.24)

(7.23)

where

o) = / 1) expl—ig@)Jal.  (1.25)

By applying the general formula (7.10), one may obtain
from (7.24) expressions for the (time-dependent) mo-
ments M, of this system.

In recent publications?!?? already referred to, which
deal with problems of quantum fluctuations and noise
in parametric devices, extensive use has been made of
generalized characteristic functions. In these investi-
gations the time dependence of the characteristic
function and of various moments was obtained by first
solving the Heisenberg equation of motion for annihi-
lation and creation operators. It would seem simpler and
more appropriate to base such calculations directly on
our Eq. (7.11) for the characteristic function rather
than on the Heisenberg equation of motion. The ex-
ample that we just considered illustrates this point.
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Finally, we stress that since C® and & are Fourier
transforms of each other [with the pairs (a,a*) and
(2,2*) being the conjugate Fourier variables], the time
dependence of the characteristic function leads to the
time dependence of the Q equivalent of the density
operator and vice versa.

VIII. GENERALIZATIONS TO SYSTEMS WITH
MORE THAN ONE DEGREE OF FREEDOM

For the sake of simplicity, we have up to now re-
stricted ourselves to systems with only one degree of
freedom. However, the theory may readily be extended
to systems with any number of degrees of freedom.? We
will now briefly present the appropriate generalizations
of some of our main results.

Let {zx}=(21,%s,...,5n) be a set of N complex
cnumbers and {2,*}= (1%,25%,. . .,2x™) be the set of
its complex conjugates. Further, let {dx} = (81,8s,,. . .dn)
be a set of N annihilation operators and {d:'}
=(d,%,ds",. . .,dn") be the set of its adjoints, which obey
the commutation relations

Law,ap’]=aw, (8.1a)
Law,ar J=[ast,ar]=0. (8.1b)
We are concerned with the mapping of functions
F({z1},{z*}) of the c¢-numbers onto functions

G({dx},{d+"}) of the operators and vice versa, expressed
symbolically by the formulas

UF ((z:},{z* )} =G({a} {a:"})
O{G{a} (&)} =FO({z},{z*}).  (8.3)

The class of mappings that we consider will be defined
by a straightforward generalization of the class that we
introduced in Sec. ITI of I. Suppose that F is represented
as a 2V-dimensional Fourier integral

(8.2)

and

P}, () = / Fas), o)

XeXP[Zk: (owzr™ —an*zi) 1d*{ar}, (8.4a)

where

1
fash o)) = — f Pt ()
™

2N

Xexp[—zk“. (uzi* —ar*zi) Jd*{z}, (8.4b)

and {az}= (a,0s. . .,an) denotes, of course, a set of IV
complex c¢-numbers and {ax*}=(as¥,as%,...,ax*) the
set of its complex conjugates. In (8.4a) the integration
extends over the N complex «; planes, and in (8.4b)
it extends over the N complex z; planes (k=1, 2, ...,N).
i Next suppose that G({dx},{@+'}) is represented, as a
2N-dimensional “operator” Fourier integral [see

2 Qur results are true both for finite and countably infinite
number of degrees of freedom; see also Ref. 10, Chap. VIIIL.
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Eq. (I.C1)],

GG} (0 = f o({), (™))

Xexp[ZkZ (ardit —ar*dn) Jd*{en), (8.52)
where
g({ar},{er*}) =(1/mY) Tr{G({d+},{d:'})
Xexp[—% (axdi’ —ar*dr)]}. (8.5b)

The class of mappings under consideration is defined
by the property that for each mapping the multidi-
mensional “Fourier spectra”  f({ex},{ex*}) and
g({ar},{ar*}) are related by an expression of the form

g({en} {ox™}) = Q{eu} {e™}) f({en} {an™}) , (8.6)

where the function Q({ax},{ax*}) that characterizes a
particular mapping is assumed to have the following
properties:

(1) Itisan entire analytic function of the 2V complex

variables {ar}= (ay,as,. . .,an), {B:}=(81,0,- . -,Bx)-
(2) Q({ax},{B+}) has no zeros.
(3) Q({0},{0})=1, where {0}=(0,0,...,0).

The mapping expressed symbolically by Eqs. (8.2)
and (8.3) may be written down in a closed form with the
help of an appropriate mapping A operator, which is
defined as a straightforward generalization of Eq.
(1.3.14) for the one-dimensional case:

AD ({2 =81}, {2 * — i)

v 1
- = 8t expl— (5 a1

—a*(z’ —ax)} Jd*({eu}).  (8.7)

The required expressions for the mappings F — G and
G — F, which are generalizations of the results expressed
by Theorems IT and IIT of I, are

G({dr},{a:'})
=Q(F({z:},{z+*})}

- f P} (5 ) AD (a0 {o* 1)

X&({z}), (8.8)

F®({z},{z*})
=0{G({dx},{d+'})}
=7V Tr[G({8:},{d+'})
XA®({z— i}, {z*—a})].  (8.9)

In (8.9), A® denotes the A operator for the
mapping that is antireciprocal to £, i.e., the mapping
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for which the filter function 8({ax},{@r*})=[2({ —ax},
{_ak*}):,—li where {_ak} = (—aly g,
{—ar*}=(—ar*, ..., —ax®).

In a strictly similar way, as in connection with Eq.
(1.3.21), the mapping A operator may be expressed in
the following symbolic form:

AD({z) —di} {2 * —a:t}) = UTT 6 (2’ —21)} . (8.10)
k

sy —QaN),

The generalization of Theorem IV [Eq. (2.6)] for
the trace of the product of two operators is readily seen
to be

1
Tr(GGs) = N /Fl(m({zk},{zk*})

XFy® ({2}, {z*)d*({z}) . (8.11)

By analogy with Eq. (2.8), we may define the general-
ized phase-space distribution function for @ mapping of
a quantum-mechanical system with any number of
degrees of freedom by the relation

3D ({2}, {z*}) = (1/7")F, D ({z:},{z:*})

where F,® is the c-number equivalent for { mapping
of the density operator p({d:},{ds'}) of the system.
From (8.11) and (8.12) it then follows that the expecta-
tion value of a dynamical variable G({dx},{d:'}) may be
expressed in the form of a phase-space average:

(8.12)

Tr(ﬁ@):/@‘ﬁ’({zk},{zk*})
XFe®({z},{z:*})d*({2:}) ,

where, of course, Fe® is the @ equivalent of G.

Formula (3.3) of Theorem V may readily be general-
ized to systems of many degrees of freedom. If we as-
sume, for the sake of simplicity, that the filter function
Q({ar},{ax*}) is of the form

9({ak},{ak*})=IkI Qi (ar,0r®) ,

then one readily finds that the Q equivalent

Fra®({z:},{z:*})
= 0{G:1({dx} {a:"})Go({ar},{a:"})} (8.14)

of the product of two operators Gy and Gy is

Fia®({z:},{z:*}) =€XP(Zk Asar)

(8.13)

XTI Waar PF 1D ({281}, {z:1*})
I3 .

XF2(Q)({Zk2},{zk2*})| (2k1}=(zkzl=(zk]; (zkl‘ls{zkz'la{zk*};
(8.15)

where F1® and F,® are the @ equivalents of G; and
G; respectively, and Ajgy, and U2, @ are the differential
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operators defined by the formulas

1790 4 a )

Ao = —<‘——"——- - ——————) (8.16)
2 az;d asz* azkl* 03Zke

and

a a a 4]
‘1l12k(m=9k< ) — —>Qk< » — —“‘)
aZk1* 0251 aZkz* 02x2

/9 ) 3 )
><m< + ,—~————->. (8.17)

azkl* aZk2*

In a manner strictly similar to the one-dimensional
case (Secs. IV-VI), the relation (8.15) may be used to
derive the phase-space form of various quantum-
mechanical equations for systems with any number of
degrees of freedom.

IX. EXAMPLE: STOCHASTIC DESCRIPTION OF
QUANTIZED ELECTROMAGNETIC FIELD

In the last few years many investigations have been
carried out concerning the statistical properties of
light,® partly in order to elucidate the basic differences
between laser light and light generated by conventional
sources. In some of these investigations phase-space
techniques have proved very useful. In this section we
show how with the help of our theory one may introduce
in a systematic way various quasiprobabilities that
characterize the statistical properties of the quantized
electromagnetic field and how the coherence functions
of the field may be expressed in terms of them. We will
restrict our discussion to a free field only.

Let . . .

A )=AD(r,H)+AO(r,1)

be the operator that represents the vector potential of
the field at the space-time point (r,t), with A® and A©
denoting its positive- and negative-frequency parts,
respectively. We expand A® and A@ in the usual way:

©.1)

. fic\ V2 1
A(+)(l',t) = (B) Z —\/—-;dksek, exp[i(k-r—wkt)] 5 (923.)

ks

ks

" fe\ 12 1
() = — N, PN
A (I',t) <L3> Z \/kaks €3

Xexp[—i(k-r—wit)]. (9.2b)

Here L? denotes the volume to which the field is con-
fined, @, is the annihilation operator for a photon of
momentum p=#k and spin s, and the e, are unit
polarization vectors.

Let us now map the operators A® and A© onto
c-number functions V(r,f) and V*(r,t), respectively,
via the £ mapping:

A @ nH=0V(Er,D)},
A (@)= V*(,0)}.

(9.3a)
(9.3b)
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We have the following relations [see Eq. (1.3.36)] for
any mapping Q of the class that we are considering:

ir= {21}, dk‘rzg{zk*}_ (9.4)

If we make use of (9.4) and the linearity of the mapping
operator, it is evident from (9.2) and (9.3) that?*

By 12 1
V()= <E’> :[; :’/_kzkseks expli(k-r—wit)], (9.5a)
V*(I',t) = (ﬁf>1/2 Z ”szs*sks*
L3 ks \/k
Xexp[ —i(k-r—wit)]. (9.5b)

The statistical properties of the quantized field may
be characterized in different ways. Of particular interest
is its description in terms of the normally ordered corre-
lation functions (the normally ordered coherence
functions)

3%n; Xntly oo 7xn+m)
( )(xn)A (+)(xn+1) . e

'Aln+m( )(xn+m)> . (9.6)

Here the arguments x,=(74,f.) label various space-
time points and the subscripts 7;, 7,2, .. ., Jn+m, €ach of
which can take on the value 1, 2, or 3, label Cartesian
components. Some of the correlations functions of this
type occur naturally in the analysis of results of photo-
electric correlation and coincidence experiments on the
electromagnetic field.3:10

It is evident at once from the structure of formulas
(9.4) and (9.5) that the correlation function (9.6) may be
expressed in the form

. ,m
Pn F2ree s dniTngtre ey Jn+m( )(xl)xZ)

=, (04,9 () - -

Tmm = (Q(N){H Vi*(®a) H Vap(xﬂ)}>

=TT Vit T Vatel, 0)

where p is the density operator of the field and @@
is the mapping operator for the normal rule of associ-
ation. For the sake of simplicity, we have suppressed
the numerous subscripts and arguments on the left-
hand side of Eq. (9.7). The trace in (9.7) may be ex-
pressed as a phase-space integral by the use of Eq.
(8.13), so that

T m) = /Q)(A)({st},{Zka*})

Xlill Vja*(xa) ﬂ:ibfil Vjﬂ(xﬁ)d2({2k3}) . (98)

% Cf. L. Mandel, Phys. Letters 7, 117 (1963).
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If now we introduce the function?

P(N)[V(l),V(Z), . ,V(n—l—m), X1,%2, . ',xn+m]
~@(T[ o[V~ V@1
=i T o0V () —V (&)1}

_ / BD({z2) {50 I:Im SIV(E) — V()]
Xdz({Z/;s}) )

Eq. (9.8) may then be written in the form

(9.9)

ITm) =/p“")[V(1),V(2),. S V(ntm); a2, . o Xngm |

X I:I1 Vi*(a) ;fI: Vs(8)d2V(1)d2V(2) - - -

a*Vn+m). (9.10)

Equation (9.10) expresses the normally ordered corre-
lation function of the quantized field in a form that is
mathematically identical with that occurring in the
classical stochastic description of the field.26 In general,
pM is, of course, not a true probability. We will call
»¥) a (space-time) quasiprobability distribution of the
quantized field. It is clear that the statistical behavior
of the field is characterized not by a single such quasi-
probability distribution but rather by an infinite se-
quence of them, each successive member of the sequence
having more arguments:

p™LVQA); md, pYLV(),V(2); 21,2,
p®LV(D),V(2),V(3); w1202 ], ..

In principle all these quasiprobabilities may, of
course, be derived from an appropriate characteristic
functional.?’:28

As an illustration of these results, let us determine
the space-time quasiprobabilities, for the normal rule of
association, of a free electromagnetic field in thermal
equilibrium. The density operator of such a field is

(9.11)

25 In (9.9), 8[ V() — V (x:)] stands for the expression
3
IL o[V ()= V™ () PLV; () — V9 (2],
i=1

where V;(") and V;@ are the real and the imaginary parts of the
Cartesian component V; (§=1, 2, 3) of V and & denotes the Dirac
8 function.

26 E Wolf, in Proceedings of the Symposium on Optical Masers
(Wiley, New York, 1963), p. 29.

27 For a brief discussion of the characteristic functional, see
Appendix D or Ref. 10, Chap. IV, and references therein.

28 The method of the characteristic functional to calculate the
correlation functions of the form (A«i(x;)---A%s(x,)) and the
associated quasiprobability distribution functions for the case of
a thermal field has also been employed by E. F. Keller, Phys. Rev.
139, B202 (1965).
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given by

exp(—6H)
Trlexp(—6H)] ’
where the Hamiltonian A is

ﬁ =Z ﬁwkdks*dka )
ks

p= (9.12)

(9.13)

and 6=1/kT, k being the Boltzmann constant and 7°
the absolute temperature. Now by a multidimensional
generalization of the formula (1.6.17), specialized to the
antinormal rule of association (u=p=0, \=—3%) for
each mode, the phase-space distribution function &4,
associated with the density operator (9.12), is the multi-
variate Gaussian distribution

| 24s] 2
B ({210}, {zrs*}) =11 eXp(-—— ), (9.14)
ks wTks Ths
where
7rs=[1—exp(—fwi) 7' —1. (9.15)

The quasiprobability distribution p for the system
under consideration is obtained on substituting from
(9.14) into the integral (9.9). The integral is evaluated

. in Appendix D, and the result is

P(N)[V(l),V(Z), oo ,V(n+m), X1,%25 .« )x’ﬂ+m:|
1

- ,,.acn+m_), detR™|

exp[ — O (R™)-107].  (9.16)
Here R™ is the covariance matrix

Rm‘f SN ((z1a), (00PN UVNE(z1a)), (9.17)

detR™ denotes the determinant of R, and U and U’
are the column matrices given by

(va(1) ) (V1(xr)
V(1) V(1)
V(1) V(1)
V=] : , v= (9.18)
Vi(n+m) Vi(%nim)
Va(n+m) Va(%nim)
(Va(nt+m) ) Vi(%nim) |

Equation (9.16) shows that all the (space-time)
quasiprobabilities of a thermal field are multivariate
Gaussian distributions, so that the quantized field is
described as a Gaussian random process. If we make
use of the moment theorem? for such a process, it

291, S. Reed, IRE Trans. Inform. Theory IT-8, 194 (1962);
see also C. L. Mehta, in Lectures in Theoretical Physics, edited by
W. E. Brittin (University of Colorado Press, Boulder, Colo.,
1965), Vol. VII C, p. 398.
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follows that
Tt inrecsiniinttseeerion ™™ (1,52« + 5005 Tngdy e - +y%20)
=§ Tt P (01,24 1) -+ -
9.19)
(9.20)

T ion 0 (0, %20)

rem=0 if nm,

where >_n stands for the sum over all #! possible permu-
tations of the indices 1 to 7.

In this section we have restricted ourselves entirely
to normally ordered correlation functions and the vari-
ous associated quasiprobabilities. It is clear, of course,
that strictly similar results will apply to correlation
functions ordered in different ways (e.g., the anti-
normally ordered correlations occurring in Mandel’s
theory of quantum counters®’) and that one may intro-
duce the associated space-time quasiprobabilities by
similar formulas. In particular, if the quasiprobabilities
are introduced by formulas analogous to (9.9), for
a mapping whose filter function is of the form

9({aks},{aks*})=exp(>\§ las®), (921

with A<$ (see Appendix A), then one finds that for a
field in thermal equilibrium Egs. (9.16) and (9.17) re-
main valid, with trivial modifications. In place of
(9.16) one now has

P(Q)[V(I),V(Z), s ,V(n+m), X1,%2; . . « :x"+m]

1
- exp[~VI(R®)],

= (9.22)
A3tm)| det R®|

where R® is the covariance matrix,
R(n)=/Q(é)({st},{zks*})go,eolfdz({zks}) ) (9'23)

and U and U’ are again the column vectors (9.18). The

phase-space distribution function @ that occurs in
(9.23) is now given by theJfollowing generalization of

formula (9.14):
- 1 \zksl2
B (o) (509) =TT — expl = ), (929

ks TTks Tks

where
Ths= [1 -—exp(—-—@wk):}_l—)\ —% .

One may readily show that the covariance matrix
(9.23) is positive definite.

It is seen that both the space-time quasiprobabilities
as well as the phase-space distribution functions, given
by (9.21) and (9.24), respectively, are multivariate
Gaussian distributions with positive-definite covariance
matrices. Hence these quantities are true probabilities.
It seems remarkable that the c-number representation,

(9.25)

# L. Mandel, Phys. Rev. 152, 438 (1966).
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via any rule of association characterized by the mapping
function (9.20) with A<% (which includes the normal,
antinormal, and Weyl rules), of a quantized field in
thermal equilibrium leads to a statistical description of
the field as a true classical stochastic process. Thus the
usual arguments® (based on the noncommutability of
conjugate operators) as to why the various ¢-number
distribution functions of a quantum system cannot be
true probabilities seem to oversimplify the problem.

APPENDIX A: PROPERTIES OF Q@ EQUIVALENT
OF DENSITY OPERATOR WHEN
Q (a,0*) =exp(Qae*) A>3

In this appendix, we study the properties of the Q
equivalent of the density operator 3 when the rule of
association is characterized by the filter function

Qa,a*) =exp(haa®) (\213), (A1)
where \ is real.
According to Theorem III [Eq. (1.3.25)]
F,®(z5%) =7 Tr[pA (5>(z—d, *—adh], (A2)

where A®(z—4, z%—at) is given by Eq. (I.3.26) and
Eq. (A1), i.e.,

, 1 .
A®(z—a, Z*——(’iT)=——/6Xp(—)\aa*)D(a)

2

Xexp[—(az* —a*z) Jd%. (A3)

Here D(a) = exp(ad’—a*a) is the displacement operator
for the coherent states [Eq. (I.B4)]. Since Q(a,®),
given by (Al), satisfies the condition Q*(—c, —a*)

=Q(a,a*), it follows from (I.4.12) that A® is a Her-
mitian operator. Since § is a density operator, it is
necessarily a Hermitian, positive-definite, bounded
operator. In fact every p belongs to operators of the

trace class. Because p and A are Hermitian, it follows
that F,® is real [see (1.4.15)7], i.e.,
[F, @ (2,5%) *=F, P (z,5%). (A4)

The mapping A operator (A3) has a number of inter-
esting properties. If we make use of the Baker-Haus-
dorff identity, we immediately see that

A® (50—, 50*—a")

—Qm {i / exp[ —(A\+3) || 7]

T2

Xexpla(z*—z0*) —a*(z ‘“Zo)]}

1 l 2z —Zol 2
=0 {———exp| — :”
() O+
31 See, e.g., E. C. G. Sudarshan, in Lectures in Theoretical Physics
(Benjamin, New York, 1961), Vol. II, p. 143.

(AS)
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We also have the identity?2
exp[ —B(&"—20*)(6—2) ]

= QM {exp[ —[z—20|*(1—¢#)1}. (A0)
From (AS) and (A6) it follows that, for A>3,
A@(z—g, z*—al)
R
= :(;\—i—%) expl:(af-—z)(a,—z) ln}\ %] (AT)

For A=1, the filter function (A1) is that for the normal
rule of association and (AS) reduces to

A (30—, 50" —a") = 2V {(1/7) exp(— |s=5] )}
=/ |z}l , (A8)

where [z0) is a coherent state. Equation (A8) is in
agreement with the formula (I.3.40), obtained by a
more direct argument.

It should be noted that if we make use of the property
(I.B9) of the displacement operators, (A7) may be
expressed in the form

A® (z—g, 7% — ") =[1/7(\3)1DE) (0)33D1(z), (A9)

where
o=(0\—%)/(\32). (A10)
It is evident that D(z)|n) is the eigenfunction of A@
with the eigenvalue [1/7(\43)]e™, i.e.,
I A®G—d,5*~d)DG@) |n)=ED(E)|n), (AlD)
where
E,=[1/7(\+3%)]o". (A12)
For A=1, the corresponding eigenvalue problem is
AD(z—d, 2% —a")D(z)|0)=(1/m)D(z)]0). (A13)

It is thus seen that when A>3, all the eigenvalues of
A® (z3—a, z*—a") are non-negative. Hence we conclude
that when the filter function Qa,a®) is of the form
exp(haa®) and if N23%, then the mapping A operalor
A® (z—a, 2%—a") (for mapping & antireciprocal to )
is a non-negative definite Hermitian operator. In our sub-
sequent discussion the limiting case A=% will be in-
cluded, since the appropriate formula for this case may
be obtained by the formal substitution A=4%, n=0.

Next we will show that A® (z—d, z*—d") is a bounded
operator. From Egs. (Al11) and (A12), we obtain the
following expression for the norm of A®:

[A® (z—d, z*~a)D() )] .
=[1/r(\+HTe"[DE)[n)]. (Al4)
It is obvious that
[D(z)|m)]|*= (n| D}()D(z) |m)=1,
3 This identity follows from the result [Eq. (1.6.42) with
foy=e#n]
exp(—Bdtd) =™ {exp[ — |z[*(1—¢7#)]},

and the property (I.B9) of the displacement operator for the
coherent state and the linearity of the mapping operator @©.
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and hence (A14) reduces to

1a®(z—a, 2*—a")D(z) [m)l| =[1/7(\+3) T
Since according to (A10), o<1, it follows that

[A®(z—a, 2*—a"D(z) | m)l| <1/r(+3) . (A15)

This inequality shows that A® is a bounded operator.
Next we show that F,®(z,2*), as given by (A2) and
(A3), satisfies the inequality

0<F,®(z2%<1 for all z,2*. (A16)

The non-negativeness of F,®(zz*) for all z and z*
follows immediately from (A2) and the fact that both
p and A® are positive-definite operators. To prove that
F,® does not exceed unity, we combine Egs. (A9) and
(A2) and obtain the following expansion for F,®:

F®(5%) = ‘% (| D@D |m).  (ALT)

(\+3)
Let us express p in the form

ﬁ=2):, vl , (A18)

where p) are the eigenvalues and [¢») are the corre-
sponding eigenstates of 5. Since 0< pa< 1, we find that

Py () = er% 5 T oD@l DO )
< (x—}l-%) EO N OIE
1 ®
"o
=1,
and hence

F,®(z2z%)<1 for all z,2*.

If we employ the method of Ref. 33 (where the result
is established for the special case A=3%), one can derive
the following important result.

The function F,®(z,2*), regarded as a function of two
real variables x and y (z=x4-1y), is the boundary value of
an entire analytic function of two complex variables a and
B (x—a y—B).

APPENDIX B: PROOF OF THEOREM V
(PRODUCT THEOREM), EQ. (3.3)

Let F1¥(z,2*) and F2¥(z,5*) be the @ equivalents
of two operators Gi(d,8") and Gi(d,d"), respectively.
According to Theorem III [Egs. (1.3.25) and (1.3.26)]]

(1;36% L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
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and Eq. (1.3.6), we have

F;®(5,5%) = / Qe,0®)gi(a,a*) explaz* —a*z)d?a, (B1)
where
gilaa®) = (1/m) Te[G;D' ()] (5=1,2), (B2)

D(a) being the displacement operator for the coherent
state |a) [Eq. (I.B4)]. On the other hand, we have
from the “operator Fourier integral theorem” [Eq.
(I.C1)7] the following representation for G;:

68,01 = / Gaa®)D@da (j=1,2), (B3)
where g;(a,e®) is defined by (B2). It follows that
GiCam / / g1t g (B,89D@D ) dad?B.  (BY)

Now according to (I.B10),
D(@D(B)=D(a+p) expl}(ap*—a*8)],
so that (B4) reduces to

Ga(0,8")Gal0,0") = / / ex(esa®) 28,85 D (at-)

Xexp[ 3 (af*—a*B) Jd%d’8.
We now use the fact that
Qat-8, a*+-B*)Q(a+B, a*+6%)=1

to rewrite (B5) in the form

(B3)

61@2=//gl(a,a*)gz(ﬁ,ﬂ*)ﬂ(a+ﬁ,a*-i—ﬁ*)

X exp[ 3 (af* —a*8) J[2atB, a*+5%)D(a+6)]

Xd%d?’8. (B6)

f(Zl,Z1*; 22’22*)=//gl(a,a*)gz(ﬁ,ﬁ*)ﬁ(a—}—ﬁ, o*+8%)

AGARWAL AND E. WOLF 2

Next we make use of Eq. (I.3.17) to rewrite (B6) as

61@2=//g1(a1a*)g2(6,6*)

X Qe+, «*+B%) exp[3(aB*—a*B)]
X[@fexp[ (a+B)z* — (a*+8%)z]} Jd*ad’B.

In view of the linearity of the mapping operator €,
Eq. (B7) may also be expressed in the form

(B7)

GiGo=Q 4 //g;(a1a*)g2(ﬁ,6*)
X Q(a+8, a*4-*) exp[5(af*—a*B)]
Xexp[ (e+8)z*— (a*+B%)z]d*ad’8; . (B8)

Let F12®(z,5*) be the @ equivalent of G1(4,d")G2(4,d"),
ie.,

G1(3,0")Ga(8,d") = Qf F1,® (2,2%)} . (BY)
On comparing (B8) with (B9), we see that
Fm(m(Z,Z*)=//31(a,a*)g2(ﬁ,ﬁ*)
X+, a*+%) exp[5(af*—a*B)]
Xexp[ (a+8)z* — (a*+B%)z1d%d?3. (B10)

Now we express Fi12®(z,2%), as given by (B10), in
terms of F1®(z,2%), Fo®(3,2*), and their derivatives.
For this purpose we note that (B10) may be expressed
in the following form:

(B11)

FlZ(Q) (Z;Z*) = f(zl,zl*; Zg,Zg*) { 21=29=2; 2] *szz *=z%,

where

Xexp[3(af* —a*B)] explazi* —a*s1) exp(Bzo* —B%25)d%d?8  (B12)
= f / [g1(e,0™)Qe,0*) explazi® —a*z1) J[g2(6,8%)2(8,8*) exp(Bzs* —B*22)]

X a,a*)Q(B,6*)2a+B, a*+5*) exp[ 3 (af* —a*B) Jd%ad?s.

(B13)

In passing from (B12) to (B13), we have in appropriate places multiplied and divided by the product Q(a,a™®)

X Q(B,8%). Is is easily seen that (B13) may be written as

1¢] a a o\ _/ 0
s - (e
921 021 O0z9* 029 azl*

a lé] a )
822*’ dz1 039

Xexp[l(—a————a— - ii)} | [staattteat exploast—atsn]

2\0z1 922  0z1* 022

X [g=(8,8%)2(8,8*) exp(Bzz* —B*z2) Jdad’B. (B14)
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Here we have made use of the identity
exp(a) exp(az*—a*z)=exp(9/9z*) explaz*—a’s).
On making use of (B1), Eq. (B14) simplifies to

S(z1,21%; 22,22%) = exp(A12) U2 P F1 @ (21,2, %)
X F2®(22,22%)

where the operators Asp and Uz are defined by
170 0 Jd 9
el
2\0z1 322* 321* 032
and

a d d 9
A
62.'1* 321 322* 622

xs"z( ° 2 —i——a—). (B17)

dz1* 622*’ dz1 029

(B15)

(B16)

Finally, on combining (B11) and (B15), we_obtain the
desired product theorem [Eq. (3.3)].

APPENDIX C: DERIVATION OF EQUATION OF
MOTION (7.11) FOR GENERALIZED
CHARACTERISTIC FUNCTION

It is evident from the definition (7.2) of the general-
ized characteristic function C® for { mapping and
from the Schrodinger equation of motion (4.6) for the
density operator that

dC@®
ih
ot

=Tr[mf’£fz{exp[—(az*—a*z)]}]

=Tr[ApQ{exp[ — (az*—a*z)]}]

—Tr[ ApO{exp[ — (az*—a*z)]}] (C1)
or
ihdC @/ at= Q(a,e*) Tr[HpD ()]

—Q(ee®) Tr[pADY ()], (C2)
where D(a) is the displacement operator (I.B4) for the
coherent states. To simplify the right-hand side of
(C2), we make use of the operator convolution theorem

discussed in Appendix C [Eq. (I.C4)] of I. It follows
from this theorem that

T AD (@)1= / ¢n(B,8%)CT (@B, a* —BY)

Xexp[ —3(ef*—a*B)Jd8, (C3)

where

: .
gu(8,6%)= —Tr[HD" () ].

™

(C4)

Next we use the identity
Q(—8, —61)0(B,8%)=1
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and the relation
CM(a,a*)=Qe,a*)CP(a,a*),

which follows from Eq. (7.7), to rewrite Eq. (C4) in the
form

T ApD ()] = / [9(—8, —69gu(8.69)]
XC®(a—p, a*—B*)2(B,6%)Ua—B, a*—B%)
Sexpl—3(eB*—a*8) %8 (CS)

On substituting for Q(—8, —B*)gu(8,6*) in terms of
Fr® [Egs. (1.3.25) and (1.3.26) ], we obtain

1
Te D! ) = — / / Fa® (2, 24)CO (o B, o* %)
™

Xexp[ — (Bz* —B*2) J3(8,6*)2a—B, a*—B*)
Xexp[ —3(af* —a*B) Jd*8d’z. (CO6)

We also have the obvious identity that follows from
Taylor’s expansion of C®(a—g, a*—p*) around e, o™*:

d i}
CO(a—p, a*—6¥) =eXp(—ﬂ—— —ﬂ*——)
da da*

XCD(a,0®). (CT)
From (C6) and (C7) it follows that
1 .
LD @]= [ [Fa®)
™
Xexp[B(za* —3z%) —p*(3a—2)]
XQ(B,f)’*)Q(OI'—,B, a*_ﬁ*)
Xexp(—B8/da—B*3/da*)C D (a,a*)d?*Bd%. (C8)

Now it can be shown by straightforward but long
calculations that (C8) may be rewritten in the form

T AsD"(e)]

/9 3 3 3
=Q< , — ————>Q< — , a* 4 ——-)
dag* day. dar* day

9 4 9 0 B
Xexp(—— _— ———)FH(Q)(OU,al*)

8011* 8042

XCW (0‘2:0‘2*) I a1=a/2; az=a; a1 *=a*/2; a2 =a™-

(C9)

Further, proceeding in a manner strictly similar to the
one which led to (C9), we find that

Tr[pAD" ()]

W E) 9 d
o= Dhofen L ar )
aal* (90[1 60[1* 6011

Jd a d I\ .
SSVAR I L VT

aal* 8042

(C10)

XC D (az,as*) I a1=—a/2; az=a; a1*=—a*/2; a2 " =a ™"
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On combining (C2), (C9), and (C10), we obtain the
desired equation of motion for the generalized charac-
teristic function C®:

ihaC® /dl= (I, B —I_@)C@ | (C11)
where
,C® = exp(Ass’) DF 5 @ (@,01%)

XC(Q)(OQ,O!Z*; If) l ar—al?, ay—a; ay *_g */2‘%*:“* s (C12a)

and

FN_C@ = exp(Am/) L) (Q)FH (6) (al,al*)
XC‘“’(az,az*; ) l ar=—a/2; ay=a; a1 *=—a/2 ay*=a’+ (C12b)

The operators Azs’ and V@ are defined by the formulas

a 9 Jd 9
A = <—— - - ““)
6a1 60{2* 6011* 3062

(C13)

1
2

AGARWAL AND E. WOLF 2

and
VD =Q(o,®)
/9 3 9 E)
xsz(——, — —-——>Q<oz— —— o —) (C14)

day* day day day

APPENDIX D: CHARACTERISTIC FUNCTIONAL
OF QUANTIZED FIELD AND PROOF OF (9.16)

The space-time quasiprobability of a quantized field,
for the normal rule of association, was defined by the
first expression of the right-hand side of Eq. (9.9), viz.,

P[N][V(1>,V(2), .. 1V(M): X1y - '7xM:]
M
=(Q™{ I_I1 SLV(E)—~V(=)1})). (D1)
If in (D1) we express the Dirac & function in the form

of a Fourier integral, we obtain the following expression
for pM:

POV, V(©2),...,.V(M); x1,.. .,xM]=(1r—>3M /<S2<N){ iliexp{i[U(i)-V*(x.-)+U*(i)-V(xi)]}]>

X.Ifll exp{—iLUG)- V¥@)+U*@)-VOBEUD)---2UM). (D2)

The expectation value on the right-hand side of
(D2) may conveniently be expressed in terms of the
characteristic functional

e<N>[W(-)]=<9<N> {expl:'i / W) V¥(x)de

+i/W*(x)-V(x)dx]} >, (D3)

where W(x) is an arbitrary vector function of the
space-time variable x= (r,#). Let us substitute for V(x)
and V*(x) the series expansions (9.5a) and (9.5b). We
then obtain the following expression for the charac-
teristic functional C™):

e(N)[:W(.)]

=(Q®™{exp[i %: (Wrszis*+Wis*21:)1}),  (D4)

where

1 she\Y?
Wis= —‘—(—> fW(r7t) < €ps™
L32\

Xexp[ —i(k-r—wit) Jd¥dt. (D5)

We may express the characteristic functional @) as

a phase-space integral by applying to (D4) the identity
(8.13). The result is

e IW(-)]= f B ({21, {520%))

Xexp[i 3, (Wisans™ +Wis*zrs) 1d2({z1s}) .

ks

(Do)

From the characteristic functional, all the statistical
properties of the quantized field may be derived. For
example, the normally ordered correlation functions
I'»m of the quantized field, defined by Eq. (9.6), may
be obtained from the formula

(=) e IW ()]

I‘il,h ----- .’in«)-m("'m)(xl; v %y Xnglye . 'yxn+m) =

, (D7)

SW s (1) -« - SW 3o (20) W s * (Xns1) - =+ W s ™ (Fnm) | w0
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where 6/6W(x) denotes the functional derivative.?
Further, we see from (D2) and (D3) that the space-
time quasiprobabilities may be expressed in the form

1
POTY(),... V(s sy - ytar] = — / OVLU(-)]

M

Xexp{—i >__§' [U*()-VG)+UG) - V*() )
XEU(1)---dUM), (D8)
where

Uw)= g U@)s® (x—x). (D9)

We will now derive with the help of the character-
istic functional an explicit expression for the space-
time quasiprobabilities for an electromagnetic field
that is in thermal equilibrium at temperature 7. We
have from (D6) and (9.14)

o [ {12

Xexpli 2 (Wiszrs™+Wis*zxs) 1d*({z1s})
ks

=exp[—2 7he| Wis| 2], (D10)
ks
where, in accordance with (9.15),
Tre=[1—exp(—6wz) ] 1—1, (D11)

and §=1/kT. It is clear from (9.14) that 7, is the vari-
ance of the distribution 4,

Tka=‘/‘Q(A)({st},{st*})st*stdZ({st}) . (D12)

From now on we will denote by { )p.s. the phase-space
average with respect to the distribution function ®4), so
that (D12) may be written as

(D12/)

Ths= <zks*zks>p.s. .

3 For the definition of the functional derivative, see, e.g.,
R. J. Glauber, in Quantum Optics and Electronics, edited by
C. deWitt, A. Blanden, and C. Cohen-Tannoudji (Gordon and
Breach, New York, 1965), p. 65.
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It follows from (D10), (DS5) and (D12’) that
@(N’[W(')]=6XP{-//([W(xl)'V*(xx)]
X[WH*(x2) -V(xg)])p_s,dxldm} . (D13)

If we choose for W(x) the function U(x) defined by
(D9), we obtain the formula

eWU()J=exp(~L T (UG- V¥()]
XLU*()- V(&) Do} (D14)

It will be convenient to introduce? the column
matrices

(V2(1) ) (Va(xr) )
V(1) V(1)
V(1) V(1)
V=] : , U'=|: s (D15)
V(M) Vi(xar)
Vz(M) Vz(xM)
\Vs(M)J Vg(xM),

and the column matrices U defined in a similar way as
the column vector U, with V()’s replaced by U(:)’s.
The expression (D14) for @™W[U(-)] may then be
written in the compact form

CW[U(-)]=exp(—UWR™),  (DI6)

where
R = ("0, .. (D17)

We now substitute from (D16) into (D2) and obtain
the following expression for the space-time quasi-
probability p¥:

?(N)I:V(l),. . ,V(M), X1y« .,xM]

1
=— / exp(—UtRML) exp[ — (WD) ]
" XAU)---d2Um). (D18)

The integral on the right-hand side of (D18) is well
known35 and leads to the following expression for p¢¥):

prv exp[ — VN (RW)-10], (D19)

7| detRD |
This is formula (9.16).
3 For such identities involving the quadratic form, see, e.g.,

K. S. Miller, Multidimensional Gaussian Distributions (Wiley,
New York, 1964), p. 15.



