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In Paper I of this investigation a new calculus for functions of noncommuting operators was developed,
based on the notion of mapping of operators onto c-number functions. With the help of this calculus, a
general theory is formulated, in the present paper, of phase-space representation of quantum-mechanical
systems. It is shown that there is a whole class of such representations, one associated with each type of

mapping, the simplest one being the well-known representation due to Weyl. For each representation, the
quantum-mechanical expectation value of an operator is found to be expressible in the form of a phase-space
average of classical statistical mechanics. The phase-space distribution functions are, however, not true
probabilities, in general. The phase-space forms of the main quantum-mechanical equations of motion are
obtained and are found to have the form of a generalized Liouville equation. The phase-space form of the
Bloch equation for the density operator of a quantum system in thermal equilibrium is also derived. The
generalized characteristic functions of boson systems are dehned and their main properties are studied.
The equations of motion for the characteristic functions are also derived. As an illustration of the theory, a
generalized stochastic description of a quantized electromagnetic 6eld is obtained.

I. INTRODUCTION

'N Paper I of this investigation' (hereafter referred to
~~. as I) we developed a new calculus for functions of
noncommuting operators. This calculus is based on the
notion of mapping functions of operators onto functions
of c-numbers and vice versa. YVe studied in detail a
class of mappings, each member of which is character-
ized by an entire analytic function of two complex
variables. We have shown that the most commonly
encountered rules of association between operators and
c-numbers (the Weyl, the normal, the antinormal, the
standard, and the antistandard rules) belong to this
class and are, in fact, the simplest ones in a clearly
de6ned sense. We have also shown that the problem of
expressing an operator in an ordered form according
to some prescribed ordering rule is equivalent to an
appropriate mapping of the operator onto a c-number
space.

In the present paper we obtain, on the basis of this
calculus, a general theory of phase-space representations
of boson systems. There is a whole class of such repre-
sentations, one associated with each type of mapping.
In Sec. II we show that the quantum-mechanical
expectation values may be expressed in the same
mathematical form as the averages of classical statisti-
cal mechanics. The distribution functions, however,
are not true probabilities in general, but can, neverthe-
less, be used with great advantage as an aid in calcu-
lations. In Sec. III we discuss the mapping of the
product of two operators. In Sec. IV we derive the
phase-space form of the main quantum-mechanical
equations of motion. All these equations are found to
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have the form of a generalized Liouville equation.
Some special forms of these equations are discussed in
Sec. V. In Sec. VI we derive the phase-space form of the
Bloch equation for the density operator of a system in
thermal equilibrium. In Sec. VII we define the general-
ized characteristic functions of a boson system and
study their main properties. The equations of motion
for the generalized characteristic functions are also
obtained. In Sec. VIII we outline the generalization of
the theory to systems with more than one degree of
freedom. As an example of the theory we discuss in
Sec. IX the stochastic description of a quantized electro-
magnetic field.

Our generalized phase-space description provides a
new representation of boson systems, which closely
resembles classical statistical mechanics and the theory
of stochastic processes. Numerous results previously
obtained by specialized techniques follow logically as
special cases from our general formulation.

II. QUANTUM-MECHANICAL EXPECTATION
VALUES AS GENERALIZED
PHASE-SPACE AVERAGES

We will now mak. e use of the calculus developed in
the first paper of this series to show that it is possible
to express quantum-mechanical expectation values in
the same mathematical form as phase-space averages of
classical statistical mechanics. Ke will see that there
is an in6nite number of ways of doing this, one for each
rule of association Q.

To begin with, we will express the trace of the product
of two operators Gi(d. ,a") and Gs(d, at) in terms of the
c-number equivalents of the two operators. Let 0 be
any linear analytic mapping, whose Alter function
Q(n, n*) has no seros, ' and let 0 be the mapping anti-
reciprocal to 0, i.e., the mapping characterized by the
filter function n(n, n*) = [0( n, —n~) j—'. Let&it"'(~, ~ )

2 This assumption will be retained throughout this paper.
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be the 0 equivalent of Gi, and Fs&"&(z,s*) the 0 equiva-
lent of Gs. Then, ' according to Theorem III [Eq.
(I. 3.25)j,

Fi&"&(si,si*)= v- Tr[Gth&"&(st —tt, si*—at)j, (2.1)

Fs&"&(zs,ss*)= v. Tr[Gsh&"&(ss —a, ss*—at)$, (2.2)

tical mechanics for the average, denoted by ( )v. , of
Fg("' with respect to the phase-space distribution

function C ("~. If we denote quantum-mechanical expec-
tation values b angular brackets without a suKx, we
may express (2.9) in the compact symbolic form

where 6'"& and 6'"~ are the corresponding mapping 6
operators defined by Eqs. (I.3.14) and (I.3.26). The
inverse relations are given by Theorem II [Eq. (I.3.13)j:

Gi(a, at) = Fi&"'(st)si*)6&"'(si—a, si*—at)d'zi, (2.3)

G2(~)a ) F2 (zsps )~ (zs ay zs )d zs (2 4)

Let us now take the trace of the product of G~ and
Gs expressed by Eqs. (2.3) and (2.4) ~ If we inter-
change the order of the trace operation and the inte-
grations and make use of the relation (I.4.8), viz. ,

Tr[tI&&"&(z, —a, si*—at) 6&o&(ss—a, s,*—at) j
= (1/v. )b &'& (si —sz), (2.5)

we obtain the following theorem.
Theorem IV. The trace of the product of two operators

Gi(a, a~) and Gs(a, tt ) is exPressiblein the form

1
Tr(GtGs) = — Fi&"'(s,s*)Fs«&(s,s*)d's, (2.6)

In spite of the formal similarity just noted, the right-
hand side of (2.9) cannot, in general, be identified with

a true phase-space average. For the function C (") may
not possess all the properties of a probability density;
it is not necessarily non-negative, 4 ' and it may become
singular. It cannot therefore, in general, represent a
true statistical distribution function.

If we combine Eq. (2.8) a,nd Eq. (I.3.25), we obtain a

more explicit expression for C '"):

C '"&(zp,sp*) =Tr[ph&"&(sp —a, sp* —at)7. (2.8')

Further, if we make use of the relation (I.3.21), which
expresses the mapping 0 operator in terms of the Dirac
5 function, we obtain the interesting formula

C'"'(zo zo*) = (~I(b"'(zp —z) )).
We see that the distribution function for 0 mapping is
the expectation value of the operator onto which the
Dirac b function is mapped by 0 mapping. '

This forlnula corresponds, in a sense, to the following
expression of classical probability theory:

P(x) = p(xp) b(x —xp) dxp

cohere the c number -equivalents Fi&"&(s,s*) and F,&"&(s,s*)
are given by Fqs. (Z.I) and (Z.Z), resPectively.

Consider now a quantum-mechanical system in a
pure or mixed state, characterized by a density oper-
ator p, and let G(a,a") be some dynamical variable of
the system. If we set Gi ——G and Gp=p in (2.6), we
obtain the following expression for the expectation
value of G:

=(3(x—xp)).

g, «&l(s z*)dsz —1 (2.11)

Finally, we note that C(") is correctly normalized;
for if in (2.9) we take for G the identity operator 1, then
since Fo&"&=1 and Tr(p) = 1, we obtain

Tr(pG) = — F,«»(s)s*)Fg&"&(s,s*)d'z (2.7)

where, of course, F„(")is the Q equivalent of p and Fg(")
is the 0 equivalent of G. We see that the choice of 0 in

(2.7) is quite arbitrary It will be co.nvenient to set

4 '"&(s,s*)= (1/z-)F p
&"&(s,s*) .

Then (2.7) becomes

(2.8)

Tr(t&G) = C &»(s,s*)F,;&"&(s,s*)d's. (2 9)

The integral on the right-hand side of (2.9) is of the
same form as the phase-space average of classical statis-

C

' Equations prefixed by I will refer to equations of Ref. 1.

A c-number function such as 4 (") which has some, but
not all, of the attributes of a probability density and
which may be used for the computation of expectation
values by means of integrals of the form (2.9) may be

4 Cf. M. S. Bartlett and J.E. Moyal, Proc. Cambridge Phil. Soc.
45, 545 (1949).' An example of a phase-space distribution function, which is
non-negative for all values of its argument is provided by the
c-number equivalent of the density operator for the normal rule of
association, i.e, , the phase-space distribution function for anti-
normal mapping. This distribution function corresponds to the
choice 0 (n,n*) =exp (-',ao.*).In Appendix A, we show that there is a
whole class of 0 equivalents, namely, those corresponding to the
class of filter functions Q(n, n*) =exp(~nn*), ) ~&&, for which the
phase-space distribution functions are non-negative.

' In a recent interesting paper M. Lax [Phys. Rev. 1'72, 350
i1968lg also introduced a class of generalized phase-space dis-
tribution functions. He defined them as the expectation values of
the Dirac 8 function (with operator arguments) when this func-
tion was expressed in a "chosen order. "
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said to be a quasiprobability or a generalised distribution
function. In the past such functions have been frequently
used in special cases as aids in calculations, the oldest
one being the Wigner distribution function~; it is nothing

else than our function C(") for the special case of the
Weyl rule of association.

Since according to (2.9) the function C &"&(s,s*) is the
weighting function in integrals which contain the 0
equivalents of the operators 6, we will refer to C'")
as the (generalized) distribution function for 0 mapping
(not for 0 mapping). Of course, since the choice of 0 in
(2.9) is quite arbitrary, we may, in particular, write in
place of (2.9)

Tr(PG) = C &"&(s,s*)Fg&t)&(s,s*)d's. (2.9')

g&"'"&(, *)=g'"'")(d,")I.- ..t- . (2.14)

It follows from (2.12) and (2.13) that

F tt)(t)&( tc) g(t)(n&( a) (2 15)
' E. %'igner, Phys. Rev. 40, 749 (1932).

See, e.g., L. Mandel and E. Wolf, Rev. Mod. Phys. 3'7, 231
(1965); see also R. J. Glauber, Phys. Rev. 130, 2529 (1963).

The expectation value of an operator G is now expressed
in terms of the (generalized) distribution function for
0 mapping.

We have now generated a whole class of generalized
distribution functions associated with a given state of
a quantum-mechanical system, each such function
being associated with a particular choice of mapping.
It seems worthwhile to stress once again that in evalu-
ating the expectation value of an operator G by means
of the "phase-space integral" (2.9), the c-number
equivalent Iiz of G and the generalized distribution
function C are obtained from G and p via mappings that
are mutually antireciprocal. Only in the special case of
Weyl's mapping (which is self-reciprocal) will the two
associated mappings be of the same kind.

Often one wishes to evaluate the average of an
operator which is ordered in some particular way, e.g.,
normally ordered Geld correlations in the quantum
theory of photoelectric detection. ' In other words,
G(d,dt) is given in the form g&u'"&(d, dt) where g&""'&

is in an ordered form I see Eqs. (I.2.14) and (I.2.15)j for
some particular rule Q('~. In such a case it is convenient
to map G onto the phase space by means of the mapping
0&'&. We then have (with On&'& being the mapping inverse
to 0&'&)

F &t&'"&(s s*)= 8&'&(G(d,dt)}
=8'"fg'"'"&(d,")}. (2»)

In particular, we see from Kqs. (I.2.13a), (I.2.13b),
and (I.2.13c), and from the linearity of the mapping
operator, that if 0(') represents the normal, the anti-
normal, or the Weyl rule of association, then

8"'fg'"'"'(d, dt)}=g'"'"'(s,s*), (2»)
where

i.e., the c nu-mber eclat&alent of the oPerator function G
may be written in the same functional form as G itself.
Using (2.15), one obtains from (2.9) the interesting
result that

TrLPg&"'"&(d,dt))= C &"""(s,s*)g&""'&(s,se)d's. (2.16)

This formula brings into evidence even more clearly
than before the close formal analogy between the
present representation and classical statistical me-
chanics. Specialized to the case when 0&') represents the
normal rule of association, this result is the essence of
Sudarshan's theorem on the equivalence between the
semiclassical and the quantum theory of optical
coherence. ' "

We will illustrate these remarks by a simple example.
Let g'~&(d, dt) be the normally ordered monomial

g (N)(a" g~t) =gtma~n (2.17)

Tr(pdtmdn) @(A)(s sa)semsndss (2.19)

or, more compactly,

(atman) —(semsn) (2.20)

where ( )n., represents the phase-space average with
respect to the generalized distribution function
C&A&(ss*); the function C&A&(ss*) is of course, 1/tr
times the c-number equivalent of the density operator
for the antinormal rule of association.

III. MAPPING OF PRODUCT OF
TWO OPERATORS

In order to determine the phase-space form of the
basic quantum-mechanical equations of motion, we
need to know how the product of two operators is
mapped onto a c-number space. The result, derived in
Appendix 3, is expressed by the following theorem.

Theorem V (Product Theorem). The 0 eguit)alent of
the product Gt(d, dt)Gs(d, dt) of two operators Gt and Gs,
i.e., the c number function Ft-s&"&(s,s ) such that

Gt(d, dt)Gs(d, dt) = 0fFts&"&(s,s*)}, (3.1)

Ft, &"&(s,s*)= O(G, (d, dt)G, (d,dt) }, (3.2)

' E. C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963);
(b) in ProeeeChrtgs of the Sytrtpostttr)t ort Optical Masers (Wiley,
New York, 1963), p. 45.

re J. R. Klauder and E. C. G. Sudarshan, FNrtdamerttats of
Qguntem OPtus (Benjamin, New York, 1968}.

where m and n are non-negative integers. Then accord-
ing to (2.17) and (2.15)

F (tv& (» sa) samsn (2.18)

On substitution from (2.17) and (2.18) into (2.16),
with 0&'& representing the normal rule (E) and 0"& the
antinormal rule (A) of association, we have
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is given by

F12&"'(s s*)= exp(A») '1l12&"&F1&"'(si,si*)
xF2&"'(s2,z2*) I,="=;*.*=*.*=* (3.3)

where Fi&"&(s,s*) and F2&"&(s,s*) are the Q equivalents

of the two oPerators, and A&2 and Lt»&"& are the deaf'erentiat

operators defined by p =p. (3.11)

Kith the help of Theorem V, we may immediately
write down a necessary and sufhcient condition for the
distribution function C&"&(s,s*) to represent a pure
state. The density operator p of a pure state satisfies the
condition (which is both necessary and sufficient)

1 8 8 8 8
cx12

2 BS1 BS2 BZ] BZ2

On taking the 0 equivalent of this equation, we obtain
(3 4) the relation

p g(~) —p (~) (3.12)

B B B
xQI +

(Bsi* Bs2* Bsi

Now according to Theorem V,

8
~ ~

~ ~

(3.5) F„&"i(s,s*)= exp(A») %12&"&F, &"i(si,si*)
XF &ai(„„)l. . . , . ... ,*. (3.13)

In (3.5) Q(&2,P) denotes, again, the filter function for
mapping reciprocal to Q(n, P), i.e., Q(c&,P) =

I Q(n, P)$ ';
Q(n,P) will be nonsingutar, since we assumed that
Q(n, P) has no zeros

The operator 412 has a simple meaning. If we use
the relations s;= (q,+ip, )/(2h) '&2, s,*=

(q, —ip, )/(2h) '&2,

then (3.4) becomes

t'2h B B B B
A» ——

I

4 2 Bqi, Bp2 Bq2 Bpi
(3 4')

i.e., A»/(i'/2) is just the Poisson-bracket operator. "
We note that A.12 is antisymmetric and %,12(") is

symmetric with respect to the two indices 1 and 2:

~21 ~12 y

~12(~)—cU 1(~)

(3.6)

(3.7)

For the important class of mappings characterized by
filter functions of the form given by Eq. (I.3.38), viz. ,

It immediately follows from Theorem V and the rela-
tions (3.6) and (3.7) that the Q equivalent of the
product G, (a,o, )Gi(a, a ) is the c-number function

F21'"'(z,s*)= exp( —&12) tt12 Fl (zl zl )
XF,&"&(s,"*)I.,=.-,=.. .., ., =. . (3.8)

From (3.12) and (3.13) we obtain, if we make use of
relation (2.8), the required phase-space form of the con-
dition for a pure state:

1r exp (h»)'Lt12 &"'4 &"& (zi,si*)C &"& (z2,s2*)
I „=.,=, „"=„*=.

= C &"&(s,s*) . (3.14)

t"=Q' '{exp(—lzl')}= Io)(ol.

In making use of the product theorem (Theorem V) to
derive the phase-space form of the basic quantum-
mechanical equations of motion, one of the operators
will be the Hamiltonian operator H of the system. We
will find it convenient to express the 0 equivalent of
the products HG and GH in more compact form. We
will then write

O{HG}= z+Fg&"&

O~{Gg}= g Fg&&)

(3.15a)

(3.15b)

As an example, one may show on using (3.14) that the
function c &1&'&(s,s*)= (1/2r) exp( —

I
s

I
') represents a

distribution function of a system in a pure state. The
corresponding density operator is

Q(u, P) = exp(tin2+1P2+xnP), (3.9)
where, in accordance with Theorem V,

'll. 12(")=exp —2v
BS1 BS'2

8 8
2p

a~, "' a~,*

f B B B B
(3.1O)

KBsi Bz2 Bsi Bz2

"F.Strocchi, Rev. Mod. Phys. 38, 36 (1966).

the differential operator %,»(") is readily found to have
the following form: @+g exp(~12) tt12 FH (zl zl )

XFg&"i(s2,s2*)
I„„,„*„*,*, (3.16a)

8 Fg&"&= exp( —412) tt»'"'FH'"'(si, si*)
xFg&"'(s2,s2~)

I „„,, „' „', , (3.16b)

F&&"&(s,s*) and Fg'"'(s, z*) being the Q equivalents of
the operators H and G, respectively.
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In this notation the 0 equivalent of the commutator
LB,G)—=8G—G8 evidently is"

0{LB,G$}= (Z,—z )Fg&"&. (3.17)

For mappings given by the filter function of the form
(3.9), i e ,. Q. (,n*) =exp(tznz+vn*s+) nn*), Eqs. (3.16a)
and (3.16b) become

Z Fg'"' FIt&o& ——sr —2v +() ——',)
BS9 BZg

sr* —2tz + () +-z)
032 832

XFg (szps ) ~
zz=zz=z; zz* zz~; =z" =~ (3.18b)

IV. PHASE-SPACE FORM OF QUANTUM-
MECHANICAL EQUATIONS OF MOTION

Ke will now derive the equations of motion for the
c-number equivalents (phase-space representations) of
the time-evolution operator, the density operator, and
of a Heisenberg operator.

zz More generally, let us associate with any two (suKciently
well behaved) e-number functions Fz(z,z*) and Fz(s,z*) the
symbol

(FzFz (Q) —= )exp(zlzz) —exp( —zlzz)$

X ltlz Fz(zl)zl )Fz(zz)z&lz ) ( zz zz l zzzzz z

Evidently, (Pz,Fz~Q) is the Q equivalent of the commutator
LGz, Gz, where Gz ——Q{F,), Gz Q{Pz). It may be sho——wn that
(Fz,Fz Q) is, for each Q, a Lie bracket, i.e., it satisfLes the following
conditions.

(1) A zztzsyzzzrrzetry:

(Fz,PziQ) = —(Fz,PziQ).
(2) Lirieanty:

(Fz,zzzPz+zzzPziQ) =nz(Fz, FziQ)+zzz(Pz, Pz(Q).
(3} J&zeoN z&tezztity:

(Fz, (Pz PzlQ) IQ)+(Pz (Fz,FzlQ) lQ)+(Fz, (Fz PzlQ) IQ) =o.
The ansitymmetry and linearity are obvious from the de6ning
equation of this bracket. The validity of the Jacobi identity may
be established by a straightforward, but long, calculation involv-
ing the Fourier transforms of FI, Fm, and J'g.

In the special case when 0 represents the Weyl rule of associa-
tion, (1/ziz)(Fz, Fz~Q} is the so-called Moyal bracket (J. E.
Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949), Eq. (7.10);
see also H. J. Groenwold, Physics 12, 405 (1946), Eq. (4.38)g
when expressed in terms of z and s* rather than q and p Lace
Eq. (3.4')g. That the Moyal bracket is a Lie bracket was 6rst
noted by T. F. Jordan and K. C. G. Sudarshan, Rev. Mod. Phys.
33, 515 (1961); see also C. L. Mehta, J. Math. Phys. 5, 677
(1964). The importance of the Lie bracket in the structure of
dynamical theories has been discussed by K. C. G. Sudarshan,
in Lectures irI Theoretical Physics (Benjamin, ¹wYork, 1961),
Vol. II, p. 143.

2+Fg&o& =Fit&"& sr —2v +P,+-', )
8S2 ~82

8
sr* —2tz +P,—s) ——

832 882

XFg'"'(szzzz ) ~
zz=zz=z; zl .=Zz*=z ) (3'18a)

8
i&t—O. {U}=O~{HU}.

8$
(4.3)

If F«&o&=0~{U} and Frr&"&=O~{H}are the 0 equivalents
of U and H, respectively, we have at once from (4.3)
and (3.15a)

i hBFg&o&/Bt= 2+Fg&"&. (4 4)

This then is the phase-space form of the Schrodinger
equation (4.1) for the time-evolution operator U. It is
to be solved subject to the initial condition

FU&o&(s,s*; t, to) =1 when t= t&& for all s,s~, -(4.5)

as is evident from Eq. (4.2) on applying the inverse
mapping operator 0 to both sides of it.

3. Schrodinger Equation for Density Operator

If we apply the inverse mapping operator 8 to the
Schrodinger equation for the density operator p, i.e.,
to the equation

i ABp/Bt = LB,t&g, (4 6)

and we use formula (3.17) for the 0 equivalent of
a commutator, we obtain

iItBFz&"&/Bt= (g~ g)Fz&"&. — (4.7)

Now according to (2.8), Fz&"&=zr4&o&, so that Eq (4.7).
may be expressed as the equation of motion for the
phase-space distribution function:

ijtBC &"&/Bt=(Z+ Z)C &»— (4.8)

One can also easily derive equations of motion for
the macroscopic averages (expectation values) of ob-
servables by combining (4.8) with Eq. (2.9).

C. Heisenberg Equation of Motion

In a strictly similar way, we obtain from the equation
of motion for a Heisenberg operator G(tt(t), dt(t)), viz. ,

iMG/dt= $8,Gg+iABG/—Bt, (4.9)

the following phase-space equation of motion for the

"Ke do not display explicitly the dependence of U on a and
a~. Similar abbreviated notation will be used in connection with
other operators considered in this section.

A. Schrodinger Equation of Motion for
Time-Evolution Operator

The unitary time-evolution operator" U(t, t&&) of a
quantum-mechanical system satisfies the Schrodinger
e uation

i AB U(t, t&&)/Bt =H U(t, to), (4 1)

where Il is the Hamiltonian of the system. This equation
must be solved subject to the initial condition

U(t.,t,) = 1 . (4.2)

If we apply the inverse mapping operator O~ to both
sides of (4.1), we obtain the equation



G. S. AGARWAL AN D E. WOLF

where

x(t) = p xt.&(t)
n=O

&n—I

(4.12)

Xt~&(t) = (—i)" dti d)2 ~ ~ ~

0 0

&& Z(t,)Z(t,). Z(t„)X(0) . (4.13)

Q equivalent Fg«&(s(t), s*(t)) of G:

i hdF g «&/dt = (Z—+ 2—)F g «&+i haF g «&/at. (4.10)

We note that the two phase-space equations (4.4)
and (4.8) a.re of first order in time. Since they are
equations for c-number functions they are, in general,
easier to solve than the original equations for the oper-
ators. Each of them is of the form of a Liouville equation

dX/dt= —iZX, (4 11)

where 2 is a diRerential operator that does not involve
differentiation with respect to time. Approximate tech-
niques for solving such equations are well known. '4 If
all the operators are assumed to be in the interaction
picture, the perturbation series expansion of the solu-
tion of (4.11) is

and d~, i.e., when

H =o)atd+ aa'+ t')*at'+ya+ y*at . (5 2)

Here cu, 8, and p are parameters which may depend on
time and co is real.

We will restrict ourselves to the class of mappings
for which the filter function is of the form

Q(u, u*) = exp(pu'+ & u*'+ & uu*) . (5.3)

As we saw at the end of Sec. III of I, the 6lter functions
for the usual rules of associations are of this form.

We will first determine the 0 equivalent PJI(") of the
Harniltonian. Since the Harniltonian is assumed to be
a quadratic function of a and a~, we know from the
general result derived in Appendix E of I that FII'") wig
be quadratic in z and z*. Moreover, it is obvious from
(5.2) that for the special case of the norma/ rule of
association,

Frr ' =o)s*s+as'+ a*s*'+ps+y*s*. (5.4)

To obtain F~(~) for other rules of association, we apply
to (5.4) the connecting relation (I.5.25), which relates
the 0 equivalents for two diferent rules of association,
Vlz. )

In the special case when the "Liouville operator" g is
independent of time, one can immediately write down
the following formal solution of (4.11):

X(t)= exp( —iZt) X(0) . (4.14)
where

a a
F &""«(&&: )=I.„(*,—~P &"&"&(&&*), (55)

as* asi

Jpr(u, u~) =Qt'&( —u, —u*)Q&'&( —u, —u*), (5.6)
However, in practical applications this exact forrnal
solution is of little use and one has to resort to approxi-
mations. For example, if

Z=Zp+eZr, (4.15)

where C is any contour that encloses the real axis.

where e is a small perturbation parameter, then, by
using standard resolvent techniques, '4 one can show that

1 cO

X(t)= — ds e-'*' P (2o—s) '
2' g n 0

&(L—e'er(Zp —s) 'g"X(0), (4.16)

( a a '))

I-sr/—
as*' asi

a282 a2
=exp —

&a
—

& +(}—-', ) —,(5.7)
Bz*2 Bz2 Bz*Bz

and (5.5) becomes

and Qt'&( —u, —u*) = LQ ts& (—u —u*)j ' If Q t'& is the
filter function for the„'normal rule of association, i.e.,
the function exP(sru*u) (see Table III of I) and if
Qt'&(u, u*) is the filter function (5.3), then

V. EQUATION OF MOTION OF DISTRIBUTION Frr«&(s, s*)=exp
FUNCTION FOR SYSTEMS WITH Bz

QUADRATIC HAMILTONIAN

82 82

+(X—',)
Bz Bztgz

yF (N&(s se) (5 8)
We return to the equation of motion (4.8) for the

distribution function C «&(s,s*; t), viz. ,

ihaC «&/at= (Z «' —2 «&)C«&, (5.1)

and consider the form of it in the special but important
case when the Hamiltonian is a quadratic function of 4

"See e.g., P. Rdsibois, in Cargese Iectlres in Theoretical Physics,
edited by B. Jancovici (Gordon and Breach, New York, 1966},
p. 139; see also R. Baleseu, Statistical Mechanics of Charged
Pargples (Interscience, New York, 1963},Chaps. I and XIV.

On substituting from (5.4) into (5.8), we obtain the
following expression for F&r «&(s,s*):

Fg«&(s,s*)= L~s*s+asp+ a*s*p+~s+~*s*j
+L—2trb* —2& a+(}—-', )o)j, (5.9)

and this expression is indeed quadratic in z and z* as it
ought to be.

On substituting (5.9) and (3.18) into (5.1), we obtain
the required equation of motion:
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gC, (Q)

ivy

g2@(Q) g2@(Q) g2@(Q)

+8 +C
Bs' Bz Bs Bs

tion for a system with a quadratic Hamiltonian obeys
the classical equation of motion.

where

(5.10)
Bs*

2 = 2vo) —2)(B*, J3= —2po)+2KB,
C= —4r (5+4@8*, D= —o)s —y*—28*s*. (5.11)

Equation (5.10) has the form of the Fokker-Planck
equation. "However, since the quadratic form involving
the dffusion terms on the right-hand side of (5.10) is
not in general positive de6nite, the solution of this
equation is not necessarily non-negative and may be
singular. This observation illustrates our earlier remark
that in general the phase-space distribution function is
not a true probability.

For the special case of mapping via the Weyl rule of
association ()((=r =X=0; see Table IV of I), C'")
becomes the Wigner distribution function C(~) and
(5.10) reduces to

gy(g ) g@(9') g@(W)
ik———=D———D*

Bt Bs Bs

Also for the Weyl rule of association

(5.12)

BPrr (~)/B» =o)s*+28s+y,
Bp(~)/Bs*= o)s+2b*s*+y*.

(5.14)

On comparing (5.14) with the expression for the coeffi-
cient D in (5.12), we see that

Bprr()r)/Bs= —D"', Bprr(~)/Bs*= —D. (5.15)

Hence, the equation of motion (5.12) for the Wigner
distribution function 4 (~) now reduces to

BC (~) 0I'~(~) 84 (~) BFII(~) BC (~)
N = ——-+ — . (5.16)

8t 8$ t9s Bs 8$

PIr(~) =»*s+Bs'+B*s*'+vs+v*s*—s~ (5 13)

so that

BP (&)/BP — g P (o) (6.4)

where the operator 2+ is again delned by Eq. (3.16a).
On taking the 0 equivalent of (6.3), we see that (6.4)
must be solved subject to the condition

P, (")(s,s*; P) =1 when P=O, for all s and s*. (6.5)

Tile pllasc-space for'lil (6.4) of tile Bloc}1 cqlla'tioll
may be used to determine the partition function of the
system and provides a new way for determining the
density operator of a system in thermal equilibirum.
Since (6.4) has the form of I.iouville s equation, with
time 1 replaced by the variable iP, sim—ilar remarks
apply here as were made at the end of Sec. IV.

Equation (6.4) provides also a new way for determin-
ing ordered forms of exponential operators exp( —PH).
We will illustrate this by determining the antinormally
ordered form of the operator

VL PHASE-SPACE FORM OF BI OCH EQUATION

For a system in thermodynamic equilibrium, the
Nnnormalized density operator p is given by

p = exp( —PB), (6.1)

where H is the Hamiltonian of the system and )8= 1/kT,
k being the Boltzmann constant and T the absolute
temperature. The operator (6.1) evidently satisfies
the differential equation

Bp/BP = Hp, — (6.2)

known as the Bloch equation. '~ It is to be solved subject
to the condition

P=1 for P=o. (6.3)

In a may strictly similar to that used in connection
with the Schrodinger equation (4.1) for the time-
evolution operator, we obtain from the Bloch equation
(6.2) the following equation for the phase-space equiv-
alent F„'Q) of the unnormalized density operator p.

Now according to (3.4) and (3.4'), the differential
operator p = exp( —Po)dt(r), (6.6)

8 8

zh Bs] 882 ~s]. 882

where I is a constant. This operator is of the form (6.1),
with the Hamiltonian

II =Goc Q. (6.7)is just the Poisson-bracket operator. Hence (5.16) may
be written in the form

B@(w)/B1— L@()r) P)r(ir) j~
where [ .]p denotes the Poisson bracket. This result,
which in a somewhat less general form was first obtained
bv Moyal, " shows that the Wigner distribution fune-

Plr'"'(s, s*)=o)(s*s—1) . (6.8)

Now the Alter function for the antinormal rule of
association is given by (3.9), with p=r =0, )(= ——', (see"For discussions of the Fokker-Planck equation, see, e.g. ,

M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. j.'7, 323
I,'1945); or M. Lax, ibid. 3&, 359 (1966).

r6 J. E. Moyai, Proc. Cambridge Phij Soc. 45, 99 (1949).
~7 For a discussion of the Bloch equation see, e.g. , T. Matsubara,

Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).

Now the antinormally ordered form of (6.7) evidently

(5 M~) is o)((M' —1), so that the c-number equivalent Prr(") of
II, for the antinormal rule of association, is
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n=o

(1

apnea)

n

(6.12)

VII. GENERALIZED CHARACTERISTIC
FUNCTIONS OF QUANTUM-

MECHANICAL SYSTEM

In the theory of probability, the characteristic
function, ' i.e., the Fourier transform of the proba-
bility distribution, plays an important role. In particu-
lar, the moments of the distribution may, in general,
be easily derived from it simply by differentiation. In
the present theory we have associated a class of. quasi-
probabilities with a quantum-mechanical system,
namely, the pha se-space distribution functions
C i»(s,s*).By analogy with classical probability theory,
we will now introduce also the corresponding "charac-
teristic functions" Ct"&{u,u*). However, since 4 io&

is not necessarily non-negative, C(") will, in general,
not satisfy the criterion for characteristic functions,
expressed by Bochner's theorem. '" Nevertheless, func-
tions of this kind, which we will call generalized charac-
teristic functions, are of considerable value in appli-
cations of phase-space formalism, as is clearly evident
from treatments of special problems. ""A generalized

"The technique for solving differential equations of the type
(6.10) is similar to the one described in J.H. Marburger, J. Math.
Phys. 7, 829 (1966)."For a discussion of the characteristic function, in the classical
theory of probability, see, e.g. , E. Lukacs, Characteristic I'unctior&s
(C. Grill, London, 1960).

'o For a discussion of Sochner's theorem see Ref. 19 or R. R.
Goldberg, Folrier Truesforws (Cambridge U. P., New York,
1961), Chap. V."J.P. Gordon, W. H. Louisell, and L. R. Walker, Phys. Rev.
129, 481 {1963);J. P. Gordon, L. R. Walker, and W. H. Louisell,

Table IV of I), so that according to (3.18a) and (6.8),

g (&)p (&)

= Frr (s,, s,*—r&/as )F, '"'(s,s ')
l .,=„=...,"=.,*=."

= L,(,*—~/», ) —1j
p q~2&~2 j j zI=z2=z; zI =z2 =z

= o&(s*s 1—s—B/r&s) Fpi» . (6.9)

Hence Eq. (6.4) becomes, in this case,

gF, i~&/gp= —~(s*s—1—sa/as)F, "&, (6.10)

and is to be solved" subject to the condition (6.5) (with
F,&n& replaced by F,i"&). The solution is

Fp&"&(s,s*; P) = exp[go&+(1 —eP")s*s$. (6.11)

Hence, by Theorem I LEq. (I.2.20)j the antinormally
ordered form of the operator p=exp( —Po&ata) is ob-
tained by applying to (6.11) the substitution operator
5(") for antinormal ordering:

exp( —Po&ata) =5&~&f expL9o&+(1 —eP")s*s$)

(1—eP")
&p~ g sensa

characteristic function appears to have been first em-
ployed by Moyal, "for the case of the Weyl correspon-
dence, and played a central role in his important investi-
gation on the statistical foundations of quantum theory.

By analogy with the classical theory, we define the
generalized characteristic function C i"& (u,u*) of a
quantum system for 0 mapping as the two-dimensional
Fourier transform of the phase-space distribution
function C&i"&(s,s*):

C&"&(u,u*) = 4 i"&(s,s*) expl —(us* —u*s) jd's. (7.1)

Equation (7.2) may also be expressed in the form

C'"&(u,u*) = Q(u, u*) Tr(&o expL —(uat —u*a)$),
where in accordance with Eq. (I.3.23),

~l(, *)=lid(, *)j-'

(7.4)

For certain states of the system, and for certain rules
of association, the distribution function. C &"&(s,s*) may
not exist as an ordinary function, and hence the defini-
tion of the generalized characteristic function C'"'
by means of Eq (7.1) h.as to be interpreted with some
care. However, if Ci"& t's defined by the formula (7.4) it
will exist for every linear analytic mapping 0, whose
filter function Q(u, P) has no seros; this follows from the
fact that the operator exp( —uat+u*a) is unitary and
that the expectation value of a unitary operator is
bounded. In fact, this expectation value is bounded by
unity and hence (7.4) implies that

lC'"'(uu*)
l
( l~l(uu*)

I
~ (7.5)

We also note that since by our earlier assumption
Q(0,0) =1 and since Trp=1, Eq. (7.4) also implies that

Cia&(0,0) = 1. (7.6)

ibid. 130, 806 (1963);B. R. Mollow and R. J. Glauber, ibid. 160,
1097 (1967); J. H. Marburger, thesis, Microwave Laboratory,
Stanford University LM. L. Report No. N90 iunpublishedl).

"See also, A. Yariv, IEEE J. Quant. Electron. QE-1, 28
(1965); W. G. Wagner and R. W. Hellwarth, Phys. Rev. 133,
A915 (1964); A. E. Glassgold and D. Holliday, ibid. 139, A1717
(1965).

The integral in (7.1) may be expressed as a trace of two
operators by the use of the relation (2.9'), and one then
obtains the following expression for C("):

Cia (u,u*) = Tr(pa(expl —(us* —u*s)j}). (7.2)

Thus the generalized characteristic function C(") is the
expectation value of the operator that is obtained by
mapping the c-number function exp( —us*+u*s) via
the mapping that is antireciprocal to Q. This result
corresponds to the fact that, in classical theory, the
characteristic function is the average of the exponential
function.

Since according to Eq. (I.3.17)

0{exp(—us*+u*s) ) = Q(u, u*) expL (uat —u*a)—j. (7.3)
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From (7.4) we also obtain at once the following relation
between the generalized characteristic functions
C(""')(n,n*) and C("'")(n,n*) of the same system, ob-
tained via two different mappings 0(') and 0"):

-Q(')(n, n*)-
C(o(&))(n n4) C(o()))(n n4) (7 7)

Q('&(n n*)

In Table I we list the generalized characteristic func-
tions for the normal rule of mapping for some typical
density operators.

The moments of the phase-space distribution func-
tions may be de6ned by the expression

I zo) (z() I

exp (—t&dtu)

Tr exp (—t&at())

1 2

(t(& Ir exp (t(&))(r exp (t(&) I

2%' 0

g(~) (~ ~*)

expL —(nzz~ —a~zz) g
~ (lnl')

exp( —(I) I I')

~z(2rl I)

Table I. The form of the generalized characteristic function for
the normal rule of association for some density operators. Here
L„is the Laguerre polynomial of degree n, J0 is the Bessel function
of the t)rat kind and zero order, and ()z) = (ez —1) '.

(o)— (i)(0)(s szc)s@msndzs (7.8)

If we apply to the right-hand side of (7.8) the identity
(2.9'), we see that

cV ("&=Tr!J)Q(z*"s")j. (7.9)

This formula shows that 3E „(") is the expectation
value of the operator obtained by mapping the c-num-
ber function s™s"via the mapping that is antireciprocal
to Q.

It follows from (7.8) and (7.1) that the usual expres-
sion for the moments of a distribution in terms of the
characteristic function has a strict analog in the present
theory, i.e.,

gm+nC(o) (n n8)
3f „(0)

~(—n) ~(n*)" ---'=z
(7.10)

One may also derive an equation of motion for the
generalized characteristic function. The derivation is
given in Appendix C, and the result is

thaC(")/at= (X,(")—X ("&)C("&, (7.11)

where the operators X+(Q) and X (") are defined by the
formulas

K ("'C("'
= exp(A)z') 'U (")Fr& ("&(ui,ui*,t)

&&C'"'(nz uz* «)I -)=-»;-.=-;-r"=-'~z;-z*=-', (7.»a)

In Eqs. (7.12a) and (7.12b), FII(") is, of course, the Q

equivalent of the Hamiltonian operator. The differential
operator h.~2' is proportional to the Poisson-bracket
operator Lsee the remark in the second paragraph that
follows Eq. (3.5)j.

For the important class of mappings for which the
filter function is of the form (3.9), viz. ,

Q(n, n*) = exp(pn'+ vn*'+ Ann*), (7.15)

( (& ()
'0 ("&= exp! —2&zn — +2vn*

()nr Bnr

() () y
(7.16)

Bni Bu))

and expressions (7.12a) and (7.12b) then become

8
X+("C(o =Fir(" —+2vn*+Xu+

2 BA2

XC(")(nz,nz*,t)!,=,~ ', (7.17)

the differential operator 'U("& defined by (7.14) is readily
seen to be given by

(Q)C(Q)

= exp(ti )z') 'U (")Fir ("'(ni,ni*,t)
(02)+2 p&J I aI =—a t 2; a2=a; aI =-a /2; ag =a ~ (7.12b)

A

~ (o)C(o) =F~(())
2 BG2

Here Aq2' and 'U(Q) are the differential operators defined
as follows:

(7 13)

'0("&=Q(n, n*)Q! —,—
(Bni

( 8 8
&(Ql n—,n*+ — . (7.14)

( Bnr Bnr

&&C (nz&nz*~t) !~z=; z cL (7 18)

Let us consider the special form of the equation of
motion (7.11)for the generalized characteristic function,
when the filter function Q(n, n*) is given by Eq. (7.15)
and when the Hamiltonian of the system is a quadratic
function of (t, and dt, given by Eq. (5.2). On using Eqs.
(7.11), (7.17), (7.18), and (5.9), it may be shown by a
straightforward but rather long calculation that the
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a= 2v(u —2Xt)*, b= —2p(u+2X8,

c=4pl —4@8*, d = —((un+ 2t)*n*) .

equation of motion for C'") is, in this case, Finally, we stress that since C(") and C (") are Fourier
transforms of each other [with the pairs (n,n*) and
(z,s*) being the conjugate Fourier variables), the time

+ ~ 1~n ~C ) ~n
& ( 1 ) dependence of the characteristic function leads to the

time dependence of the 0 equivalent of the density
operator and vice versa.

i ~ LJ

g(t) = ~(t')dt', (7.22)

cu(t) being the (time-varying) frequency of the oscil-
lator. Since the Hamiltonian (7.21) is linear in n and nt

{corresponding to (5.2) with a& = 5=0, y = Af(t)
Xexp[—ig(t)]}, and the mapping is of the form (5.3)
(with tp=u=P =0), (7.19) applies in this case and one
obtains

BC&~) (n,n*,t)
={f(t)exp[ —ig(t)]n+c c }

83
XC&~)(n,n*,t). (7.23)

The solution of (7.23) is readily seen to be

C&~) (n,n*,t) =C~~) (n,n*,0)
Xexp{—i[nq (t)+n*q *(t)]}, (7.24)

where

We note that Eq. (7.19) for the characteristic function
is of the first order in the variables t, n, and e*.

We will illustrate the use of Eq. (7.19) by considering
a simple example, namely, an ensemble of driven
harmonic oscillators. Ke will derive the generalized
characteristic function for this ensemble for Weyl
correspondence.

The interaction Hamiltonian in the interaction
picture of a driven harmonic oscillator is given by (with
H.c. denoting the Hermitian conjugate)

Hr(t) = A{f(t) exp[ —ig(t)]d+H. c.}. (7.21)

Here f(t) is the external time-dependent force and

[&)le&) ]=4),
[~),~) ]=[~),',~),']=0.

(8.1a)

(8.lb)

We are concerned with the mapping of functions
P({»},{»*}) of the c-numbers onto functions
G({d),},{a)t})of the operators and vice versa, expressed
symbolically by the formulas

f~{F({»},{s~*})}=G({~},{n~'}) (8 2)
and

e{G({"}{""})}=F'"'({s}{ *}). (83)

The class of mappings that we consider will be defined

by a straightforward generalization of the class that we
introduced in Sec. III of I.Suppose that F is represented
as a 2'-dimensional Fourier integral

F({sp},{«*})= f({n~},{n~*})

VIII. GENERALIZATIONS TO SYSTEMS VfITH
MORE THAN ONE DEGREE OF FREEDOM

For the sake of simplicity, we have up to now re-
stricted ourselves to systems with only one degree of
freedom. However, the theory may readily be extended
to systems with any number of degrees of freedom. "We
will now briefly present the appropriate generalizations
of some of our main results.

Let {»}=(s~,», . . . ,sN) be a set of X complex
c-numbers and {»*}=(s~*,s2*, . . . ,s)p*) be the set of
its complex conjugates. Further, let {Pi&}—= (tt&,t4„. . .8&)
be a set of cV annihilation operators and {a)t}
= (Bq,a2, . . . ,dN ) be the set of its adjoints, which obey
the commutation relations

t

e(&) ff(e )exp[ =x), (e'')jce—(7.25) Xexp[2 (n)»* —n~*»)]d'{n~}, (8 4a)

By applying the general formula (7.10), one may obtain
from (7.24) expressions for the (time-dependent) rno-

ments M „&~' of this system.
In recent publications" "already referred to, which

deal with problems of quantum Quctuations and noise
in parametric devices, extensive use has been made of
generalized characteristic functions. In these investi-

gations the time dependence of the characteristic
function and of various moments was obtained by first

solving the Heisenberg equation of motion for annihi-

lation and creation operators. It would seem simpler and
more appropriate to base such calculations directly on
our Eq. (7.11) for the characteristic function rather
than on the Heisenberg equation of motion. The ex-

ample that we just considered illustrates this point.

where

&}c ) O'A, '

~2N
F({s~}{s~*})

Xexp[ —Q (n) s) * n) *s))]d'{s—),}, (8.4b)

and {n)}=(n&,n2, . . . ,n)p.) denotes, of course, a set of X
complex c-numbers and {n),*}—= (nr*,n, *,. . .,nN*)
set of its complex conjugates. In (8.4a) the integration
extends over the 1V complex n), planes, and in (8.4b)
it extends over the 1V complex» planes (k = 1, 2, . . . ,E).
Q Next suppose that G({d),},{t4t})is represented, as a
2X-dimensional "operator" Fourier integral [see

~ Our results are true both for finite and countably infinite
number of degrees of freedom; see also Ref. 10, Chap. VIII.
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Eq (ICI)3,

G({&~) f&2t)) = a((n~) {n2*))

Xexpr P (n.~~" n—.*~a)&d2{n~}, (8.»)
where

g(( ) { *))=(1/ )T (G({") { '))

The class of mappings under consideration is defined

by the property that for each mapping the multidi-
mensional "Fourier spectra" f((nq), {ni.*)) and

g((ni), {n2*})are related by an expression of the form

f({ ) f *))=Q({ ) f *))f({ ) ( *)) (86)

where the function Q((n2), {n2*)) that characterizes a
particular mapping is assumed to have the following
properties:

(1) It is an entire analytic function of the 2X complex
variables {n2}=—(ni n2 ~ ~ ng) f/'}=(P1P2 ~ ~ P+).

(2) Q((ni, ),(P1)) has no zeros.
(3) Q(f0),{0))=1,where {0)=—(0,0, . . . ,0).

The mapping expressed symbolically by Eqs. (8.2)
and (8.3) may be written down in a closed form with the
help of an appropriate mapping 5 operator, which is
dehned as a straightforward generalization of Eq.
(I.3.14) for the one-dimensional case:

&'"'((za' —&2},fza"—&2'))

Q(fnk}, (nk'}) exp| —{gna(zk'* —&at)
~2M k

—na*(za' —~2) }fd'((n2)). (8.&)

The required expressions for the mappings F~G and
6 -+ F, which are generalizations of the results expressed
by Theorems II and III of I, are

G((&2) f&"))

=Q{F({ ){ *}))

F((z2},(z2*))&'"'({za—4),{za*—&2'))

for which the filter function Q(fn2},{n2~))= LQ(( —n2},
{—ng, *))j-', where ( —ny)=( —ni, —n2, . . ., —n~),
{ nk ) ( ni ~ ~ ~ nN ) ~

In a strictly similar way, as in connection with Eq.
(I.3.21), the mapping A operator may be expressed in
the following symbolic form:

A&»(fz„' —a,},fz, '*—a,t})=Q(g g& &(z,' —z„)). (8.10)

The generalization of Theorem IV LEq. (2.6)j for
the trace of the product of two operators is readily seen
to be

«(G G ) = —F '"'((z~), (z.*))
~N

XF '"'((z ) (z *))d'(fz )) (811)

By analogy with Eq. (2.8), we may define the general-
ized phase-space distribution function for 0 mapping of
a quantum-mechanical system with any number of
degrees of freedom by the relation

C &"&((z2},{z2*))= (I/m~)F, &"&({z2),fz2*)), (8.12)
~ z

where F,&"& is the c-number equivalent for 0 mapping
of the density operator p(fd&), (d&t)) of the system.
From (8.11) and (8.12) it then follows that the expecta-
tion value of a dynamical variable G({d2),{dj,t)) may be
expressed in the form of a phase-space average:

Tr(pG) = C &ai((z,),(z,~))

XFg' '(fz ),{z ))d'(fz }), (8.13)

where, of course, F6.&"~ is the 0 equivalent of G.
Formula (3.3) of Theorem V may readily be general-

ized to systems of many degrees of freedom. If we as-
sume, for the sake of simplicity, that the 61ter function
Q((n2},{ni*)) is of the form

Q({n2),{n2*))=II Q~(ni, n~*),

then one readily Ands that the 0 equivalent

F12'"'({za},fz~*))
= e{G1(PI),(A'))G2(PI), {A'))} (8 14)

of the product of two operators G~ and C2 is

F'"'((») fz2'))

=8{G((&2)(&")))
=2rN TrLG((82},(d2t))

Xd'(f»)), (8.8) F12 ({z2),f»*))=exp(Q A12k)

oi&F, &a&(fz,}{z

(f»2}~{»2 )) ~ lzul=lzZZ}=fzZl; fzZi'I-(zZZ') tzZ'l,

XA'"'(f —& ) ( '—&"))j. (89) (8.15)

In (8.9), A&"i denotes the & operator for the where Fi&» and F2&» are the Q equivalents of Gi and
mapping that is antireciprocal to 0, i.e., the mapping G2, respectively, and A.~2I, and ~2I, ~"~ are the differential
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operators deGned by the formulas

1 8 8 8 t&

~12k
2 (&ski (&sk2 (&ski (&sk2~

(8.16)
(lk= trask}, (lk'=~~(sk*}. (9 4)

If we make use of (9.4) and the linearity of the mapping
operator, it is evident from (9.2) and (9.3) that'4

We have the following relations Lsee Eq. (I.3.36)) for
any mapping 0 of the class that we are considering:

8
XL +

BSItc1 ~&A, 2 ~~Icl ~~jc2

In a manner strictly similar to the one-dimensional
case (Secs. IV—VI), the relation (8.15) may be used to
derive the phase-space form of various quantum-
mechanical equations for systems with any number of
degrees of freedom.

A(r, t) = A(+&(r, t)+A( &(r,t) (9.1)

be the operator that represents the vector potential of
the field at the space-time point (r,t), with A(+& and A( '
denoting its positive- and negative-frequency parts,
respectively. We expand A(+& and A( & in the usual way:

(&)tc '&2 1
A(+&(r,t) =!— p — (4,ek, exp[2(k r—cokt)g, (9.2a)

(I2 ks gk

(pic "'
A( &(r,t) =!— p —dk.tek, *

(I.2 ks Q&t&

XexpL —i(k r —k)kt)]. (9.2b)

Here L3 denotes the volume to which the Geld is con-
6ned, 41„ is the annihilation operator for a photon of
momentum p=hk and spin s, and the aj„are unit
polarization vectors.

I et us now map the operators A'+) and A( ) onto
c-number functions V(r, t) and V*(r,t), respectively,
via the 0 mapping:

A (+) (r,t) = n( V(r, t) }, (9.3a)

A(-&(r, t) = 0(V*(r,t)}. (9.3b)

IX. EXAMPLE: STOCHASTIC DESCRIPTION OF
QUANTIZED ELECTROMAGNETIC FIELD

In the last few years many investigations have been
carried out concerning the statistical properties of
light, ' partly in order to elucidate the basic differences
between laser light and light generated by convention. .1
sources. In some of these investigations phase-space
techniques have proved very useful. In this section we
show how with the help of our theory one may introduce
in a systematic way various quasiprobabilities that
characterize the statistical properties of the quantized
electromagnetic Geld and how the coherence functions
of the Geld may be expressed in terms of them. We will
restrict our discussion to a free field only.

Let

1/2

V(r, t) = — g —sk,sk. exp! 2(k r —k)kt)), (9 5a)
ks Q&),

kc "'
V*(r,t) = — Q —&ks*&ks*

ks Q&)4

Xexpp —i(k r —(okt) j. (9.5b)

The statistical properties of the quantized Geld may
be characterized in different ways. Of particular interest
is its description in terms of the normally ordered corre-
lation functions (the normally ordered coherence
functions)

(n, m) (sl ts ~ ~ ~ sn' Jn+1 ~ ~ ~ 3n+m ( lr 2y ' ~ ' t ny n+1& ~ ~ ~ pxn+m)

=(A ( )(xl)A ( &(x2) 2 ( '(x )A (+&(x )
A,„„(+)(x~„)). (9.6)

Here the arguments x —= (r, t ) label various space-
time points and the subscripts j;, j,2, . . . , j„+,each of
which can take on the value 1, 2, or 3, label Cartesian
components. Some of the correlations functions of this
type occur naturally in the analysis of results of photo-
electric correlation and coincide@.ce experiments og. the
electromagnetic field. '"

It is evident at once from the structure gf formulas
(9.4) and (9.5) that the correlation function (9.6) may be
expressed in the form

where p is the density operator of the Geld and Q(~'
is the mapping operator for the normal rule of associ-
ation. For the sake of simplicity, we have suppressed
the numerous subscripts and arguments on the left-
hand side of Eq. (9.7). The trace in (9.7) may be ex-
pressed as a phase-space integral by the use of Eq.
(8.13), so that

p(n, m) @(A)((S }(S k})

24 Cf. L. Mandel, Phys. Letters '7, 117 (1963}.



NONCOM M UTI NG OP E RATORS AN D P HASE —SPACE M ETHODS. I I 2199

If now we introduce the function'~

p &~&[V(1),V(2), . . .,V(n+nt); xr, xs, . . .,x„+ j
given by

exp( —08)
p=

Tr [exp( —0H))
(9.12)

=(f)'"'{II 3[V( ) —V(*')]})

n+m
=Tr[pQ&~&{ II 3[V(i)—V(x;)j}j

where the Hamiltonian H is

(9.13)

C'"'({s .},{s,*})II 3[V(i)—V(x')3

Xd'({ -.}), (9.9)

Eq. (9.8) may then be written in the form

I'&" "&= p &~&[V(1),V(2), . . .,V(n+rn); xr, xs, . . . ,x„+~j

and f&=]/kT, k being the Boltzmann constant and T
the absolute temperature. Now by a multidimensional
generalization of the formula (I.6.17), specialized to the
antinormal rule of association (t&=o=0, )&= —st) for
each mode, the phase-space distribution function C("',
associated with the density operator (9.12), is the multi-
variate Gaussian distribution

n+m

XII V,.*( ) II V,,(t3)d'V(1)d'V(2)".

d'V(n+rn) . (9.10)
where

rs, [1—ex——p( —f&&os)j ' —1. (9.15)

Equation (9.10) expresses the normally ordered corre-
lation function of the quantized field in a form that is
mathematically identical with that occurring in the
classical stochastic description of the field. "In general,
p&~& is, of course, not a true probability. We will call
p&'v& a (space-time) quasiprobability distribution of the
quanti2;ed Geld. It is clear that the statistical behavior
of the 6eld is characterized not by a single such quasi-
probability distribution but rather by an in6nite se-
quence of them, each successive member of the sequence
having more arg&nnents:

P&&«&[V(1) xtg P&tr&[V(1),V(2); xt,xsg,
p&~&[V(1),V(2),V(3); xt,xs,xsj, . . . . (9.11)

In principle all these quasiprobabilities may, of
course, be derived from an appropriate characteristic
functional. '" "

As an illustration of these results, let us determine
the space-time quasiprobabilities, for the normal rule of
association, of a free electromagnetic field in thermal
equilibrium. The density operator of such a field is

"In (9.9), 8[V(l) —V(s:&)g stands for the expression
3

II 8[V &"& (l) V&'& ($&)]—8[V &'& (l) —V;&'& ($&)],

where V;(") and P';('& are the real and the imaginary parts of the
Cartesian component Vt (j=1,2, 3) of V and 3 denotes the Dirac
5 function.

s' E Wolf, in Procee&fhwgs of the Sy&aposigrm ort Optical lasers
(Wiley, New York, 1963), p. 29.

~'For a brief discussion of the characteristic functional, see
Appendix D or Ref. 10, Chap, IV, and references therein.

"The method of the characteristic functional to calculate the
correlation functions of the form (A~~(g&) ~ ~ A~ (g )) and the
associated quasiprobability distribution functions for the case of
a thermal field has also been employed by E. F. Keller, Phys. Rev.
139, 3202 (1965).

exp[-'()"(R&~') 'Uj. (9.16)
trs &

"+~&
)
detR &~&

(

Here R&~& is the covariance matrix

R&"'= C &"&({ss,},{ss,a})'U"U'td'({ss.}), (9.17)

detR&~& denotes the determinant of R&&&'&, and 'U and 'U'

are the column matrices given by

V&(1)
Vs(1)
Vs(1)

0

Vr(n+nt)
Vs(n+rn)
.Vs(n+nt)

Vr(xr)
Vs(xt)
Vs(xt)

Vr(x.~ )
V,(x„,.)
.Vs(x~ )

(9.18)

Equation (9.16) shows that all the (space-time)
quasiprobabilities of a thermal field are multivariate
Gaussian distributions, so that the quantized Geld is
described as a Gaussian random process. If we make
use of the moment theorem" for such a process, it

»I. S. Reed, IRK Trans, Inform. Theory IT-S, 194 (1962);
see also C. L. Mehta, in Lectures in Theoretical Physics, edited by
Q'. E. Brittin (University of Colorado Press, Boulder, Colo. ,
1965), Vol. VII C, p. 398.

The quasiprobability distribution P&~& for the system
under consideration is obtained on substituting from
(9.14) into the integral (9.9). The integral is evaluated

. in Appendix D, and the result is

p&~&[V(1),V(2), . . .,V(n+rn); xr, xs, . . . ,x + $
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follows that

F&" ) =0 if n~m, (9.20)

where gn stands for the suin over all n! possible permu-
tations of the indices 1 to n.

In this section we have restricted ourselves entirely
to normally ordered correlation functions and the vari-
ous associated quasiprobabilities. It is clear, of course,
that strictly similar results will apply to correlation
functions ordered in different ways (e.g. , the anti-
normally ordered correlations occurring in Mandel's
theory of quantum counters") and that one inay intro-
duce the associated space-time quasiprobabilities by
similar formulas. In particular, if the quasiprobabilities
are introduced by formulas analogous to (9.9), for
a mapping whose 61ter function is of the form

Q({as,),{ng„*))=exp()~ P ~n), .~
'), (9.21)

with )~~& s (see Appendix A), then one finds tha, t for a
field in thermal equilibrium Eqs. (9.16) and (9.17) re-
main valid, with trivial modi6cations. In place of
(9.16) one now has

p(")
t V(1),V(2), . . .,V(is+ jN); xi,xs, . . .,x„~„)

exp L
—'Ut (R ("&)—'U) (9.22)

&$(m+tn)
)
detg(o)

~

where E.("~ is the covariance matrix,

and 'U and 'U' are again the column vectors (9.18). The

phase-space distribution function 4(") that occurs in
(9.23) is now given by thegfoLLowing generalization of
formula (9.14):

(n, n)p~ jl,j2, ... ,js',jul . ....j2e (xi~xsq ~ ~ ~ yxn j xn+ly ~ ~ ~ yxsn)

=2 I'j,j.+r" "(xi,x +i)
II

I';„,;,„('"(x„,xs„), (9.19)

via any rule of association characterized by the mapping
function (9.20) with )(~& si(which includes the normal,
antinormal, and Weyl rules), of a quantized field in
thermal equilibrium leads to a statistical description of
the field as a true classical stochastic process. Thus the
usual arguments" (based on the noncommutability of
conjugate operators) as to why the various c-number
distribution functions of a quantum system cannot be
true probabilities seem to oversimplify the problem.

APPENDIX A: PROPERTIES OF Q EQUIVALENT
OF DENSITY OPERATOR WHEN

Q(n, n*) =exI)p.nn*) P.&~ rs)

In this appendix, we study the properties of the 0
equivalent of the density operator p when the rule of
association is characterized by the 6lter function

Q(n, n*) =expP, nn*) (X &~ -', ),
where X is real.

According to Theorem III LEq. (I.3.25))

F,(")(s,s*)= Trash(a)(» —(i, s*—at)), (A2)
~V

where 6(o)(s—a, s*—at) is given by Eq. (I.3.26) and
Eq. (A1), i.e.,

t1 «) (s —(r, s*—at) = — exp( —) nn*)D(n)
7r2

XexpL —(as*—n*s))d'a. (A3)

Here D(n) = exp(n(rt —a*i') is the displacement operator
for the coherent states LEq. (I.B4)). Since Q(n, n*),
given by (A1), satisfies the condition Q*(—n, —n*)

=Q(n,n*), it follows from (I.4.12) that 3,(") is a Her-
mitian operator. Since p is a density operator, it is
necessarily a Hermitian, positive-de6nite, bounded
operator. In fact every p belongs to operators of the
trace class. Because p and 6&"' are Hermitian, it follows
that F,(") is real Lsee (I.4.15)), i.e.,

(A4)

C'")({ss ) {ss ')) =ll

where

ass I' The mapping 6 operator (A3) has a number of inter-

exp ——,(9.24) esting properties. If we make use of the Baker-Haus-
a. &A:. dorR identity, we immediately see that

rs, = L1—exp( —8o)s)) ' —)~ ——', . (9 25) tI (sp G& sp 8 )

One may readily show that the covariance matrix
(9.23) is positir)e def), nite.

It is seen that both the space-time quasiprobabilities
as well as the phase-space distribution functions, given
by (9.21) and (9.24), respectively, are multivariate
Gaussian distributions with positive-de6nite covariance
matrices. Hence these quantities are true probabitities.
It seems remarkable that the c-number representation,

'P L. Mendel, Phys. Rev. 152, 438 (1966),

1
=Q(~) — expt —P.+—',) ~

n
~
')

7r2

XexpLn(s* —s,*)—n*(s —sp)')

=a&» — —exp
w(& +-', ) 0+-,')

(A5)

~' See, e.g., E. C. G. Sudarshan, in Lec/eres ie Theoretical I'hysics
(Berijamin, New York, 1961), Vol. II, p. 143.
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We also have the identity"

expj —P(a —z.*)(a —zo) 7
= 0 i~& {expl —

I
s—so I

'(1 —e z)7) .

From (A5) and (A6) it follows that, for )~) z,

g(u&(z a s*—at)

(A6)

2
exp (a' —s)(a —z)» . (A7)

w() +-', ) X+-

For ) =—iz, the filter function (Al) is that for the normal
rule of association and (A5) reduces to

g o&(zo —a, so*—at)=Bi &f(1/z-) exp( —Js—sol'))
=(1/~) Izo)(zoj, (AS)

where Izo) is a coherent state. Equation (AS) is in

agreement with the formula (I.3.40), obtained by a
more direct argument.

It should be noted that if we make use of the property
(I.B9) of the displacement operators, (A7) may be
expressed in the form

~"'( — *—"')= I:1/ ()+-')7D( )( )"'D'( ) (A9)

where
= () --:)/()+-:). (A10)

It is evident that D(s) In) is the eigenfunction of L&ii"&

with the eigenvalue I
1/z. ()t+z)7o.", i.e.,

Y ~i"&(s—a, z*—a)D(z) Jn)=&.D(s) le), (»1)
where

0~& F, i"&(z,s*) ~& 1 for all s,s*. (A16)

The non-negativeness of F, in&(z, s*) for all s and s*
follows immediately from (A2) and the fact that both

p and 6'"& are positive defin-ite operators To. prove that
F, i"& does not exceed unity, we combine Eqs. (A9) and
(A2) and obtain the following expansion for F, i"&:

, 2 "(ejD'(s)PD(s) le). (A17)
()t+-') o

I et us express p in the form

&"=P pij~ti)Q'~j, (A1S)

where pi are the eigenvalues and Jibx) are the corre-
sponding eigenstates of p. Since 0~& pe&~1, we And that

1
F,t"&(, *)=, Z Z--"( JD'()I~.)Q.ID(.)l )

()&,+iz) ~=o x

and hence (A14) reduces to

Jj~'"'(s—a, z*—a')D(s) le)IJ = I:I/~() +-')7a".

Since according to (A10), o.&1, it follows that

Jjgi"&(s—a, z*—Lit)8(z) ln)ll & 1/~(X+-', ). (A15)

This inequality shows that A~") is a bounded operator.
Next we show that F, i"&(z,s*), as given by (A2) and

(A3), satisfies the inequality

E„=I 1/&r() +-,')7a". (A12)

For A. = ~, the corresponding eigenvalue problem is

L), '" (s —a, z*—a )D(s) IO)= (1/ )D(s) l0) (A13)

It is thus seen that when A. ~&~, all the eigenvalues of

6i "& (s—Ll, z*—at) are non-negative. Hence we conclude
that whee the filter function Q(n, n*) is of Lhe form
expPnn~) and if )&. &~

—'„ then the mapping 6 operator

5i"&(s—a,, s* at) (fo—r maPPieg Q aelireciProcal Lo 0)
is a eoe eegatit&e degei-te Hermitiae oPerator In our sub-.
sequent discussion the limiting case X=2 will be in-

cluded, since the appropriate formula for this case may
be obtained by the formal substitution A. = ~~, m=0.

Next we will show that Din& (z—a, s*—at) is a bounded

operator. From Eqs. (A11) and (A12), we obtain the

following expression for the norm of 5("):

Jj~'"'( -d, *-")D()I )ll
= L1/~()+z)7 "JID(z) In)ll. (A14)

It is obvious that

IID(z) ln) II'= (nlD'(z)D(z) I e)= 1,
"This identity follows from the result PEq. (1.6.42) with

f(e) =z '"1
exp( —patd) =Qi~i (exp/ —Jz J'(1—e &&)g},

and the property (I.B9) of the displacement operator for the
coherent state and the linearity of the mapping operator O~.

00

, Za" 2 IQ.ID(s)je)j'
P,+iz) o

00

Q nn

()+z) o

and hence
&,i"&(s,s*) &&1 for all s,s*.

If we employ the method of Ref. 33 (where the result
is established for the special case )i=-z'), one can derive
the following important result.

The function E„i"&(s,s~), regarded as a funclion of Lwo

reaL t&ariables x and y (z= x+iy), is the boundary value of
an entire analytic function of two complex t&ari ables n and
l3 (x~n y~P)

APPENDIX 8: PROOF OF THEOREM V
(PRODUCT THEOREM), EQ. (3.3)

I,et F,in&(s, s*) and Fzi"&(s,z*) be the 0 equivalents
of two operators Gi(d, Lt ) and Gz(d, d, ), respectively.
According to Theorem III LEqs. (I.3.25) and (I.3.26)7

» C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B2'74
(1965).
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'te B6) as(I 3 17) to rewritee 'Qsuse of Eq.and Eq. (I 3 6) we llave

g,(,n*)g2(p»*)q )d2 (B1)+) exp(n,„i. ..) Q(, )g

*+p') exp[-, ( P—1 *—n* )1XQ(n+p,
d, d2P .(B7)(n*+P*)sjX[Q(e'P[( +P

of the maPP g
(Bp) may»so b' "P""'

T =1, 2), (»
isplacement p

hand, we hav
erator for eD(n) being the isp

Ou the other ha»& [Zq. (I.B4)j . . t ral theorem'
state

I
&

Fo+rier jntegrth "o eratorfrom
(I.C1)7

where

g,(,n*)g2(P» )

e+p) exp[~(nnp* —n p) JXQn

e P
resentationth following rePre

G,G, =Q
(B3)*)D(n)d'n (2(~ dt) g) n&n

Ip p*)D(n)D(p)d n (B4)gi(n, n )g2G,G2=

din to (I.B' )N o g
,
( p* *p)( )D(P) =D( '+P)

that (B4) reduces

+)g, (p p*)D(n+P)G (d gt)G2(G)n )

(BS)[i( pg n+p)]d nd P'

f llows that.i;, der ned by (B'where g)(n&

I,et

$)G (Q t) Q(~ (oi s,s*)) .

(B8) with (On compar»g

(B9)
].e.)

in) (s,s*)= g,(,n*)g2(P»*)

*+p*)exp[s(np*

( *+P*)s "

I G, d, g,t)G2(&)d )&ia)(ss+) be «he Q equivalent 0

e fact thatWe now use t e

)k)*+P*)Q(n+P, n +PQ(n+p, n

to rewrite (BS) in the form we expre»» 2 '
~ and their der' a

For th~s purpos
the following form:int e

* s~s~*) .,=„=..., =., =.(ai ss*)=f(si,si, „)

g -,-*)g.(P,P*)Q(-+P, -GgG2=

(B11)(-*+p")D( +p)1Xexp[—,'. n n-
Xd'nd'P.

Q ~f(si,si, s2, sg

n*Qn, n )e p(

n* ) exp[, (

[gi(n n

ie
'

d d b the produc n,

*)Q(P P*)Q(-+P, -
ct Q(n, n*)lied and divi e yte laces multip iewe have in appropna e p

b writt sseen that (B13) may e

8 c)

t9

XQ(P,P*). Is is easily

8 8
( s g

* =Q — , — Q*)=si) i ) )

L. ( N nsi —n si *—*s2)d'nd'p (812)

*i .(P,p*)Q(-+p, - +pgi(n)n

*—*P)g exp(

X txgy* —Q Zy 2 )

1 8 8 8 8
Xexp—

2 Bsy BZ2
nsi —n si)$gi(n, n*)Q(n, n*) exp(ns, —

X g2, ,
* x ss*—*s2))d'nd'P (B14).X[g (P,P*)Q(P,P*) exp(Ps *
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Here we have made use of the identity

exp(n) exp(ns* —n*z) = exp(B/c&z*) exp(ns* —n*s) .

On making use of (81), Eq. (814) simplifies to

and the relation

C'"'& (n,n') = n(n, n*)C ~ "&(n,n*),

which follows from Eq. (7.7), to rewrite Eq. (C4) in the
form

f(zi,zi*, z2,z2*)= exp(A&2)ai2&"&Fi'"'(zi, si*)
XF, (.„.,*), (8») T [H.- '()]= [ (-P, P-*)g~(P,P*)]

where the operators A» and 'K»'"' are de~ned by

1 8
A1g =—

2 831 ()s2 ~s]. ~~2
(816)

XC~ &( -p, -*—p*)n(p, p*)n( —p, *-p*)
Xexp[ ,'—(nP—* n—*P)]d'P (.CS)

On substituting for n( —p, —p*)g//(p, p*) in terms of
F//&"& [Eqs. (I.3.25) and (I.3.26)], we obtain

8
cg (0) Q

BS'1*

8 8
Xn- -+ (817)

882

Tr{HPDt (n) }= — F//'"'(s, z*)C'"'(n —P, n*—P*)
Ã2

x-p[-(p.*-p*.)]n(p,p*)n( -p, *-p*)
Xexp[--,'(nP*-n*P)]d'Pd". (C6)

Finally, on combining (811) and (815), we obtain the
desired product theorem [Eq. (3.3)].

APPENDIX C: DERIVATION OF EQUATION OF
MOTION P.ll) FOR GENERALIZED

CHARACTERISTIC FUNCTION

It is evident from the definition (7.2) of the general-
ized characteristic function C&"& for 0 mapping and
from the Schrodinger equation of motion (4.6) for the
density operator that

We also have the obvious identity that follows from
Taylor's expansion of C&"&(n—p, n*—p*) around n, n~.'

8 l9

C'"'(™—p, "—p"& =exp( —p——p"-—
~CY, 80|,

xc"(, *). (C7)

From (C6) and (C7) it follows that

Tr[HpDt(n)] = — FI/~" &(s,s*)
7r2

gc(~)
ik

gA

=Tr ib—n{exp[—(ns* —n*z)]}
Bt

Xexp[P(-', n* —s*)—P"(-,'n —z)]
Xn(p, p*)n( —p, -*—p*)

Xexp( —PB/Bn —P*c&/Bn"') C'"&(nen*) d'Pd's (CS)
=Tr[Hpn{ exp[ —(ns* —n's)] }]

—Tr[H pn{exp[ —(ns* —n*s)]}]
ol

i ABC & "&/Bt= n(n, n*) Tr[—HpD" (n)7
—n(n, n*) Tr[pHDt(n)], (C2)

where D(n) is the displacement operator (I.84) for the
coherent states. To simplify the right-hand side of

(C2), we make use of the operator convolution theorem
discussed in Appendix C [Eq. (I.C4)] of I. It follows
from this theorem that

8
=0

BCX1

0 A — — )0!

8 8 8 8
Xexp — F//'"& (ni, ni*)

~o'1 ~O2 ~&1 ~&2

XC (n2en2 ) i ai=a/2;a2=a;ai =a /2;a2 =a ~ (C9)

Now it can be shown by straightforward but long
(C1) calculations that (CS) may be rewritten in the form

Tr[H pDt(n) ]

Tr[HpD'(n)] = gH(P, P')C' '(n P, n* P*)— —

X«p[ —l( p*—n*p)]d'p, (C3)

Further, proceeding in a manner strictly similar to the
one which led to (C9), we find that

Tr[PHDt(n)]

where
1

a~(p, p*) = —TrLHD" (n)1.

=Q —
)
— ' 0 tx — — )A

Next we use the identity

n( —p, -p*)n(p, p*)=1

8 8 8
+exp — F//'"&(ni, ni*)

~&1 ~0'2 ~o'1 ~O'2

XC (n2&n2 ) i al=—a/2;ap=a;ai =—a /2;ap a (C1O)
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On combining (C2), (C9), and (C10), we obtain the
desired equation of motion for the generalized charac-
teristic function C("):

and

~(Q& Q(n n8)

where

i)&tc&C(o&/(&t=(DT, '"' —X, '"')C'"& (C11)
X, — — ~ ~—- - —,~* —— . Cj4

K+C("&= exp(Ai2') 'U (o&Flr(") (ni, ni*)

g2p&2 p
&j ] al=a/2, a2=a; aI =a /2, a2 =a

and

(C12a)

K C(»= exp(A&2') U'"'&a'"'(ni, ni*)
yC( &(np n2

& t) t a}=—a)P; ax=a; a} =—a I2; av =a (C1 )

e operators A»' and 'U(") are de6ned by the formulas

APPENDIX D: CHARACTERISTIC FUNCTIONAL
OF QUANTIZED FIELD AND PROOF OF (9.16)

The space-time quasiprobability of a quantized field,
for the normal rule of association, was defined by the
first expression of the right-hand side of Eq. (9.9), viz. ,

p[~]fV(1),V(2), . . .,V(M); xi, . . .,x]}r)

=(II'"'( Il ~LV(i) —V(&~)J}) (D1)

If in (Dl) we express the Dirac 8 function in the form

(C13) of a Fourier integral, we obtain the following expression
for p(~&:

1&&3M M

p&"&[V(})V(2), . . .,V(M}; x&, . . . ,xx]= —
l

&&&x' ll exp(&[U(&) V"(x)+U"(&) V(x)]} )i=1

Xg exp( —i(U(i) V (i)+U*(i) V(i)$}d'U(1) ~ d'U(M). (D2)
i=1

The expectation value on the right-hand side of
(D2) may conveniently be expressed in terms of the
characteristic functional

8&x&[VV( )]=(&&&x& exp & W(x) V"(x)dx

1 Ac) ')'
W&„——

1. (
W(r, t) ~ p),.*

&(exp) i(k r p—&).t) jd'rd—t (D5).
We may express the characteristic functional 8(~) as

a phase-space integral by applying to (D4) the identity
+z W* x V s ds, D3 (8.13). The result is

where W(x) is an arbitrary vector function of the ('[~)PV(.)]= C(~)((s&„},(s&,*})
space-time variable x—= (r,t). Let us substitute for V(x)
and V*(x) the series expansions (9.5a) and (9.5b). We
then obtain the following expression for the charac-
teristic functional 6(~):

XexpLi Z (Waxs), x*+Wax*sax))d'((s&, .}). (D6)

From the characteristic functional, all the statistical
properties of the quantized field may be derived. For
example, the normally ordered correlation functions

(Q()v&(exp/i g (W),,s)„*+W)„~si,)g}), (D4) I"'" ~& of the quantized field, defined by Eq. (9.6), may
ks be obtained from the formula

(n, m) f
& jI,jg, ...,jn+~

' /&1.q
~ ~ ~ q&n j &n+1y ~ ~ ~ y&n+mg = (—')"'-&" "('-( )I W( )3

()W;,(xi) .()W;„(x„)()W;„+,*(x„gi). (}Wt„~„*(xp ) }r=p
(D7)
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It follows from (D10), (D5) and (D12') that

([W(xi) V*(xi)]

where b/8W(x) denotes the functional derivative. '4

Further, we see from (D2) and (D3) that the space-
time quasiprobabilities may be expressed in the form «x)[W(.)] exp

p' '[V(1),. . .,V(M); „.. ., ]= &: [U( )]
~6M

X[W*(xs) V(xz)]),., dxidxz . (D13)

where

U(x) =P U(z)b&')(x —x,).

If we choose for W(x) the function U(x) defined by
(D9), we obtain the formula

Xd'U(1)" d'&(~), (D8) &'-")[U( )]=exp{—E Z ([U(i) V*(x')]
s

X[U*(J) V(*)])..-.} (D14)

(D9) It will be convenient to introduce~the column
matrices

k8 +Tks
exp

Xexp[i P (W)„s&„*+W&„*s&„)]d'({zt,.})

We will now derive with the help of the character-
istic functional an explicit expression for the space-
time quasiprobabilities for an electromagnetic Geld
that is in thermal equilibrium at temperature T. We
have from (D6) and (9.14)

Vi(1) Vi(xi)
Vz(1) Vz(xt)
Vs(1) Vs(xi)

(D15)
Vi(M) Vi(xjs)
Vs(cV) Vs(xjr)
Vs(3f) Vs(xsr)

and the column matrices & defined in a similar way as
the column vector 'U, with V(i)'s replaced by U(i)' s
The expression (D14) for ('&~)[U( )] may then be
written in the compact form

=exp[—Q r)„~ W)„~ '], (D10)
where

«. »[U( )]=exp( —e'R&»'lt),

8&»= ('U "U')o,

(D16)

(D17)
where, in accordance with (9.15),

r)„=[1—exp( —8&o),)]—'—1, (D11)

and 8= 1/kT. It is clear from (9.14) that r&„ is the vari-
ance of the distribution C (~',

C'")({s).},{s),.*})se.*s~.d'({s~,}). (D12)

Tks g~ks ~ka p.s. ~ (D12')

34For the de6nition of the functional derivative, see, e.g. ,
R. J. Glanber, in QNantztmOptics an&i , Electronics, edited by
C. deWitt, A. Blanden, and C. Cohen-Tannoudji (Gordon and
Breach, New York, 1965), p. 65.

From now on we will denote by ( )o., the p/zase space-
average with respect to the dzstribution function C &"), so
that (D12) may be written as

We now substitute from (D16) into (D2) and obtain
the following expression for the space-time quasi-
probability p&».

p &~)[V(1),. . . ,V(M); xt, . . . ,xzr]

exp( —lttR &")'ll) exp[ —i('lit'U+'Ut'll)]

Xd'U(1) d'U(tn) . (D18)

The integral on the right-hand side of (D18) is well
known" and leads to the following expression for P&»:

p(N) —exp[ —"Ut(E.&») 'U]. (D19)
sts

(
detR(N)

)

This is formula (9.16).
35 For such identities involving the quadratic form, see, e.g.,

K. S. Miller, Multi&tintensional Gaztssian Distribltions (Wiley,
New York, 1964), p. 15.


