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A new calculus for functions of noncommuting operators is developed, based on the notion of mapping of
functions of operators onto c-number functions. The class of linear mappings, each member of which is
characterized by an entire analytic function of two complex [variables, is studied in detail. Closed-form
solutions for such mappings and for the inverse mappings are obtained and various properties of these
mappings are studied. It is shown that the most commonly occurring rules of association between operators
and ¢-numbers (the Weyl, the normal, the antinormal, the standard, and the antistandard rules) belong to
this class and are, in fact, the simplest ones in a clearly defined sense. It is shown further that the problem
of expressing an operator in an ordered form according to some prescribed rule is equivalent to an appro-
priate mapping of the operator on a ¢-number space. The theory provides a systematic technique for the
solution of numerous quantum-mechanical problems that were treated in the past by ad koc methods, and
it furnishes a new approach to many others. This is illustrated by a number of examples relating to map-

pings and ordering of operators.

I. INTRODUCTION

N recent years increasing use has been made of
generalized phase-space techniques in the treatment

of various quantum-mechanical problems. Similar
techniques have previously been used chiefly in quan-
tum statistical mechanics.! They have their origin in a
well-known paper by Wigner,? dealing with quantum
corrections to thermodynamics. Wigner associated
with the state of a quantum-mechanical system a
certain c-number function—now generally known as the
Wigner distribution function—and he showed that by
means of it quantum-mechanical expectation values
can be expressed in the same mathematical form as the
averages of classical statistical mechanics. Wigner also
pointed out that his distribution function is not the
only one that makes this possible. Later Groenewold?
and Moyal* developed Wigner’s technique further. It
became apparent from their work that the association
of the Wigner distribution function with the state
function of the system involves implicitly a certain
rule of correspondence between functions of non-
commuting operators and c¢-number functions in-

* Research supported jointly by the U. S. Army Research
Office (Durham) and by the U. S. Air Force Office of Scientific
Research. A preliminary account of some of the results contained
in this paper was presented at the Washington meeting of the
American Physical Society in April, 1968 [Bull. Am. Phys. Soc.
13, 684 (1968)] and was summarized in G. S. Agarwal and E.
Wolf, Phys. Letters 26A, 485 (1968), and in E. Wolf and G. S.
Agarwal, Polarization, Matiére et Rayonnement (Societé Frangaise
de Physique Presses, Universitaires de France, Paris, 1969), p. 541.

1See, e.g., (@) R. Kubo, J. Phys. Soc. Japan 19, 2127 (1964);
(b) R. Kubo, in Lectures in Theoretical Physics, 1965, edited by
W. E. Brittin (University of Colorado Press, Boulder, Colo.,
1966), Vol. VIII A, p. 239; (c) K. Imre, E. Ozizmir, M. Rosen-
baum, and P. F. Zweifel, J. Math. Phys. 8, 1097 (1967); (d)
H. Mori, I. Oppenheim, and J. Ross, in Studiesin Statistical
Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North-
Holland, Amsterdam, 1962), Vol. I, p. 217.

2 E. Wigner, Phys. Rev. 40, 749 (1932).

3 H. J. Groenewold, Physica 12, 405 (1946).

4J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

vestigated earlier by Weyl® in his group-theoretical
studies on the correspondence between classical and
quantum mechanics. Weyl’s correspondence is inti-
mately related to a certain rule of ordering of functions
of noncommuting operators (the so-called Weyl sym-
metrization rule—see Appendix A and Ref. 6).

Since these early investigations, other rules of as-
sociations between operators and c-numbers have been
studied™® and some of them formed the basis for in-
troducing other distribution functions, by means of
which the solution to quantum-mechanical problems
could be expressed in a quasiclassical form. During the
course of the last few years such methods have become
of central importance in quantum optics, especially in
studies of coherence properties of light,’0~12 in the
theory of the laser,’*'% and in investigations of non
linear processes such as parametric oscillation.’® QOne
of the main underlying reasons why these methods have
proved so useful arises from the fact that the quantities
of interest are often the expectation values of various
operators arranged in some particular ordered form. For

® H. Weyl, (i) Z. Physik 46, 1 (1927); (ii) Tke Theory of Groups

.and Quantum Mechanics (Dover, New York, 1931), p. 274.

¢ The symmetrization rule and some properties of the Wigner
distribution function have been discussed by E. C. G. Sudarshan,
in Lectures in_Theoretical Physics (Benjamin, New York, 1961),
Vol. II, p. 143; see also T. F. Jordan and E. C. G. Sudarshan,
Rev. Mod. Phys. 33, 515 (1961).

7J. R. Shewell, Am. J. Phys. 27, 16 (1959); this paper also
contains references to many earlier publications in this field.
¢ 8 C. L. Mehta, J. Math. Phys. 5, 677 (1964).

L. °L. Cohen, J. Math. Phys. 7, 781 (1966).

WE. C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963);
(b) in Proceedings of the Symposium on Optical Masers (Wiley,
New York, 1963), p. 45.

1 R. J. Glauber, Phys. Rev. 131, 2766 (1963).

2 L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

M. Lax and W. H. Louisell, IEEE J. Quant. Electron.
QE-3, 47 (1967), and references therein.

14 H. Haken, H. Risken, and W. Weidlich, Z. Physik 206, 355
(1967), and references therein.

16 M. Lax and H. Yuen, Phys. Rev. 172, 362 (1968).

16 R, Graham, Z. Physik 210, 319 (1968).
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example, in the study of the statistical properties of
light by means of photoelectric correlation and coin-
cidence experiments, the outcome of the experiments is
most naturally expressed in terms of the normally
ordered products of the photon annihilation and crea-
tion operators.!?:17:18 Another example is light scatter-
ing from fluctuations in liquids and gases. In this case
the results of observation are expressed in terms of
time-ordered expressions that involve the fluctuating
density of the particles in the medium.®

In spite of the considerable use of the phase-space
techniques in several areas of quantum physics, most of
the theoretical results have up to now been derived by
various ad hoc methods® (see, for example, Refs.
21-26). In the present series of papers we develop a
general phase-space calculus from which most of the
earlier results and many new ones may be derived in a
systematic manner. First we show, in Sec. II, that the
problem of expressing a function G(4,d") of two non-
commuting operators that obey the commutation rela-
tion [d,4"]=1 in some ordered form is equivalent to the
problem of mapping it onto a ¢c-number function F(z,z*),
where z is a complex variable and z* is its complex
conjugate. The class of linear analytic mappings is
then defined, and it is shown that this class includes all
the mappings that are required for ordering G(d,d")
according to the usual ordering rules, such as the Weyl,
the normal, the antinormal, the standard, and the
antistandard rules. With each mapping we associate a
mapping operator € and its inverse ®, such that

AP (25"} =G (2,4, (1.1)
O{G(4,d")} =F(2,2*). 1.2)

In Sec. IIT we present closed-form solutions for such
mappings and illustrate the results by considering in
detail the mappings that involve the normal, the
antinormal, and the Weyl rules of associations. In
particular it is found that for the antinormal rule of
association the mapping F(z,2*) & G(d,4") leads at
once to the Sudarshan-Glauber diagonal coherent-state
representation!®!! of the operator G. This result throws

17 R. J. Glauber, Phys. Rev. 130, 2529 (1963); see also Ref. 12,

18 P, L. Kelley and W. H. Kleiner, Phys. Rev, 136, A316 (1964).

18T, Van Hove, Phys. Rev. 95, 249 (1954).

2 Since the present investigation was carried out, two papers
have been published by K. E. Cahill and R. J. Glauber [Phys.
Rev. 177, 1857 (1969); 177, 1882 (1969)]; these present a system-
atic treatment of ordering of operators and phase-space repre-
sentations for a certain class of ordering rules. This class cor-
responds to the special choice @(a,a*)=exphaa* of our filter
function, defined by Eq. (3.12). . e )

2 W, H. Louisell, Radiation and Noise in Quantum Electronics
(McGraw Hill, New York, 1964), Chap. III. -

22 R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

% C. L. Metha, J. Phys. A 1, 385 (1968). , )

% R. J. Glauber, in Quantum Optics and Electronics, edited by
C. deWitt, A. Blanden, and C. Cohen-Tannoudji (Gordon and
Breach, New York, 1965), p. 65. i

2 C. L. Mehta and E. C. G. Sudarshan, Phy: Rev. 138, B274

1965). . R
( 26 Y) Kano, (a) J. Phys. Soc. Japan 19, 1555 (1964); (b) J.
Math. Phys. 6, 1913 (1965).
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some new light on the true significance of the weighting
function that appears in their representation.

Closed-form solutions for the mappings (1.1) and
(1.2) are expressed as transforms involving certain new
operators that we call the mapping delta operators.
They are basic for the present theory. The properties of
these operators are studied in Sec. IV. In Sec. V rela-
tions connecting the c¢-number functions F(z,2¥),
derived from one and same operator G(4,4") by different
mappings, are established. In Sec. VI our main results
are illustrated by examples, relating both to mapping
and ordering. In Sec. VII the main theorems are ex-
pressed in a form appropriate to the mapping of func-
tions of the canonical operators §, p ([, |=1i#) rather
than @ and @'.

For the sake of simplicity we consider in this paper
systems with one degree of freedom only; generaliza-
tions to systems with a finite or denumerably infinite
number of degrees of freedom are straightforward and
will be briefly discussed in the second paper of this
series. Our analysis may be also readily extended to
problems that involve the mapping of functions of
operators b and bf, which obey the commutation rela-
tion [b,61]=c, where ¢ is any real constant. Thus a
system of pseudo-oscillators (corresponding to the
choice ¢=—1) may also be treated by the present
techniques.?” Moreover, this technique may_also be
applied to problems that involve the spin angular mo-
mentum, if use is made of Schwinger’s coupled boson
representation.25—30

In Paper II of this investigation,® we define a wide
class of generalized phase-space distribution functions
of a quantum-mechanical system in terms of the func-
tions obtained by mappings of the density operator onto
a ¢c-number space (the phase space) and we derive the
phase-space form of the basic equations of quantum
dynamics and quantum statistics. In Paper III our
phase-space calculus is applied to various time-ordering
problems.® In particular we show that it provides a
new derivation and a deeper understanding of Wick’s
theorem and that it leads to some new generalizations
of it. A connection with some recent work of Lax33:34 on
multitime correspondence between quantum and sto-
chastic systems is also established in that paper.

It will become apparent that in view of the very wide
scope of this theory, a rigorous formulation of it can

27 G, S. Agarwal, Nuovo Cimento 65B, 266 (1970).

28 J. Schwinger, in Quantum Theory of Angular Momentum,
edited by J. Schwinger, L. C. Biedenharn, and H. VanDam
(Academic, New York, 1965), p. 229.

(1” Sge, e.g., T. L. Wang and H. B. Callen, Phys. Rev. 148, 433

966).

3 This technique has already been applied by one of the authors
[G. S. Agarwal, Phys. Rev. 178, 2025 (1969)] in the treatment
of a two-level system interacting with a reservoir.

3 G. S. Agarwal and E. Wolf, first following paper, Phys. Rev.
D 2, 2187 (1970).

# G. S. Agarwal and E. Wolf, second following paper, Phys. Rev.
D 2, 2206 (1970).

3 M. Lax, Phys. Rev. 157, 213 (1967).

3¢ M. Lax, Phys. Rev. 172, 350 (1968).



2 NONCOMMUTING OPERATORS AND PHASE-SPACE METHODS. 1

only be carried out within the framework of the theory
of generalized functions. We do not attempt to provide
a mathematically rigorous basis for our theory; rather
we show how a great wealth of old and new results on
ordering of operators and on phase-space descriptions
of quantum-mechanical systems may be derived in a
systematic manner from a few new principles. These
principles are brought out by the concept of a linear
analytic mapping of functions of noncommuting opera-
tors on ¢-number functions.

II. MAPPING OPERATORS AND ORDERING OF
FUNCTIONS OF NONCOMMUTING
OPERATORS

In the first part of this investigation we will be con-
cerned with mapping of functions of ¢-numbers onto
functions of noncommuting operators and with the
inverse mapping. It will be helpful to begin by sum-
marizing first some of the better known rules of as-
sociation™® between elementary ¢-number functions of
two real variables p, ¢, and functions of two Hermitian
operators® p and ¢, satisfying the commutation relation
(see Table I)

[4,p]1=ih. (2.1)

In Table I m and » are non-negative integers. The
symbol (p™§")w denotes the Weyl-symmetrized form of
the product ™", i.e., the linear combination of all pos-
sible products, involving 7 $’s and % ¢’s, divided by the
total number of such products. For example,

) w=%bq+bib+ip* -

We may also consider rules of association between
functions of complex c-numbers z and z* (where z*
denotes the complex conjugate of z) and functions of

the boson annihilation and creation operators ¢ and 4,
obeying the commutation relation

[d,4']=1.

The better-known rules of association in this case are
listed in Table II.

In Table IT the symbol (¢"™@") w is defined in a similar
way as (p™G™) w, i.e., it represents the sum of all possible
products involving m creation operators ¢' and » anni-
hilation operators @, divided by the total number of such
products.

With each rule of association indicated in Table II,
and, more generally, with each rule of a wider class to be
defined in Sec. III, we associate a linear mapping
operator Q, which transforms an arbitrary function of
the ¢-numbers z, z* onto a function of the operators &,
@' that obey the commutation relation (2.3).36 If we

(2.2)

(2.3)

35 Throughout this paper the caret denotes an operator. Func-
tions of operators, e.g., G(g,$), will sometimes be denoted by G.
36 Results relating to mapping from the ¢-number space (p,9)
onto g-number space (p,§) are strictly similar and may be formally
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TaBiE I. Some of the commonly employed rules of association
between functions of the two real ¢-number variables p and ¢
and functions of two canonical operators $ and 4.

Rule of association

Standard prgn— grpm
Antistandard pmgn — pmgn
Weyl pmgn— (P"iw

denote by Gn,.®(4,d") the function onto which the
monomial z*7z" is mapped, the operator Q is defined by
the equation

@) "z} =G @ (4,47
and by the linearity conditions

(ll) Q{()lFl(Z,Z*)-"'CQFg(Z,Z*)} =619{F1(Z,Z*)}
o Fa(2,2)},
(i) Qfc}=cl.

Here F, Fi, and F, are arbitrary functions, ¢ is a
c-number, and 1 is the identity operator.

When we wish to stress that a mapping is associated
with a particular rule, we will attach an appropriate
superscript to Q. Thus for normal,* antinormal, and
Weyl rules of association (which we denote by suffices
N, A, and W, respectively), condition (i) becomes

QI g¥mgn) = gtmgn (2.4a)
QU {g¥mzn) = gngim, (2.4b)
QU (gAmzn) = (Tmgn) (2.4¢)

From the definition of the operator Q, it is evident
that @ will map a ¢-number function F(z,2*), which has
the power-series expansion

0 L]
F(2,2%) =20 2 Cmaz*mz™,

m=0 n=0

(2.5)

TaBLE IT. Some of the commonly employed rules of association
between fl:m'cthns of ¢-number variables z and z* and functions
of the annihilation and creation operators ¢ and 4t.

Rule of association
Normal ghmgn 5 gtmgn
Antinormal g¥mgn — gngtm
Weyl z¥mgn — (gtmgn)y

obtained via the following transformations:
a= Q1) (G+ip), &= (212 (g—ip),
7= (Q8) 2 (g+ip), #*=(28)"V2(q—ip).

We will briefly discuss mapping from the (p,q) space onto th

space (p,4) in Sec. VIL P sp e
37 The operator Q) is essentially the same as the normal-

ordering operator discussed bv Louisell in Ref. 21, Sec. 3.3.
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onto the operator function

G®(a,d") = F (3,5%)}

0 0

=2 2 oma7*"5"}

m=0 n=0

=2 2 Cma mn(m(d;zﬁ)-

m=0 n=0

(2.6)

By using the commutation relation (2.3), G®(4,4")
may, of course, be expressed in many different functional
forms, but all the different functional forms represent
one and the same operator G®(4,d").

The Q operator expresses formally the mapping of a
c-number function F(z,5*) onto a g-number function
G(@,4%), according to a particular rule of association.
We will now introduce for each rule of association an
inverse operator ®, which maps a ¢g-number function®
G(@,8") onto a c-number function F®(z,5%):

F®(3,5%)=0{G(d,d")} . 2.7

We assume that the inverse exists and is unique. Since
the ® mapping is inverse to the Q mapping, we have, of
course,

QF®(3,5%)} =G(d,4"). (2.8)

We will refer to the c-number function F®(z,2*) as the
Q equivalent of G(8,6") or the phase-space representation
of G for Q mapping.

From (2.7) and (2.8) we have the symbolic relations

(2.9)
(2.10)

The © operator is obviously also linear, having the
following properties:

() O{GnP(@,a")}=2%m",

() OfciG1(d,d") +csGa(d,d1)} =c10{G1(d,d")}
+c:0{G»(2,"},

(i) O{c}=c,

for arbitrary g-number functions G, Gy, and G, The

operator function Gm,®(d,4") in (i) is, of course, the

operator function onto which z*z* is mapped by Q.

From the definition of ® it is obvious that an
arbitrary operator function G(&,4") which is of the form

G(d,d‘r) = Z Z dmnGmn(m(drdT) ’

m=0 n=0

(2.11)
where the dm,’s are c-numbers, will have the Q

38 (3 need not be an explicit function of & and éf.
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equivalent
F®(z,2%) = 0{G(4,a")}
=% ¥ dun®(Grn®(3,01)

m=0 n=0

0 0
=3 > duas*ma".

m=0 n=0

(2.12)

We see, on comparing Egs. (2.11) and (2.12), that if
G(4,a%) is expressed as a series in the Gu,®’s, the Q
equivalent of G(d,d") is obtained at once by simply
replacing each G, ®(d,d") by z*mz*. This immediately
raises the question of how to determine the coefficients
in the expansion (2.11). We will now show that this
problem is intimately related to one that frequently
arises in the solution of various quantum-mechanical
problems, namely, how to express a given operator in an
ordered form, associated with a prescribed rule of
ordering.

To answer this question, we introduce for each rule of
association the set of ordered forms of the G, ®(d,4")
which we denote by Gu,‘¥(d,4"). For each pair of non-
negative integers m and #, G, @ is equal to G, @, but
has a particular functional form. Thus, for example, for
the three rules of association listed in Table II, we
would naturally choose

gmn (N)([L"df) =qgimgn , (2.13&)
G (8,81 =676, (2.13b)
Gmn M (@,4%)= (@6 w, (2.13¢)

where the identity sign indicates that the particular
forms displayed on the right-hand sides are implied.
More generally, the identity sign between any two ex-
pressions involving operators is to be understood to
mean that the two expressions may be shown to be
equal to each other without the use of the commuiation
relation (2.3). The following simple example illustrates
these definitions: If we take m=#=1 and consider the
normal rule of association, then G;;‘¥(4,4")=d%¢. On
the other hand, G11®(@,4") is the same operator as
Gu™(@,4") expressed in any form, e.g., as ddt—1.

We now define the Q-ordered form G®(4,4%) of an
arbiirary operator G(8,6") by the following two properties:

@) ¢™(@@,dH=a6@,4d"), (2.14)
(i) g™(4,d") is identically equal to a linear com-

bination of the G,.,®’s, i.e.,

GOEAN=S S dun/Grn®(4,87).

m=0 n=0

(2.15)

The identity sign rather than the equality sign is
essential in (2.15).

Finally we introduce, for each mapping 2, an operator
S® which we will call the substitution operator for Q
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mapping. It is defined by the property

S@f ‘Z f Cmns* M5y = f, f CmnGmn @ (8,87) . (2.16)

m=0 n=0 m=0 n=0

Thus S® operating on a power series in z and z* turns
it into an Q-ordered form, the form being obtained by
replacing each z*72" by G, ¥ (4,4"). If we set

T S g man=F(5,%) @2.17)
m=0 n=0
> Y cnnGme@(@,0N=6®@(0,4),  (2.18)
m=0 n=0
then (2.16) implies that
S@(F(2,2%)}=8D(4,4"). (2.19)

It is also obvious from the fact that

SO (757} = G (0,01)
and from the linearity of the substitution operator
S® that g®(4,4") is the operator G(4,4"), expressed
in the particular functional form, onto which F(z,*)
is mapped by the mapping operator Q:

§®(@,6")=G(8,8") =F (z,2%)}, (2.20)
or, taking the inverse of (2.20),
O(GV(@,aN} =0 (GEN}=Fa). (221)

Hence from (2.19) and (2.21) we obtain the following
theorem.

Theorem I. The Q-ordered form G®(4,4Y) of an
arbitrary function G(8,8%) of the boson operators & and
at is given by

G@(@,8")=SP{F (22}, (2.22)
where

F(z,2%) = 0{G(4,4")} . (2.23)

The theorem that we have just established reduces
the problem of determining the Q-ordered form of a
given operator function to the problem of mapping
the operator function onto a ¢c-number function via the
appropriate mapping. The theorem implies that to find
the Q-ordered form® of G(4,4") we only need to find its
Q equivalent F(z,2*), expand F(z,2*) into a power series
in z and 2*, and then make the trivial substitutions in-
dicated by Eq. (2.16). In Sec. III we derive a closed ex-
pression for F(z,2*) in terms of G(4,4%) and also a
closed expression for G(d,8") in terms of F(z,2*).
Examples of application of Theorem I to ordering prob-
lems will be given in Sec. VI B. We show, in a later
paper in this series,® that our technique may also be
applied to problems involving time ordering.

3 For the special cases of normal and antinormal ordering, our

theorem is equivalent to the result recently noted by Lax and
Louisell in Ref. 13.
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III. CLOSED-FORM SOLUTIONS FOR
LINEAR ANALYTIC MAPPINGS

Let F(2,5*) be an arbitrary c-number function. We
assume that F(z,2*) may be represented as a Fourier
integral,

F(z,2%)= [ Sla,o®) explaz* —a*z)d?%, @3.1)
where

1
Sfla,a®) = - F(3,2*) exp[ — (az*—a*z) Jd%.  (3.2)

Suppose now that the operator @ will map the
c-number function F(z,5*) onto a ¢g-number function
G(@,8"),

G(d,df)=Q{F(Z,Z*)} ’ (3'3)

and let © again denote the operator for the inverse
mapping, i.e.,
F(z,2*) =0{G(4,d")}. 3.4)

Now under fairly general conditions an arbitrary
g-number function may be expressed in the form of an
“operator Fourier theorem,” discussed in Appendix C.
Let us represent G(d,4") in this way [Eqs. (C1) and
(C2)1:

G(4,6") = / g(e,0*) exp(adt —a*d)d%,  (3.5)

where

1
glayo®) = - Tr{G(4,d") exp[ —(ad'—a*a)]}. (3.6)

The function f(a,a*) in (3.1) is, of course, the Fourier
spectrum of the c-number function. In view of the formal
similarity between (3.1) and (3.5), we will refer to the
(c-number) function g(e,e*) in (3.5) as the Fowurier
spectrum of the g-number function G(8,4%). It is evident
that the relation (3.3) [or, equivalently, (3.4)] connects
the two Fourier spectra f(a,0®) and g(a,0*). We will
first investigate this relationship for the rules of associa-
tion defined in Tables I and II.

We have from Egs. (3.3) and (3.1), on using the
linearity of the Q operator,

G(@,8h) = / Sla,0®)Q {exp(az*—a*z)}d2%.  (3.7)

Consider now the normal rule of association (superscript
N). We then have
@ (az*)"(—a*z)"

QW {eXp(az*—a*z)}=ﬂ(N)[ i > W:I

m=0n=0  pln!

-5 2T

m=0 n=0

dden

min!
o = ()" (—a*d)"
=2 X

m=0 n=0 p! n!

=exp(ad’) exp(—a*d). (3.8)
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We rewrite the last expression with the help of the
Baker-Hausdorff identity#® and obtain the formula

QM {exp(az*—a*z)}
=exp(+3|a|?) expladt—a*d). (3.9)

From (3.7) and (3.9) it follows that, for the normal rule
of association,

G (8,07 = / exp(-+3]a] ) flega®)

Xexp(ad' —a*d)d?a. (3.10)
From (3.10) we see that the Fourier spectrum g (a,a*)
of GM)(4,4") is given by

g™ (e,0*) =exp(+3|al?) fla,a®).

We may carry out similar calculations for the other
rules of association defined in Sec. IT and we find that for
each of them the relation between the spectrum of
G(4,4") and the spectrum of F(z,2*) is of the form

gla,®) = Qe,0*) fle,0®) , (3.12)

where the function Q(a,a*) is characteristic of the
particular rule of association Q. The explicit forms of
the functions Q(a,0*) are shown in Table ITI. It is
seen that, in each case, Q(x,a*) is obtained from a
function Q(e,8), which satisfies the following conditions:

(3.11)

(1)  Q(e,B) is an entire analytic function of two com-
plex variables «a, 8.
(if)

Q(a,B) has no zeros.
In addition, Q(,8) also has the following properties:
(i) 2(0,0)=1.
(iv) Q—a, —B)=2(a,B).

We now define a broader class of mappings F(z,5*) —
G(@,8), which we call the class of linear mappings, by
the property that for each mapping of this class, the
Fourier spectra f(a,0*) and gla,o®) of F(z,2*) and
G(@,4") are related by Eq. (3.12). A linear mapping for
which the condition (i) is satisfied will be said to be
analytic. Throughout this investigation we will mainly
consider the subclass of linear analytic mappings for

TasLE ITL. The filter function € (a,e*) for the commonly employed
rules of association.

Rule of association Q(a,e*)
Normal exp (+3a*a)
Antinormal exp (—ja*a)
Weyl 1
Standard exp (ja2—1a™?)
Antistandard exp(—ia?+1a™?)

4 See Ref. 21, p. 102, or A. Messiah, Quantum Mechanics
(Wiley, New York, 1961), Vol. I, p. 442.
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which the functions Qa,B) satisfy condition®* (i) and
the trivial normalization condition (1i1).

It is clear that a linear mapping F(z,2*) — G(d,d")
is, in a sense, analogous to a time-invariant linear filter,
with the function Q(a,8) playing the role of the filter
Sfunction. A linear mapping for which condition (ii) is
satisfied is analogous to a minimal filter*?; that for
which condition (iv) is satisfied is analogous to a
symmetric filter.

A closed expression for a linear mapping is now readily
obtained by substituting from (3.12) into (3.5) and then
expressing f(a,a*) in terms of F(z,2*) from the relation
(3.2). This result is expressed by the following theorem .43

Theorem II. The g-number function G(4,4") obtained
from a c-number function F(z,5*) by the linear mapping Q
(G=Q{F}) is given by

G(d,d“)=/F(z,z*)Am)(z—d, F¥—adNd%, (3.13)
where

1
AD(z—4, z¥—d") = — /Q(a,a*)

Xexp{ —[a(z*—d") —a*(z—a) ]} d%:.

The operator A®(z—d, z*—4"), defined by (3.14),
plays a central role in the present theory. We will
refer to it as the mapping A operaior for the Q mapping
and we will study its main properties in Sec. IV. Here
we only note that this operator has a clear symbolic
meaning. To see this we note, first of all, that if we
choose

(3.14)

fla,a®) =8 (a—ao), (3.15)

where §®(a—ay) is the two-dimensional Dirac 6 func-
tion [i.e., 8®(a—ao) =08(a™ —ar™)d(a® —ay®), where
a=a®M+iaD, ap=a¢M+iay®, a®, ¢, ay™, and a®
are real, and 6 is the ordinary Dirac § function], then
according to (3.12),

2(0,0®) =Q(0,0*) 6@ (a—ay), (3.16)

and (3.1), (3.3), (3.5), (3.15), and (3.16) then give the
relation

Q {exp(aos* —a0*2) } = Qao,a0*) explaod’ —ao*d). (3.17)

# 1t will be seen shortly [Theorem III: Eqs. (3.25)-(3.27)]

that when condition (ii) is not satisfied, the kernel of the inverse
transform is expressed in terms of a function that has singularities.
An example of such a mapping is provided by Rivier’s rule of
association [D. C. Rivier, Phys. Rev. 83, 862(L) (1951)]. In
this case,
@ {exp (ez* —a*3) } = §[exp (ad?) exp (—a*8) +-exp (—a*d) exp (adh)].
With the help of this result, one can show that for Rivier’s rule,
Q(e,8) =cosh(jaB). Since this function has zeros, the corresponding
function Q(e,8) =Q(—a, —B) that enters the expression for the
inverse transform has singularities.

“ See, e.g., V. V. Solodovnikov, Introduction to the Statistical
Dynamics of Automatic Control Systems, translation edited by
J. B. Thomas and L. A. Zadeh (Dover, New York, 1960), p. 45.

4 Theorem II is valid regardless of whether or not the filter
function Q(a,«*) has any zeros.
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Next let us choose

F(z,2%)=0®(z—2). (3.18)

If we represent 6® in the form of a Fourier integral, i.e.,

8@ (z—3z0)
1
-— / exp{ —[aleg* =) —*Go—) %, (3.19)

and then apply the operator @ to both sides of (3.19)
and use the linearity of ©, we obtain the relation

1
Q5P (z—2) = —Z/exp[——(azo*—a*zo):l

™

XY exp(az* —a*z) }d?e. (3.20)
If on the right-hand side of (3.20) we now make use of
relation (3.17) and compare the resulting expression
with (3.14), we obtain the formula

Q6D (5—20)} =A@ (z29—d, z2*—dT).  (3.21)

Equation (3.21) shows that the operator A (z,—d@,
20¥—a%) is simply the operator onto which the two-
dimensional Dirac & function is mapped via the Q
mapping.

Next we will derive a closed expression for the inverse
mapping (3.4). We have, from (3.12),

fle,e®) =Qea,a)g(e,0) (3.22)

where
Q(a)a*) = [Q(a,a*)j_l .

Since we assumed that Q(a,e*) had no zeros, {(a,a®)
is defined for all values of e, real or complex. If now we
substitute from (3.22) into (3.1) and then use (3.6) we
find that

(3 23)

1
F(z,2%)= —/Q(a,a*) Tr{G(4,8") exp[ — (ad’ —a*d)]}
" Xexp[ (az* —az) Jd%

=7 'I‘I‘{G(d,(i)‘)i2 /Q(a,a*)
Xexpla(z*—ad") —a*(z ——d)]d“’a} . (3.29)

Finally, on changing the variable of integration from «
to —a, we obtain the following theorem.

Theorem I1I. The c-number function F(z,5*), obtained
from a g-number function G(a,dt) by the mapping ©
inverse to @ (F=0, {G}), is given by

F(z,2*) == Tr[G(@,

NAD (z—a, *—a1)], (3.25)
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where
. 1
AW (z—4, z*—ad") = —-/Q(a,a )
7r
Xexp{ —[a(z*—d") —a*(z—d)]}d% (3.26)
and

G, ™) =[Q(—a, —a*) T, (3.27)

In formulating Theorem III we were led to the intro-
duction of the two functions O(a,0®) and ((a,a*),
defined by Egs. (3.23) and (3.27), respectively. It seems
appropriate, theorefore, to associate with each mapping
Q two other mappings, which we will call the mapping
reciprocal to Q@ and the mapping antireciprocal to Q, and
will denote the corresponding mapping operators by &
and by {, respectively. These are the mappings (3.13),
with the function Q(a,a*) replaced by the functions
Q(e,0*) and $(a,e*) defined by Eqgs. (3.23) and (3.27),
respectlvely The mapplng operators for the correspond-
ing inverse mappings will be denoted by @ and O,
respectively.

In Appendix D, we denve the following two reci-
procity theorems, valid for any two arbitrary mappings
QM and QX

OOEW=Wa®,
Q@WEL=0We®,

(3.28)
(3.29)

Here ®® and ©® represent, of course, the mappings
inverse to Q™ and Q®, respectively. We will make use
of these relations later.

In the special case when Q(e,e*) is symmetric [i.e.,
when Q(—a, —a*)=Q(a,a*)], the distinction between
the reciprocal and the antireciprocal mapping dis-
appears. We note that this is so for each of the five
mappings listed in Table IIT and that, moreover, the
Weyl mapping is also self-reciprocal:

QW (@,a®) =) (0,a™).

In Appendix E, we prove the following interesting
result: Each mapping @ maps a polynomial of degree
M in z* and degree IV in z onto a polynomial of degree
M in 4" and degree &V in @ and vice versa.

Finally, we note that in view of the assumptions (i)
and (ii) that we have made about the filter functions
2(e,8), namely, that it is an entire analytic function of
the two complex variables a and 3, which has no zeros,
Q(e,8) must necessarily be of the form*

Q(a,8) = ex(d, (3.30)

where X(a,0) is itself an entire analytic function of «, 8.
Let us expand X(a,8) in a power series around the origin:

X(e,8) =C+Aa+BB~+pa+va*?+raf+---, (3.31)
where C, 4, B, u, v, and \ are parameters. In view of our
4 The corresponding result for a function of one complex vari-
able is derived, e.g., in E. T. Copson, An Introduction to the Theory

of F:Sunchons of a Complex Variable (Clarendon, Oxford, 1960),
p. 159.
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assumption (iii), namely, that ©(0,0) =1, we must have
C=0. (3.32)

Now one may readily verify, by the use of Theorem II
[Eq. (3.13)] and Egs. (3.30) and (3.31), that for a
mapping @ for which the filter function is given by
(3.30) and (3.31),
{2} =4—B, (3.33a)
Qz*}=31+4. (3.33b)

Further, one can show with the help of Theorem III
[Eq. (3.25)] that the inverse mapping © is such that

0{d} =3+B, (3.34a)
Ofdt) =z*—4. (3.34b)

Hence we see that the presence of linear terms in the
expansion (3.31) implies translations in both the
c-number and the g-number spaces and that in order to
have the correspondence z <= &, z* = @, both the linear
terms in (3.31) must be absent, i.e.,

A=B=0. (3.34¢)

This condition is, of course, equivalent to the condition
oQ a9Q

— =— =0 when a=8=0, (3.35)
da a3

which is satisfied by all analytic symmetric filter
functions Q(a,8).

i It is now evident that all the filter functions Q(c,8)
of the class that we are considering and which, more-
over, ensure the correspondence

zexd, Fedt (3.36)
may be expressed in the form (3.30), with
X(a,8) = ua?+rB%+AeB-+higher-order terms
inaand 8. (3.37)

If in (3.37) the higher-order terms are absent, then
Q(a,8) = exp(ua+82+-Aaf). (3.38)

It is seen from Table III that all the five rules of as-
sociations listed there belong to the subclass of mappings
characterized by filter functions of the:form (3.38). We
notef that the Weyl rule of association is the simplest,
with 2(e,8)=1 [X(a,8) =0]. The values of the parame-

TaBrE IV. The values of the coefficients u, », and N [Eq.
(3.38)] for some of the five commonly employed rules of associa-
tion.

Rule of association " v A
Weyl 0 0 0
Normal 0 0 3
Antinormal 0 0 -3
Standard i —1 0
Antistandard —% i 0

G. S. AGARWAL AND E. WOLF 2

ters u, », and \ for these five rules of association are
listed in Table IV.

We study in Sec. VI and in other papers of this
series some of the special properties of the subclass of
linear analytic mappings whose filter functions are of
the form (3.38).

We will now illustrate our results by a few examples.
Let us consider the representation (3.13) of an arbitrary
operator function G(d,4") via the antinormal rule of
association (superscript 4). From (3.20) and (3.21) we
readily find that

1
AD|z,—d, 55" —aT} — - / exp(a*d) X exp(—adt)
T

exp(aze* —a*z)d’x. (3.39)
We can simplify this expression by inserting, between
the first two exponential terms on the right-hand side
of (3.39), the identity operator, expressed in terms of
the projection operators of the coherent states [the
resolution of the identity, Eq. (B3)J]. Then using also
the fact that the coherent states are the eigenstates of
the annihilation operator [Eq. (B1)7], (3.39) reduces to

1
A (z9—8, z0*—id) = ;/exp(a*z')]z’)(z'l exp(—az'*)
Xexp(azo* —a*zo)d?ad®’

1
T f 8@ (z0—2) |5 )& | &%

™

1
= ;IZ())(Zol . (340)

Hence we see that the mapping A operator for the
antinormal rule of association is proportional to the
projection operator of the coherent state |zo).

From Theorem II [Eq. (3.13)] and (3.40), it follows
that

1
G(4,8") = - /F(A)(z,z*)|z>(zld2z. (3.41)

™

The possibility of expressing an arbitrary density
operator of a quantum-mechanical system in the form
(3.41), known as the diagonal cohereni-state representa-
tion, was first noted by Sudarshan.l® A representation
of this type for a more restricted class of operators was
also discussed by Glauber, under the name of P repre-
sentation. Since the original derivation was somewhat
heuristic, the generality of this representation has been
widely argued about. It is now known?% that the

4% J, R. Klauder, J. McKenna, and D. G. Currie, J. Math.
Phys. 6, 733 (1965), and references therein; J. R. Klauder, Phys.
Rev. Letters 16, 534 (1966); J. R. Klauder and E. C. G. Sudar-
shan, Fundamentals of Quantum Optics (Benjamin, New York,
1968), Chap. VIII, and references therein; M. M. Miller and
E. A. Mishkin, Phys. Rev. 164, 1610 (1967).
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TaABLE V. The ¢c-number equivalents of some operators for the normal, antinormal, and Weyl rules of association. In this table,
dmtn/3z*mzm has been abbreviated by 9m,n and 3Cpm, is defined by Eq. (E14).

G(4,8% FW) (3,2%) FM (3,5%) F (3,5%)

dtmgn exp(2|2]2) (— 3™, exp(—2]3|?) g¥mgn exp (|22 (—1)™* "9, n exp(— |2]?)

gngtm (= 1), n (2, —2*) (= 1)m(2)mmiage,, (z/VZ, —z*/V3)  gnghm

|20} {20] 2 exp(—2|z—20l?) exp(—|z—20|?) 8® (z—20)

exp(—\dtd) [2/(14eN)]exp[—2|z[2(1—e)/(1+e™)] exp[—|z[*(1—eN)] exp[A— (e*~1) |2]2]
» fn) w |z} » f(n)

f(@té) 2exp(—2[z|) X ——(—1)"La(4]2]) exp(—|2[9 X f () mexp(|z]?) 2 ——{0r,n6® (2)}
=0 4] =0 gl * n!

diagonal coherent-state representation holds under
very general conditions provided that it is interpreted
in the sense of generalized function theory. We have
just seen that this representation follows at-once from
our general Theorem II, which also shows the signifi-
cance of the weighting function which appears in this
representation. An expression for this weighting func-
tion F4)(z,2*) may readily be derived with the help of
Theorem III (see Appendix F, where a similar cal-
culation is carried out for the ¢-number equivalent for
the Weyl rule of association). The result is (with «
labeling coherent states)

1 .
P (az%) = ~ exp(l2]) / (—alCla) exp(lal?)

Xexp[ — (az* —a*z)Jd%, (3.42)

provided that (—a|G|e) exp(|a|?) is square integrable.
If this expression is not square integrable, (3.42) must
be interpreted in the sense of generalized function
theory. Formula (3.42) was first derived by Methatt
by inverting Eq. (3.41).

From Theorem III [Eq. (3.25)] and from (3.40) it
immediately follows that the ¢c-number equivalent of
G(8,4%) for the normal rule of association is given by

F(5,2%) = (2| G(4,4") | 5). (3.43)

The properties#’48 of F( when G is the density opera-
tor of a quantum-mechanical system were studied by
Kano,2® Mehta and Sudarshan,? Glauber,?* and
Mandel.#*

For the sake of completeness, we also give a closed
expression for the ¢-number equivalent F™) for the
Weyl rule of association:

2 .
FO(s) = = expl2l:] f (—alCla)

Xexp[ —2(az* —a*z) Jd%. (3.44)

The derivation of (3.44) is given in Appendix F.

46 C, L. Mehta, Phys. Rev. Letters 18, 752 (1967).

47 This function in a slightly different context and in a different
form was first introduced by K. Husimi [ Proc. Phys. Math. Soc.
Japan 22, 264 (1940)].

48 In some recent publications, the role of the indices 4 and N

In Sec. VI, the general formulas derived in this
section and certain relationsjderived in Sec. V will be
used to determine the ¢c-number equivalents for various
rules of association and the corresponding ordered
forms of various commonly occurring operators. (See
also Table V.)

IV. PROPERTIES, OF MAPPINGTA OPERATORS
AND SOME RELATED RESULTS

According to Eq. (3.14), each of the mapping A
operators A® may be expressed in the form

1r.
A(m(Zo-—d, zo*_df) = —; /D(a)ﬂ(a’a*)
™

Xexp[ — (aze* —a*z0) Jd%, (4.1)

where
D(a) =exp(adt —a*d). 4.2)

The operators D(a) are the well-known displacement
operators for coherent states (the eigenstates of the
annihilation operator ¢) and their properties have been
extensively studied. We summarize them in Appendix
B. Using the properties of D(a) and the representation
(4.1) of A® one may readily determine the basic
properties of the mapping A operators.

Let us first integrate both sides of (4.1) over the
whole complex 2, plane and use the fact that ©(0,0)=1.
We then obtain the following result:

/ A (z0—8, 25* —ad1)d%e=1. (4.3)

Next let us consider the trace of A®, We have, from
Egs. (4.1) and (B11), again using the fact that
2(0,0)=1,

Tr[AD (50—, 2% —ad") ]=1/x. (4.4)

From the property (B9) of the displacement operator
and from (4.1), we find that

D(Zg —ZI)A @ (21 —d, Zl* _dT)DAf(ZQ —21)

=A(m(22-'(2, Zz*—df) . (45)

is interchanged. Our notation appears to be preferable in view
of the Theorems I and III.
49 1. Mandel, Phys. Rev. 152, 438 (1966).
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Next let us consider the trace of the product of two
mapping A operators

1 .
A (=8, 2* —d") = — / Qj(e,0*)D(e)
™

Xexp[ —(az* —a*z;) Jd%«  (j=1,2), (4.6)

corresponding to two different rules of association. It
readily follows, with the help of (B10) and (B12), that

Tr[A®)(z1—8, 275 — 8N A @D (35— @, 25*—dT) ]
1
= — /Ql(a,a*)ﬂz(——a, —a*)
o

Xexp{ "—[01(21* —Zz*) —a*(21—22)]}d2(x . (47)
In the special but important case when the mappings
@ and Q. are mutually antireciprocal, i.e., when
2=, the corresponding filter functions being related
by the formula Q(e,a®)=[Q(—a, —a*)T, Eq. (4.7)
reduces to

Tr[A® (2,4, ,* — ") AD (g, — 4, 255 — ") ]

1
= "5(2)(21—22) .
™

(4.8)

This relation expresses the orthogonality of the mapping
A operators for any two mappings that are mutually
antireciprocal.

We also have, on taking the adjoint of (4.1),

1 .
AN (z0—8, 50" —d") = — / 2*(2,a*)D"(e)
x .

Xexp[ (aze* —a*zg) Jd%. (4.9)
From Eqs. (4.1), (4.2), and (B12), we find that

Tr[A® (z1—8, 2% — 3" ADT(3,— 4, z5* — )]

1
- = [ 1@t
Xexpla(ze* —21%) —a*(za—21) Jd%a. (4.10)

We have up to now made no special assumptions
about the function Q(x,a*), beyond those made in
Sec. IIT, where these functions were introduced. We
shall now consider separately the implications of some
additional assumptions.

A, Q(—a, —a*)=Q*(a,a*)
We have from (4.9), if we change the variable of
integration from « to —a,

1
Am)f(Zo—'d, Zo*-—(iT)= —‘; /D(a)ﬂ*(—-a, -—-a*)
™

Xexp[ —(azo* —a*z0) Jd%a.  (4.11)
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Comparison of (4.11) with (4.1) shows that if

Q(—~a, —a¥)= Q*(a,a*), then
A,FQ)T(Zo—d, 20*—d") =AW (g30—d, 20*—d"), (4.12)

i.e., the mapping operator is then Hermitian.

Let us now consider the @ equivalent F®(z,5*) of a
Hermitian operator function G(d,4") when the filter
function that characterizes this mapping satisfies the
relation Q(—a, —a*) =Q*(a,a*), i.e., when the two-
dimensional Fourier transform of Q(a,e*) is real. Ac-
cording to Theorem III [Eq. (3.25)],

F®(z2%) =7 TH[G(@,aNA® (z—d, 2 —d"]. (4.13)

If we take the complex conjugate of F ¥, use elementary
properties of the adjoint and of the trace of the product
of twoe operators, we readily find that

[F®(z,2%) *=n TI[G'(@,6NA D (z—4, s*—a")]. (4.14)
Now if Q(e,a*) satisfies the condition
Q(a)a*) = Q*(_a} _a*) ’

so does ((a,0™) and hence, according to (4.12), A® is
Hermitian. If G(d,d") is also Hermitian, the right-hand
side of (4.14) is obviously equal to the right-hand side
of (4.13), so that

LF@(2,8%) J*=F @ (2,8%).

This result shows that when Q*(—a, —a*) =Q(a,a*), the
Q equivalent of a Hermitian operalor is a real (c-number)
Sfunction.

It is seen from Table ITI that for normal, antinormal,
and Weyl rules of association, the filter functions
Q(a,a®) are real. Hence, according to the results that we
have just established, the mapping operators A® for
each of these rules of association are Hermitian and
each of them maps Hermitian operators onto real
c-number functions. We will consider these three rules
of association more fully in Sec. VL.

(4.15)

B. Q(a,a¢*) Unimodular

The class of mappings for which Q(x,e*) is unimodular
is also of interest and we will now briefly consider it.

It has been shown in Sec. III that any arbitrary
operator function G(4,4") can be written, in terms of its
Q equivalent F @ (z,2*), in the following form:

G(d,d“)=fF(9)(z,z*)A(9>(z——d, Z*—dh)d%. (4.16)
On taking the adjoint of (4.16), we obtain the formula

GH(a,d") = f [F® (5,29 FA@T 5 —d, 25 —dD)d%.  (4.17)
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It follows from (4.16) and (4.17) that

Tr(GCY) = / f PO a3,z F @ (a264) T

XTI‘[A (9)(21_6’ Zl*—dT)A(mT(Zz—d, Zz*—df):]
Xd%d%;. (4.18)

Now the trace in Eq. (4.18) is given by formula (4.10).
If we assume now that Q(a,e*) is unimodular, i.e., of
the form

Qa,o*) =explig(a,a®) ], (4.19)
where ¢(a,a®) is real, then Eq. (4.10) gives
Tr[A®(3;—4, 2:*—38N)A®(35—4d, z.*—a") ]

=(1/m)8P(31—25), (4.20)

and (4.18) reduces to
1
Ti[G1(4,4)G(4,61) ] = — ] |F® (0% | %, (4.21)
™

This relation shows that when Q(a,o*) is unimodular,
operators of the Hilbert-Schmidt class are mapped onto
square-integrable functions and vice versa.

It is seen from Table III that the result we have just
established applies to the Weyl, the standard, and the
antistandard rules of association.

C. Q(a,a*) Square Integrable
We ha.ve, from (4.10),

Tr[A®(z—a, z*—a")ADT(z—g, z¥—a)]

-2 / | Qe0®) | ", (4.22)

Hence in order that the mapping A operator A®
belong to the Hilbert-Schmidt class, Q(a,a®) must be
square integrable. It is seen from Table III that this is
so for the antinormal rule of association.

D. Q(e,a*) exp(—3]|a|?) Absolutely Integrable

We will now derive sufficiency conditions for A®
to be a finite operator, i.e., that the diagonal matrix
elements of A®TA® with respect to a complete set of
states exist.

Let us evaluate the matrix elements with respect to’

the coherent states, i.e., the matrix elements
(2| A® (z9—a, 20* —ET) AP (30—4, 0¥ —3dT) | 2).

In view of (4.5) we may, without loss of generality,
take 2o=0. We then obtain, on using (4.1), (4.9), (B8),
(B10), and (B13),

1
Gla®(=a, ~hawi(—a, ~)|s)= = [ [awat)

Xexp(—3%|a| *+z*a—z0*) exp(—3| 8] 2—2%B+28)
Xexp(a*8) 2 (8,8%)d%d?8. (4.23)
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If F(z,2*) denotes the Fourier transform of Q(a,a*)
Xexp(——la[ ?), i.e.,

1
F(z,2%) = - /Q(a,a*)

™
Xexp(—3%|a|>tag* —a*s)d%, (4.24)

then (4.23) may be expressed in the form

(14—, —a)3 @ (—g, —a) | =exp(+— —)

E)zl 622

X5 (21,21%)F*(22,29%) | s1msms; o1 *mrn®=e®s (4.25)

We see that in order that A® be a finite operator, the
Fourier transform F(z,5*), defined by (4.24), must exist
and be infinitely differentiable with respect to both
arguments. A sufficiency condition for the existence of
F is the absolute integrability of the integrand of &, i.e.,

/! Qa,0*)| exp(—3|a|?da< o . (4.26)
This condition will certainly be satisfied if
|Q(e,0*)| =exp(+ulal?), (4.27)

where u is a real constant less than 2. We see from
Table III that this is so for the Weyl and the antinormal
rules of association.

V. CONNECTING RELATIONS FOR
DIFFERENT MAPPINGS

Many formulas may be found in the literature which
in our terminology express relations between two ¢-num-
ber equivalents of the same operator for different rules
of association. Such relations may be derived in a sys-
tematic way from the present theory by the application
of certain general formulas that we will now derive.

A. Integral Relations

Consider two mappings 2@ and Q® and let A@®
and A©@®) be the corresponding A operators:

1 N
A®O (g —d, 21* —d) = — /9“’(01,01*)0(04)

™

Xexp[ — (ez1* —a*z1) Jd%, (5.1)
1
A@D) (z5—3, z9* — 1) = — /9(2)(01 o*)D(a)
72
Xexp[ —(aze* —a*z) Jd?%. (5.2)

From (5.1) it follows, on taking the Fourier inverse,
that

Q0 (a,0%) D(a) = f A (g, — 4, 7% —aF)

Xexp[ (az1* —a*z1) Jd%1.  (5.3)
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We now substitute for D(a) from (5.3) into (5.2) and

obtain the following relation between the mapping A
operators for two different rules of association:

AQ@) (50— 4, 25% — 1) =/A<9"))(zl—ﬁ, z1¥—al)

XSC21(Z2—21, 29¥ —21%)d?% , (54)
where
1
sen(58)= = [80(aa)2 wa)
™
Xexp[ ~(af*—a*§) Jd%. (5.5)

With the help of (5.4), we may easily derive relations
between the Q equivalents F©@™)(z,2%) and F@®) (g 2*)
of an operator G(4,4") for two different rules of associa-
tion. We have by Theorem IIT [Eq. (3.25)]

FAD) (5 %) =7 TH[G(@,8NAC) (z—4, 2*—d1)]. (5.6)
From (5.4) and (5.6), we immediately obtain the
relation
F(§(2’)(z2,z2*) - F(ﬁ(l))(zl,zl*)
5.7

If we let 0@ — Q®, @ — W, and use the fact,
which follows from (3.23) and (3.27), that Q(a,0*)
={(—a, —a*), we finally obtain the required relation
between F@®) and F@™);

X Ro1(z2—21, 22 —21%)d221.

F Q@) (22,2-'2*> — /F Q@) (zl,zl*)

X Ko1(z2—21, 2085 —21%)d%1, (5.8)
where
KzL(E, f*) = 3"'12(_ £ — 5*)
1
= /Q(U(a,a*)ﬁ_l(”(a,a*)
T
Xexp(af* —a*t)d?a. (5.9)

A necessary condition for relations of the type (5.4)
and (5.8) to exist is, of course, the convergence of the
integrals (5.5) and (5.9).

We will now illustrate the relation (5.8) by a few ex-
amples. If suffixes V, 4, and W denote the normal, the
antinormal, and the Weyl rules of association, we have
from Table III

QURI =QNEWM =exp(—da*a),  (5.10)
QUM =exp(—a*a). (5.11)

On substituting from (5.10) and (5.11) into (5.9) in
turn and evaluating the integrals, we obtain the follow-
ing expressions for the three kernels:

Kwa(£,8)=Knw(£E) =(2/7) exp(—2£*E),
Kya(£,8%)=(1/7) exp(—£*¢).

(5.12)
(5.13)
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From (5.8), (5.12), and (5.13), we obtain the formulas

2
PNt == [ F(a)

" Xexp(—2|z—2z0|9)d%0, (5.14)
FM(g2%) =~ | FW)(50,25%)

i Xexp(—2|z—z20| Hd%o, (5.15)
FWMN(g,2%) = — [ F@)(z,25%)

k(g

Xexp(—|z—20|9)d%,. (5.16)

The relations (5.14) and (5.16) appear to have been
first derived by Glauber [Ref. 24, Eqs. (13.36) and
(13.37)]. The relation (5.16) was also derived by
Mehta and Sudarshan [Ref. 25, Eq. (4.4)], who used
it in their study of the diagonal coherent representation
of operators.

From (5.16) one may also easily derive two useful
identities due to Schwinger. If we take

F®)(3,5%) = exp(8*2) f(z*), (5.17)

where f(z*) is an arbitrary function of z* and 8
is a constant, (5.16) gives, after a straightforward

calculation,
P05 = — f( Z*)e [( d )] (5.18)
g )= — X ¥z |. (5.
1—g \1-3 P 1-8

Let G(d,4") be the operator onto which F“)(z,2*) is
mapped via the antinormal rule of association. Then
G(d,d") is also the operator onto which F@)(zz*) is
mapped via the normal rule of association, i.e.,

QOLFD (%) =0FD (30}, (5.19)
or, on substituting from (5.17) and (5.18) into (5.19),
we obtain the identity

Q(A){eﬂz*z}f(dT)

_ 1_;3f<1if6)gm>{exp[(1_%>z*z]} . (5.20)

In a strictly similar way it can be shown that
@A)

_ 1_—1—_[39(N){exp[<1 ﬁ ﬂ),z*z]] f<1—i—ﬂ>. (5.21)

Relations (5.20) and (5.21) are identical (except for
notation) with the identities (B7) derived by Schwinger?
in connection with!the 'quantum theory of angular
momentum.

B. Differential Relations

The integral representation (3.14) may be expressed
in the form (taking Q=Q®)
% Reference 28, pp. 274-276.
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A (54, z*— )

1
- - [(00Ea) 20 et 10 aaDe)
" Xexp[ — (az* —a*z) Jd%

a a\_ a a\1
=Q(2)(_ —, _)9(1)(_ — ——)— /9(1)(04,01*)
dz* 9z 9z* 9z/ w?

XD(a) exp[ — (az* —a*z) ]d%,

ie.,

AQ@ (3 —g, 7*—gt)
a 9
=£21(— —, ——)A“’“))(z—d, F—dh, (5.22)
9z* 0z

where

La1(£,8%) = QP (£,E) QD (£,£7). (5.23)

From (5.23) and (5.6) it follows that

- AN
F@®) (5 2%) = £21<—- —_, —>F(9‘l))(z,z*) . (5.24)
dz* 9z

Again letting 0@ — Q®, M — QM and using the
fact that ((e,0®)=0(—a, —a*), we obtain the follow-
ing differential relation®! between F@®) and F@™");

d 0

F @) (5,5%) =L21<‘ — ‘)F @®)(3,5%), (5.25)
az* 9z

where

LZI(S;E*)=£12('_51 —'E*)
—G®(—t, —£920 (=, —). (5.26)

We will illustrate the relation (5.25) by a few ex-
amples. From (5.26) and Table III, we have

Law(£,8*)=Lwn(£,E) =exp(3£*8), (5.27)
Lan(§,£) =exp(£*E). (5.28)
From (5.25), (5.27), and (5.28), we obtain the relations

1 92
F@(z,5%) =exp(—- - ——) FM(z5%), (5.29)

2 9z0z*

2

1
FW)(z,5%) =exp(—— - > FM(z5%), (5.30)

2 9z0z*
62

FA)(z,2%) = exp( —
0z

) FM(z,5%). (5.31)

9z*

These differential relations, which we have just derived,
may also be obtained from formulas (5.14)-(5.16) by
noting that each of them is a Weierstrass transform.
Such a transform may be inverted by standard mathe-

51 A special case of formula (5.25) was obtained by N. H. McCoy
[Proc. Natl. Acad. Sci. (U. S.) 18, 674 (1932)]. Several other
special cases were found by C. L. Mehta in Ref. 8.
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matical techniques.” The inversion gives again formulas
(5.29)-(5.31).

VI. EXAMPLES

We will now illustrate some of the general results
derived in the previous sections by a few examples
relating to the mapping of operators onto c¢-number
functions and expressing operators in ordered forms.

A. Mapping of Operators onto c-Number Functions
1. G= f(8'd); Normal Rule of Association

Let us first determine the ¢-number equivalent, for
the normal rule of association, of an arbitrary function
f(N) of the number operator N=4'¢. According to
(3.43), we now have

FM(2,2%) =@M f(@'4)} = (2| f(@'d)[2),  (6.1)

where |z) is the coherent state, labeled by the eigenvalue
2. Using the well-known expansion of the coherent states
in terms of the Fock states [#) [see Ref. 11, Eq. (3.7)],
viz.,
1 2 > "
=ex and
|z) =exp(—3]2(?) Eo\/n!

[7), (6.2)

Eq. (6.1) may be expressed in the form

Kmeon

FW)(z,2*) =exp(—|z|?) Zw: f —

m=0 n=0 (m!n!)lIZ
X{m| f(ad)|n). (6.3)

Since |#) is the eigenstate of the number operator,
f(@'8)| ny=f(n)|n). If ;we make use of this result and
of the orthogonality of the Fock states, (6.3) reduces to

P (5= 00 f(a'0))

- |2I°
—exp(—2l%

f(n). (6.4)

n!

It is of interest to note that (6.4) implies that the c-num-
ber equivalent of f(4'd) for the normal rule of associa-
tion is the weighted sum of Poisson distributions, each
with the same parameter |z|2, the weighting factors
being f(%).

2. G=9 exp(—Ba'd); Rule of Association Characterized
by Qa,a*) =exp(uai-+ra*24Aac*).

As another example, we will derive the c¢-number
equivalent, for rules of associations characterized by the
filter function

Q(a,0*) = exp(ua?-+rva*2+raa*),

of the operator

(6.5)

G = exp(—B4id), (6.6)

82T, I. Hirschman and D. V., Widder, in The Convolution Trans-
form (Princeton U. P., Princeton, N. J., 1955), Chap. VIIL.
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where 9T and 8 are c-numbers. With the choice
B=%w/kT, N=[1—exp(—Hw/kT)], 6.7)

where £ is the Boltzmann constant, (6.6) represents the
density operator of a mode labeled by energy #w, of an
electromagnetic field in equilibrium at temperature 7.

As pointed out in Sec. IIT (see also Table IV), the
function Q(a,0*) is, for each of the five usual rules of
association, of the form (6.5). Consider first the case
of the normal rule of association. Since the operator
(6.6) is a function of the number operator, we may
readily obtain its c-number equivalent for the normal
rule by applying the formula (6.4), with the choice
f(n)=9 exp(—Bn). We then obtain the following
expression for F®):

2 2n

PO0(z,2%) =9 exp(—|2]2) ¥ exp(—pn).  (6.8)

n=0 n
The series on the right-hand side of (6.8) will be
recognized as the power-series expansion of

exp{ —|z|*[1—exp(—=8)]},
so that

F)(z,2%) = @M {9 exp(—B4Td)}
= exp(—3]%/7), (6.9)
where

y=[1—exp(=B) 1. (6.10)

We see from (6.9) that the c-number equivalent of the
operator G=9 exp(—Bd'd) for the normal rule of
association is proportlona.l to the Gaussian distribution
in |z|, with variance+/y.

To determine the @ equivalent of the operator
G =9 exp(—B4'4) for any other rule of association
characterized by (6.5), we make use of the connecting
relation (5.25). We then obtain from (5.25), (5.26),
(6.5), and (6.9), if we recall that for the normal rule of
association y=v=0, \=1,

da 0
F<“>(z,z*)=Ln<—5;;,£>91exp(—lzlz\v), 6.10)

where
Loi(§,8) =exp[ —u2—rE*2—(A

Hence

—EF]. (6.12)

62 62 o2
F®(z,4%) =91 epr:-—u—— —r— +QA—3) :I

dz*? 622 929z
Xexp(—|z|2/v). (6.13)
Now we have the identity
expl(= 121/ = " [ exp(=1al?)
" Xexp(a*z—az*)d%, (6.14)
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and if we use it in (6.13), we obtain

Iy
F®(z,2%) = —

exp(—|al|?)
T
)11 v z* z
Xexp<—- —0t— —*t— g —-—a*>d2a, (6.15)
T T T T
where
7=(r+r—1). (6.16)

The integral appearing in (6.15) may be evaluated with
the help of a formula derived in Ref. 53, Eq. (1.18),
and one obtains the following expression for F(®(z,5*):

F®(z,5*) = 0{91 exp(—pa'a)}

Ny stz 24 raz*
= exp(—— o ) , (6.17)
(72 —4uy) r2—4uy
provided that
Y+A—p—r—3>0. (6.18)

Condition (6.18) ensures the absolute convergence of
the integral (6.15).

With the choice of the normalization constant

N=1/yr, (6.19)

Eq. (6.17) represents a joint Gaussian probability distri-
bution in the two complex variables z and z*, whose first
and second moments are given by

(z)=(z*)=0,
EH==2, EN=—2, (@*=r.
It is of interest to note that the two moments (z2) and
(z*2) depend only on the particular choice of mapping.
If G is the density operator of a single mode of the

electromagnetic field in thermal equilibrium at tem-
perature T, then we have from (6.10) and (6.7)

v=1/N=[1—exp(—tw/kT) 1= (+1),

where

(6.20)

(6.21)

fi=[exp(hw/kT)—1T (6.22)

is the average occupé.tion number of the mode. Equa-
tion (6.17) then gives

1 uz vz 24-7/zz*
F®(z,7%) = - exp(-— W) (6.23)
o o
where
= (A1), (6.242)
o=(r"2—4w)12, (6.24b)
Condition (6.18) now becomes
fiti+A—p—2>0. (6.25)

8 V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961).
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We see from Table IV that for all the five rules of as-
sociation listed there, A—u—»> —1. Since 7 is neces-
sarily positive, condition (6.25) is satisfied in all the
five cases.

3. G=4'ma™; Antinormal Rule of Association

Next we determine the c-number equivalent, for the
antinormal rule of association, of the operator

G=dtd™ (m a non-negative integer). (6.26)
We have, according to Eq. (3.42),
F(A)(z,z*)z@u){d’rmdm}
1
= - exp(1s]9) [ (—alatmar eyl
™
Xexp[ — (az*—a*z) Jd%. (6.27)

Using the fact that the coherent states |a) are eigen-
states of the annihilation operator &, Eq. (6.27) reduces
to

1
P2 = = exp(lz] f (—a¥)m(e) exp(—al?)
Xexp[ — (az* —a*z) Jd%

1 gem
— = exp(]2]H— fexp<—|a12>
™

dzmIz*™
Xexp[ — (az* —a*z) Jd%
2m
=exp(z]? exp(—|z]?). (6.28)
dzmIz*m

We now make use of the following identity that may be
verified by induction:

a2m
dz*mazm exp(—Fs's)
= (—B)mexp(—B|z|)Ln(8]z|*), (6.29)

where L,(x) is the Laguerre polynomial of order .
From (6.28) and (6.29) with =1, we obtain

F(52%) = @@W{gImgm} = (—1)mL,(s*2). (6.30)

Next we give two examples of mapping of operators
that are not explicitly given as functions of ¢ and 4.

4. G=|n)(n|; Weyl Rule of Association

We will now determine the c-number equivalent for
the Weyl rule of association of the projection operator

G=|n)nl, (6.31)
for the Fock state |#). According to (3.44), it is given by
F(3,5%) =@M |n)(n|}

2
=~ exp(2lal) [ (~alm)alo

Xexp[ —2(az* —a*z) Jd%«. (6.32)
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Now the scalar product of a coherent state |a) and a
Fock state |n) is"

(n]a)=exp(—}|alDar/v/ (1),
so that (6.32) becomes

(6.33)

2
PO (5% = (-7;) exp(2]2]?) / (=a)"(a)" exp(—al?)

Xexp(2a*z—2az*)d%

2 9% \
N nl(4)» exp(2lz] 2)<626z*>
Xexp(—4|z]%). (6.34)
Making again use of the identity (6.29) we find that
F(z,5%) =0 {|n)n|}
2(—=1)n

exp(—2|z| ) La(4]2]%), (6.35)

where L,(x) again denotes the Laguerre polynomial
of order #.

5. G=|20)(20| ; Normal Rule of Association

As the last example of mapping of operators onto
¢-number functions, let us determine the c-number
equivalent, for the normal rule of association, of the
operator .

G =20}zl , (6.36)

where |20) is a coherent state. The c-number equivalent
of this operator for the normal rule of association is,
according to (3.43) and (6.36), given by

FM(3,5%) = O {]20){z0| } = (3] 20) (20| 2) . (6.37)

The scalar product of two coherent states is given by
formula (B2), and on using it we obtain

FM(5,5%) =0 ™M {[20)(z0| }

=exp(— |20|2) exp(zez*+20¥2—2%2).  (6.38)

In Table V we list, for convenience, the ¢-number
equivalents for the normal, the antinormal, and the
Weyl rules of association of the various operators®
considered in this and in the next section.

B. Ordering of Operators

In Sec. IT we have reduced the problem of expressing
an arbitrary operator G in an ordered form, appropriate

54Tt should be noted that the ¢-number equivalents corre-
spodning to the projection operator |m)(m| on Fock state |m)
may be obtained from those corresponding to the operator
f(@'8) by the replacement f(#) — 8n,m. This result follows from the
fact that if the operator f is expressed in terms of Fock states, i.e.,

7@t = g HOIDIGE

then the operator |m){m| corresponds to the choice f(#) =8n,m.
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to some prescribed type of ordering, to the problem of
determining the corresponding c-number equivalent
F(z,2*) of G(d,4"). The result is expressed by our
Theorem I [Egs. (2.22) and (2.23)7], according to which
the Q-ordered form G§®(4,d") of G(4,4") is given by

§OEN=SDFOGF},  (639)
F®(2,2%)=0{G(4,d")}. (6.40)

Here S® denotes the substitution operator for Q
ordering and © represents the mapping inverse to €.
We will now illustrate this theorem by a few examples.

where

1. Normally Ordered Form of Operator G= f(d'd)

As a first example we will determine the normally
ordered form of an arbltrary function f(IV) of the num-
ber operator N=4d'd, i.., of the operator

G(@,ah)=f(%). (6.41)

According to (6.39) and (6.40), the normally ordered
form of this operator is obtained by applying the sub-
stitution operator S for normal ordering to the
c-number equivalent F®)(z, z*) of G. We have already
determined this equivalent; it is given by Eq. (6.4), viz.,

FW(3,5%) =@M f(a'a)}
=exp(—|3|?) Z

'2n

f (n). (6.42)

We expand F®™(z,2*) in a power series in z and g*

and obtain
N i

m=0 n=0

*m+nzm+n
min!

r (= 1)'f(f—3)

=3 *rgr(6.43)
r=035=0 sl(r—s)!

where, on going from the first to the second line, we

have made the substitution m-+nr=r, m=s. Applying

now the substitution operator S@) to both sides of

(6.43) [see Eq. (6.39)], we obtain the required normally

ordered form of f(d'd):
(=1*f(r—s)
—gtgr.

slr—s)!
Formula (6.44) was derived previously by Louisell
(Ref. 21, p. 114) in a less direct way.

From (6.43) several results of interest may be derived

as special cases. For example, if G is the Kth power of
the number operator, i.e., if

G=(a'd)%, (6.45)

where K is a non-negative integer, then f(»)=#% and
(6.44) gives

f@e)=% ¥

7=0 8=0

(6.44)

@ar= 3 3 SO

r=0 s8=0

sli(r—s)! (646)
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Now the infinite series over r may be reduced to a
finite series by the use of the identity®

r (=1D)(r—s)F

=0 for »>K>0, (6.47)
=0 sl(r—s)!
and (6.46) reduces to
r (—1)(r—9)%
(@'a)% = Z > ——————dtrar. (6.48)
r=0s=0 sl(r—s)! -

This formula for the normally ordered form of the Kth
moment of the number operator may be used, for ex-
ample, to compute the counting moments in terms of
the counting correlations in photoelectric measurements
of light fluctuations.?®

2. Antinormally Ordered Form of Operator 4tmg™
Next let us express the operator
G=atmgm (6.49)

in antinormally ordered form. We have, according to

Eq. (6.30),
F@ (5,55 = @ gtmgm) = (—1)"L,(s2*), (6.50)

where L,, is the Laguerre polynomial of order m:

m (1) <7>(ZZ*)T_

r=0
% The identity (6.47) is a spec1a1 case of the identity

(6.51)

L(23

¥ om
S=2 (Kl)(—l)K(oz+K)N=0 for M>N 320,
K=p

which may be established as follows:

= (M)( 1)KL=0 N )aN-LKL

Jr e,

= a-}-x%)”(l—x)” o

From the last expression it is evident that S=0if M >N >0. We
are indebted to Dr. J. H. Eberly for bringing this identity and its
proof to our attention.

8 1,. Mandel, Phys. Rev. 136, B1221 (1964). The corresponding
expression for the operator (4'4)* in the antinormal form may be
obtained from the identity

exp(—pé'a) =2 {exp[ (1—e7F) [2[2+£1},

which is a special case (for pu=»=0, A=—%) of result (6.17).
Expanding both sides of this identity in powers of 8 and equating
the coefficients of equal powers of 3, we obtain the required form

(@18)E = 2 z (——%;;—lﬁdfd’f’.

This formula for the antinormally ordered form of the Kth
moment of the number operator may be used to compute the
counting moments in terms of the counting correlations in the
measurement of light fluctuations by a quantum counter; see
also Ref. 49.
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Hence we have from (6.50) and (6.51)

F (=3 (_—I)f—(m) @y, (6.52)

=0 7l

On applying to both sides of (6.52) the substitution
operator S for antinormal ordering, we obtain the
required representation of the operator (6.49):

m (=)™ rm
gtmgm="3%" —-—( )d’d“.
r=0 r! 7

(6.53)

3. Weyl-Ordered Form of Operator G=exp(—p4'a)

As another example let us determine the Weyl-

ordered form of the operator
G=exp(—pd'd), (6.54)
where $ is a c-number.

We have already determined the c¢-number equiv-
alents of this operator, for the class of rules of associa-
tions characterized by the filter function Q(a,a*)
=exp(uai+tra*2+iaa*). (See Sec. VI A2). For the
Weyl rule of association, one has (see Table IV)
p=r=A=0 and hence we obtain from (6.17), on making
this substitution and taking 91=1,

F)(2,2%) =@ W) {exp(—pd'd)}

=(v/7) exp(—23*/7), (6.55)
where, according to (6.10) and (6.16), with A=0,
v=(—exp(—8))*, (6.56)
iri -
. [iﬁ’(_@] . (657
2L1—exp(—p)

Hence (6.55) may be written in the form

F(z,5%) =2(1+exp(—8))~" exp(—2z*/7)

© 1\»
—2(1+exp(—B) ' 3 (— —) . (6.58)

n=0 T.

On applying the substitution operator for Weyl order-
ing to (6.58), we obtain the required Weyl-ordered
form of the operator (6.54):

exp(—Batd) =2[1+exp(—p) I

X3 <—f)”(afnan)w. 6.59)

n=0 T

In this formula ("4")w denotes, as before, the Weyl-
symmetrized form of the operator d'7d», i.e., the sum
of all possible products involving » creation operators
and #» annihilation operators, divided by the total
number of such products.
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4. Normally Ordered Form of Operator G=|z0){z0|

As the last example let us consider the normally
ordered form of the operator

G =20}z ,

where |z0) is a coherent state.
According to (6.38), the ¢c-number equivalent of this
operator for the normal rule of association is
FM(2,2%) = O @ {| 20)(z0] }
=exp(— | 20| %) exp(zoz*+z0*s—35%2).

(6.60)

(6.61)

This function may be expanded into a power series
in z and z* by the use of the following identity [Ref.
57, Eq. (A1)]:

exp(\w-+uzt+rws)

© © Vn#m—n "'ﬂ)\
-£ £

m=0 n=0 ! v

)w"z”‘, (6.62)

where L,™(x) are the associated Laguerre polynomials.
From this identity, with A=zo, w=2*, u=2z¢*, v=—1,
and from (6.61) we obtain

o o (1))
FM(3,5%) =exp(—|20|?) X 2 ——

m=0 n=0 m!

X L, "(| 20| 2)z*nam.  (6.63)

Applying now the substitution operator S to both
sides of (6.63), we obtain the required normally ordered
form of the operator |zo){zo| :

o o (=) a)
|z0)(z0| =exp(—|20|?) X ¥ ———

m=0 n=0 m!

X Lam=(| 20| Ddtram.  (6.64)

In particular, when 2o=0, we have, on using the fact
that L,%(0) =1,

o (—1)»
0] =5 2

=0 gl

atnan.

(6.65)

Formula (6.65) for the normally ordered form of the
projection operator of the vacuum state has been
derived previously by other methods.%

VII. MAPPING IN COORDINATE-MOMENTUM
REPRESENTATION

For the sake of completeness, we will now briefly
consider the form of our main theorems when the basic
operators are the coordinate and the momentum opera-
tors ¢ and p, obeying the usual commutation relation
(2.1), viz., [§,p]=1i%. As in Sec. II, we denote the
corresponding c-number variables ¢ and p, respectively.

57B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1076

(1967).
58 See, e.g., J. Schwinger, J. Math. Phys. 2, 407 (1961).
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Let F(q,p) be an arbitrary function of the ¢-numbers
g, p and let G(4,p) be the corresponding function of the
operators ¢, $ onto which F(g,p) is mapped by means of
some rule of association, characterized by a mapping
operator Q. Let © again characterize the inverse

mapping,
G(4.5)=F(¢,p)}, Flg,p)=0{G(@p)}. (7.1

Each mapping € is characterized by a ¢-number func-
tion Q(u,p). The associated mapping A operator®
is defined by the formulas [see (3.14) and (3.21)]

AD(go—g, po—P)

= o Q(u,0) exp{ —iu(go—)+v(po—5) 1}

Xdudv (7.2a)

=0{8(g0—q)d(po—2)} - (7.2b)

By strictly similar arguments to those given in Sec.
II1, one obtains the following closed expressions for the
two mappings (7.1):

G@.p)= / Flop)A®(g—q, p—B)dgdp,  (1.3)

F®@(q,p)=2xh Tr[G(q,$)A P (g—¢, p—P)]. (14)

In (7.4), A® s the mapping A operator (7.2a) for
mapping antireciprocal to Q, i.e., for mapping charac-
terized by the filter function

Q(u,p)=[Q(—u, —v) . (7.5)

We may readily define expressions for the Q equiva-
lents F(q,p) of a given operator function G(¢,p), for
each of the three rules of associations defined in Table I.
For the standard rule of association (superscript .S),
for example, we have, by a strictly similar argument to
that given in connection with Eq. (3.8),

QS (u,0) =exp(—2ifuv) ,

so that, according to (7.6), (7.5), and (7.2b),

(7.6)

A® (go—4, po—P)
1
- (@2n)?

/ exp(3iuvh)

Xexp{ —i[u(go—@)+v(po—p) 1} dudv
1

- o exp(ivp) exp(iuq)

Xexp{ —i(ugqo+vpo) }dudv, (71.7)
where on going from the first to the second line of (7.7)
% In the special case, when Q refers to Weyl’s rule of corre-

spondence, A@ g essentially the operator introduced by Kubo
in Ref. 1(a).
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we used the Baker-Hausdorff identity.* Hence accord-
ing to (7.4) and (7.7),
ﬁ -~ .o~ .
P~ [ TP explinh) expling)]
T
Xexp[ —i(ug+vp) Jdudv. (7.8)

One may readily evaluate the trace in (7.8) either in
the coordinate or in the momentum representation. In
the coordinate representation we have, if we use the
completeness of the g-states and the relation

exp(—itp/M)|¢)=q+8),
Tr[G(¢,5) exp(ivp) exp(ing)]

=Tr[ / dg'| )| G@,B) exp(ieh) exp(iu@]
- / (@ 1G@:5) exp(ivh) | ¢') expling)dd

- f (@ 1G@P)| ¢ — o) expling)da. (7.9)

From (7.8) and (7.9) it follows that
F®)(g,p) =ﬁf<l1| G(q,p)|g—Mv) exp(—ivp)dv.  (7.10)

In a similar way we may derive an expression for
F®(q,p) in terms of the matrix elements of G(¢,$) in
the momentum representation, and we find that

FO(q,p) = / (o=t G(@,5)| ) exp(—iug)du. (1.10')

In a similar manner we may obtain expressions for
c-number equivalents of G(§,p) for the antistandard
rule of association (suffix 4.S5) and the Weyl rule of
association (suffix W). The results are

FUS)(q,p) =1 f (—10|G@D)|a) expliop)ds  (7.11a)

- / (8 G(@,5)] p+-hae) exp(—iug)du (7.11D)

and
P g) =1 [ =4l Gg D] gH4)
exp(ivp)do (7.12a)
i [ (o=l @) p+ 3
Xexp(—iug)du. (7.12b)

Expressions (7.12a) and (7.12b) are, of course, well
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known.!2:2=45%2 A gpecial case of (7.10") was also derived
by Mehta.?

We see from (7.10) and (7.11) that in the special case
when G is a Hermitian operator,

F®*(q,p)=F“49(g,p), (7.13)
and from (7.12) we see that
F®X(q,p)=F")(g,p). (7.14)

Thus the ¢c-number equivalent of a Hermitian operator
is real for the Weyl rule of correspondence and is com-
plex for the standard and antistandard rules. In the
latter two cases, the equivalents are complex con-
jugates of each other.

As an example of these formulas, we may consider
the c-number equivalents for the antistandard and the
Weyl rules of association of the operator

G=§"p™ (n, m are non-negative integers). (7.15)
It is shown in Appendix G that the c-number equiva-
lent of the operator (7.15) for the antistandard rule of
association is
= (ih)"
FUus(gp) =3

r=0 7!

nlm!

g=rpmr. (1.16)

(n—r)(m—r)!

In a similar way we may show that for the operator
(7.15), the Weyl equivalent F")(g,p) is given by

o fiA\T
rgp=% (%)

Since the operator (7.15) is already in standard-ordered
form, obviously we have

F®(g,p)=g"p™.
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nlm!

g=rpm=r.  (1.17)

ri(n—r)(m—r)!

(7.18)

APPENDIX A: WEYL RULE OF ASSOCIATION
AND WEYL SYMMETRIZATION
OF OPERATORS

The correspondence rule of Weyl® between a c-number
function F(p,q) and an operator function G(5,9) is as
follows: One represents F(p,q) as a Fourier integral,

Fpg)= f / flu) expliluptog)Jdudo. (A1)

Then the corresponding operator function is defined as

G o) = / f Fus) explilup-rod)Jdudv.  (A2)

59 A beautiful demonstration of (7.12a) from general physical
considerations was recently given by E. Wigner, in Prospeclive in
Quantum Theory (MIT, Cambridge, Mass., 1971). We are in-
debted to Professor Wigner for pointing out this paper.
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We will now show that the Weyl rule associates with
each monomial

Fun(p,g) =p™q" (A3)

(m,n are non-negative integers) an operator that is
readily expressible in a certain symmetrized form.
Let fmn(#,0) be the inverse Fourier transform of

Frn(p,9):

1
fonti)= o [ [ expl—itur el
gntm 1
—_ (’L) m+n.

dumdv™ (2m)?

% / / exp[ —i(up-+ag) Tdpdg

= (@)™ (u)6™(v) (A4)

where 6 (u) is the mth derivative of the Dirac &
function. It follows from (A4) and (A2) that the
operator Gum.(p,§) that corresponds to the monomial
Fon(p,g) =p™g™ in Weyl’s correspondence is

Gunp) =+ [ [ 305000

X expli(up+vg) Jdudv
P Nm+n(\r
£ g
r=0 r!
X (up+vg)dudv. (AS)

On using the result that
—+-c0

J@)o " (u)du=(—1)"f(u), (A6)
where f™ (x) is the mth derivative of f(u), we readily
see that the only terms that survive under the summa-
tion sign in (AS) are some of the terms arising from the
expansion of (up+vg)” for r=m-+n. More precisely,
one deduces from (AS) that

Gun(D,§) =(1/N) X[ coefficient of £my™ in the
expansion of (¢p+ng)™], (A7)

where
N=(m+n)/mn!. (A8)

Equations (A7) and (A8) imply that Gu.(p,§) is the
sum of all possible products involving 7 $’s and = §’s,
divided by the total number of such products. [Equa-
tion (2.2) of the main text provides an explicit example. ]
We will denote this expression by (5™¢™) w,

Gmn(B,)=(B"4")w, (A9)

and refer to (p™§*)w as the Weyl-symmetrized form of
pmgn. Of course, (p™4™)w~p™g", except when either
m or n is equal to zero.
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The fact that p™¢™ and ($™§") w correspond to each
other in the Weyl association may be used, with the
help of Theorem I, to express an arbitrary operator
function in the “Weyl-symmetrized form,” i.e., in the
form

Ms

G = ZO Cmn(B7Q)w - (A10)

0

n

APPENDIX B: PROPERTIES OF COHERENT
STATES AND OF ASSOCIATED
DISPLACEMENT OPERATORS

The coherent states!! |z) are defined as the eigen-
states of the annihilation operator &:

(B1)

Since 4 is not Hermitian, the eigenvalues z are, in
general, complex. In fact every value of z, real or com-
plex, may be shown to be an eigenvalue of 4. The states
|z) are not orthogonal; the scalar product (z’|z) has
the value

d|z)=z|z).

(B2)

The coherent states form an overcomplete set, yield-
ing the resolution of identity:

- [1otlas=t.

The integration in (B3) extends over the whole complex
2z plane.

The coherent states may be generated from the
vacuum state |0) by the application of the displace-
ment operator!!

(#|2) =exp{zz*—3|2|*—5|7[}.

(B3)

D(z) =exp(zdt —2*d). (B4)
In fact, .
D(@)|0y=]z), (BS)
and more generally,
D()|2)=|2+2) exp[2(zz*—2"*2)]. (B6)

The following properties of the displacement opera-
tors are among the most important ones!!:6%,

Unitarity: ) A
D-(z)=D'(z).

Hermitian adjoint:
Di(z)=D(—32). (B8)

Displacement: For any arbitrary operator function
G(é,a"),

(B7)

Dt(z)G(8,6)D(z) =G (642, a1 +2*).
Product:
D@ )D(z) =D(2+2) exp[A(z'z*—2'*3)]. (B10)
% J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960).

(IG‘A). E. Glassgold and D. Holliday, Phys. Rev. 139, A1717
965).

(B9)
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Trace: .
Tr[D(z) ]=76?(3).
Orthogonality:

Tr[D(z)D () ]=w6® (z—2').
M atrix elements with respect to coherent states:
(#|D(0)|2)=(#'| s) exp(az™—a*zs—}]a|?), (B13)

where (7’| 2) is given by (B2).

The displacement operators form a complete set in
the sense that any operator function G(4,4") of the
Hilbert-Schmidt class may be expressed as a linear
combination of the displacement operators. The proof
of this result is given in Appendix C.

(B11)

(B12)

APPENDIX C: COMPLETENESS OF DISPLACE-
MENT OPERATORS. OPERATOR ANALOG
OF FOURIER THEOREM AND SOME
RELATED THEOREMS

Since the completeness of the displacement operators
is basic for the present theory, we will now establish
this result.’? It may be expressed in the form of the
following theorem that may be regarded as an operator
analog of the Fourier integral theorem and of
Plancheral’s theorem for ¢-number functions$:

Every operator function G(8,8%) of the Hilbert-Schmidt
class, i.e., such that Tr[G(4,4")G'(4,87)]< o, may be
expressed uniquely in the form

G4, = / g(a0t)D(@)d, 1)
where

1
gloa®) = — T1[G(4,8"D" (o) ]. (C2)

Moreover,
1
~ TH{G(6,)G (4,8 ]= / gl %, (C3)
™

We will also establish the following generalization of
(C3). If G1(8,8") and G(4,8") are two operators of the
Hilbert-Schmidt class and gi(a,o®) and go(o,a*) are their
“Fourier transforms,”’ given by equations of the form
(C2), then

1 A
© THGA(0,8)Ga(0,8) D" (@)1= [ (859

X ga(a—B, o* —*) expl 5 (Bo* —*a) Jd*8.

The identity (C4) is in some respects analogous to the
convolution theorem® on Fourier transforms.

(CH

62 Qur attention has been drawn to a paper by J. C. T. Pool
[:J'. Math. Phys. 7, 66 (1966)], where another proof of this result
is given.

8 E. C. Titchmarsh, Introduction to the Theory of Fourier
Integrals (Clarendon, Oxford, 1948).

#R. R. Goldberg, Fourier Transforms (Cambridge U. P.,
New York, 1961), pp. 18-20.
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In order to establish (C1) we will consider the co-
herent-state matrix elements of the operator function

1
H(4,6") = — f Tr[G(8,6") Dt (@) 1D(e)d%. (C5)

™

Let us first evaluate the coherent-state matrix ele-
ments of the displacement operator. We have from (B4),
(B1), and (B2),

(z| D(@)|#)=exp(—}|a|*—3}|s]2—}|7|?
+5* +az*—a*s’). (CO6)

Next let us evaluate the trace appearing on the right-
hand side of (CS). For this purpose we represent G in
terms of its coherent-state matrix elements:

1 N
c)== [ [iciipaiassy.  ©
™
One then readily finds, with the help of (B8) and (C6),
that
Tr[G(8,6") D' ()]

== [ 6161 expi—lal 31131

—ay*+a*B+v*8)d2Bd%y. (C8)

If we use (C6) and (C8), we readily find that the
coherent-state matrix elements of the operator H,
defined by (C4), are

(s| H(a,8M|%)

1 Py
T //I(ﬁﬂ*)@wm exp(—3181*—3|v[*+7*8

—313|2—3|#|*+2*2)d%Bd>, (C9)
where
167 = [ exp(=al
Xexp[a(z*—v*) —a*(z’—B)]d%. (C10)

The integral I(8,y*) may readily be evaluated, and one
finds that

I(8,v*) =m exp(—2*s —By*+v*'+82*). (Cl1)

On substituting (C11) into (C9), one readily finds,
with the help of (B2), that

(= H(a,a"\5")

1
=;r_zf/(z‘B)(Blélﬂ(ﬂz')dzﬁd?y. (C12)

On using the resolution of the identity [Eq. (B3)],
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(C12) reduces to
(2| H(@,8") |2y = (2| G(@,d") | 2'). (C13)

Thus we have shown that all the coherent-state matrix
elements of Iz are equal to the coherent-state matrix
elements of G and we may therefore conclude that
H(4,8")=G(8,a"). Hence (C5) gives the identity

G(d,df)=1 / Tr[G(4,6)Dt (@) 1D (@)d%, (Cl14)

™

which, of course, is equivalent to the two relations
(C1) and (C2). That the representation (C1) is unique
follows immediately on multiplying both sides of (C1)
by D*(8), taking the trace of the product, and making
use of (B12).

From (C1) we also have

TG (6,8)G(8,07)] = / / 4,046 (65)

XTi[D(@)D'(8)]d%d*8, (C15)

which, on using (B12), reduces to (C3).

Consider now two operator functions Gi(d,d") and
Go(8,4") of the Hilbert-Schmidt class. According to
(C1) and (C2), each may be represented in the form

Gi(a,8) = [ GEEIDEPE,  (C16)

where

1 A .
gi(8,8%) = — Tr[G(4,4ND'®)] (j=1,2). (C17)
T
It follows from (C16) and (C17) that

TGy (0.8")Ga(0,8)D' (@)1= / / B nrr)

XTi[DB)D(y)D' (e)1d?d*y.  (C18)
Now according to (B12) and (B10),
TiD@D () D! (@)]=m5(8+7—a)

Xexp[F(Br*—6*r)], (C19)
and, on substituting from (C19) into (C18), the identity
(C4) follows.
APPENDIX D: PROOF OF RECIPROCITY
RELATIONS (3.28) AND (3.29)

We will now establish the two reciprocity relations
given by Egs. (3.28) and (3.29), viz.,

AWRW=Wa®
GOEL=0e®,

(D1)
(D2)
The superscripts (1) and (2) specify any two mappings
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and { denotes the mappings reciprocal to @, i.e., the
mapping whose filter function is [Q(a,o*) ]

Let us consider the effect of operating with @@ QW
on an arbitrary c¢-number function F(z,5*), according
to Theorems II and ITII [Egs. (3.13) and (3.25)]:

O@QWLF(2,5%)}
=1r/d2z’F(z',z'*) Tr[A@M) (5! —4, 2/* —at)

XAG@D (z—d, z*—a")]. (D3)

According to Eq. (4.7), with Q0 — QO Q® — §®,
the trace under the integral sign may be expressed in
the form

Tr[AGM (3 —4, 5% —aNAG®) (5—¢, 5* —ah)]
1 r. ~
=— ]Q(l)(a,a*)9(2)(——-a, —a*)
3
Xexp{ —[a@@z*—z*)—a*(z’' —z) ]} d%«. (D4)
Similarly,

OWED(F(2,2%)} =7 f d% F (3 2'%)

XTI AQ (g — g, 2% — 31 AGD) (34, 5* —41)] (DS3)
and

Tr[A@®) (5 —d, 2% —4T)AGD) (3—a, z* —a') ]
Lor. ~
=— /Q(z)(a,a*)ﬁ(l)(—a, —a*)
7['3

Xexp{ —[a(z"*—2*) —a*(s' —2) |} d%.

Now from the definitions (3.23) and (3.27) of & and &,
it immediately follows that Q®(q,a*)3®(—a, —a*)
=0 (—a, —a*)QD(a,0*), so that (D6) may also be
expressed in the form

(Do)

Tr[A@®) (5’ —§, 5™ — ") A@M) (z—4, 5* —dt) ]
1 ~ -_—
- / GO (—a, —a*) DD (a,0*)
1r3

Xexp{ —[a(z"* —2z*) —a*(z' —2) ]} d%.
Comparison of (D4) with (D7) shows that
TrI[A®D (' —4, #* —a")A@D) (z—4, ¥ —a)]

=Tr[A<9(”)(z’—d, 2% —gt)
XA®M) (z—8, z*—4")]. (D8)

D7)

On comparing (D3) and (DS5) and on using (D8), we
obtain the first reciprocity relation (D1).
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To establish the second reciprocity relation, let us
consider the effect of operating with @®O® on an
arbitrary operator function G(d,4"). We have from
Theorems II and IIT [Egs. (3.13) and (3.25)]

QOOW(G(4,d")} = / % AG®) (53— g, 5% —af)

XTr[G(4,8NAGM) (z—4, 5*—a")]. (DY)

Let us express A®® and A@™) on the right-hand
side of (D9), in the integral form (4.1). We then obtain

Q(2)@(1){G(d’df)}
1
- — [EaaG0 8D THL6GDE)]

Xexp{ —[(a+B8)s* — (¢*+8%)z]}d*ad*Bd*%. (D10)

The integration with respect to z gives 720®(a+8),
so that (D10) reduces to

Q(z)@(l){G(d’dT)}

1
= - /Q‘”(a,a*)ﬁ‘”(—a, —a*)D(a)

™

XTr[G(8,8")D(—a)]d2%

1
= - /Q(Z)(a,a*)Q(l)(a,a*)D(a)

™

XTr[GD(—a)]d%, (D11)

where we have used the relation 3(—a, —a*) =0(a,0*).
It is seen that the right-hand side of (D11) remains
unchanged if the superscripts (1) and (2) are inter-
changed. The same must, therefore, be true of the left-
hand side of (D11) and this result implies the second
reciprocity theorem (D2).

APPENDIX E: MAPPING OF POLYNOMIALS

The class of Q@ mappings that we have considered in
this paper is characterized by the property (3.17), viz.,

(E1)

subject to certain restrictions on the functions Q(a,o®).
To obtain a fuller understanding of such mappings, we
will now investigate the mapping of polynomials.

Let us begin by determining the operator function
Gmn®(8,4%), onto which the monomial z¥*7z” is mapped
via the @ association:

G, ®(8,87) =Q{z*m2"} . (E2)
According to (E2) and Theorem II [Eq. (3.13)],

Q {exp(oz* —a*z) } = Qa,a*) exp(adf —a*d) ,

G ®(8,8") = /z*"‘z"A‘“)(z—d, Z¥—aNd2z. (E3)
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On substituting for A® the integral representation
(4.1), interchanging the order of integration, and
evaluating the integral over the z domain, we find that

gmn

Gm,n®(8,d") =/Q(a,a*)(—1)m' 5(2)(a)}

da™da*"

Xexp(adt —a*d)d’«. (E4)
We will convert the integral on the right-hand side of
(E4) into an expansion in powers of ¢ and 4%. Such an
expansion may be expressed in many different ways.
It will be convenient to express it firstas a normally
ordered form. For this purpose we make use of the
Baker-Hausdorff identity® to rewrite the exponential
term in (E4) in the form

exp(ad —a*d) =exp(adt) exp(—a*d) exp(—3aa®),

and carry out the integration. We then obtain the
following expression for Gpm,,@:

am+n

Gm,n®(8,8") =(=1)" {Q(a,0*) exp(—3aa’®)

am™da*n

Xexp(ad') exp(—a*d)} | ama’=0. (ES)
Next let us expand Q(e,0*) into a power series:

Qa,ad®) =3 3 wija*al.

i=0 j=0

(E6)

Since £2(0,0)=1, wopo=1. We also expand each of the
exponentials on the right-hand side of (ES) into a series
and obtain the formulas

w o2 = ow (—E)k(E)
G @@ =(=1)"T 2 L L T oy

i=0 j=0 k=0 r=0 s=0 k! 7!
(_d)s am-(»—n o
X [o*aia*kakara*s] (E7)
sl damda*n a=a*=0
Now
6m+n
[(e*)ire(a) o]
damdo*™ a=a*=0
= m!n!am,j+k+16n,i+k+g . (ES)
Hence
o -] 0 0 0 -] (—%)k
Gnn®(@,aN)=(=D)min! 3 30 3 2 3 wij
i=0 j=0 k=0 r=0 s=0 k!

(@ (-0

7! s!

X

(E9)

Om, ikt r0n,ithts -
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Now since

QN ¥z} =gtrgs | (E10)

where @@ is the mapping operator for the normal rule
of association, we may evidently express (E9) in the
form

Gomn @ (8,67 = Q2*a"} = QW Fr s ™ (2,5*; Q)}, (E11)

where the c¢-number function Fo,,®™(z,z*; @), which

isevidently the normally ordered equivalent of
Gm,n®(d,4"), is given by
w ® o o w (—L1)k
Foun ™z Q)=(=Drmn! 32 20 20 20 2 wig———
=0 j=0 k=0 r=0 s=0 k!
) (—2)°
X 5m,j+k+r6n,i+k+s
rl st
—1)

=(—1)"m!n! Z Z Zk: wi;( X

(z*)m—j—k ( *—Z) n—i—k

(m—j—k)! (n—i—k)!

(E12)

In the last expression the summation extends over all
the non-negative integers ¢, 7, & such that
i+k<n, j+E<m. (E13)

Let us now introduce the set of polynomials
3Cun(2,5%), defined by the formula

min(M,N) (—3)% (g*)M—Fk

GCMN(Z,Z*) =MIN! Z

¥=0 k! (M —Fk)!
(z)V—*
. (E14)
(N—Rk)!
Then (E12) may be expressed in the form
n m mn!’
Fna®™ (2% Q) =2 2 wi(—1)"————
=0 j=0 (m— )l (n—1)!
XImjni(—2,2%). (ELS)

The polynomial 3C,,» defined by (E14) is evidently
a polynomial of degree M in z* and degree NV in z.
These polynomials are closely related to the Hermite
polynomial of two variables®® and may be generated by
means of the formula

1 92
3Car,n(z,2%) =exp<— -
2 9z0z*

)z* My (E16)

% Higher Transcendental Funciions (Bateman Manuscript
Project), edited A. Erdélyi, W. Magnus, F. Oberhettinger, and
F. C. Tricomi (McGraw-Hill, New York, 1953), Vol. II, p. 283.
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The expression on the right-hand side of (E11), to-
gether with (E15), expresses Gm,»® as a normally
ordered polynomial of degree m in @' and degree #
in g, i.e., in the form

Gna@(@,8) =2 X cpe(@N?(@)?,  (E17)
=0 g=0

where the ¢,q are constants.

We may, of course, express Gm,,@ also as an anti-
normally ordered polynomial. It is readily verified that
this polynomial is also of degree m in @' and degree »
ind,i.e.,itis of the form

Gna®(@,8) =2 2 cpd(@)(a")?,  (E18)
=0 ¢=0

where the ¢, are constants. This fact may be readily
verified with the help of the commutation relation

4,8 ]=1. More explicitly, calculations strictly similar
to those that led to (E11) and (E15) show that G, @
may be expressed in the form

Gmn @ (@,8") =Qz*m2m} = QD(F,, , D (5,5%; Q)}, (E19)
where

min!
(m— ) (n—1)!
XIom—j,n—i(2,5%) .

Fa® (2,55 @Q)=2 2 wii(—1)*

i=0 j=0

(E20)

In (E19), Q) is, of course, the mapping operator
for the antinormal rule of association,

QU {g*rgsy =dsgir (E21)
and Fp, 4 (3,2*; Q), given by (E20), is the antinormally
ordered equivalent of Gy,®.

From the linearity of the @ mapping and from the
results that we have just established, it follows that a
¢-number polynomial

M N
Fz,5*) =3 X dmnz*™s",

m=0 n=0

(E22)

where the d., are constants, is mapped onto the
operator function

G (a,8") =QF (2,5%)}

M N
=2 X dmaGna P84, (E23)

m=0 n=0

where Gm,,@ is given in normally ordered form by
(E11) and (E15) and in antinormally ordered form by
(E19) and (E20). Thus we have now established the
following result: Each mapping Q maps a polynomial of
degree M in z* and degree N in z onto a polynomial of
degree M in 4% and degree N in d.
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Let us now consider the inverse problem, of mapping
polynomials in ¢ and @' onto ¢-number functions. We
first determine the Q equivalent of the normally ordered
product at™e, i.e., the c-number function

P @ (2,2%) = ©{dmdn} . (E24)

The function Fy,,® may readily be determined with
the help of the reciprocity relation (3.29) and some of
the results that we just established.

According to the reciprocity relation, we have, for
any two rules of association [superscripts (1) and (2)],

QLEW =00 @ (E25)

where the bar again denotes reciprocal mappings. Now
we have, from (E19) and the relation

g¥mgn = @M {Gtngny

RO (177)) =0 (P D% )] . 0

Moreover, the normal and the antinormal rules of as-
sociations are mutually reciprocal, i.e., QW =8@; if
we make use of this result on the right-hand side of
(E26) and compare the resulting expression with (E25),
we may immediately conclude that

OfdT™4") =F o, n @ (3,2%; Q).
Finally, letting @ — &, we obtain the result

Od"ar} =Fp,» D (2,5*; Q). (E27)

Frn ™ (2,8%; Q) is, of course ,given by (E20), with @
replaced by &, i.e., with the coefficients wi; [see (E6)]
replaced by coefficients w;;, where

Ha0®) =[Ueye®) =% ¥ Gyatiad.  (E28)

i=0 j=0

It follows from (E27) and the linearity of the ©
mappings that a normally ordered polynomial in ¢ and
d', ie., the operator function

M N
G(8,8") =3 X buadt™d"

m=0 n=0

(E29)

(where the b., are constants), is mapped onto the
c-number polynomial

M N
F®()=0{G) =32 2 bualmn™®(5,2*;Q). (E30)

m=0 n=0

In a strictly similar way as led to the derivation of
(E27), we find that the Q equivalent of the antinormally
ordered product ¢7d™” is the c-number function

O4rd! ™} =Fp,n ™ (3,5%; ), (E31)

where Fon, ™ (z,2*; Q) is given by (E15), with Q being
replaced by © in accordance with (E28). This result
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implies, in view of the linearity of the ® mappings, that
an antinormally ordered ploynomial in 4 and &', i.e.,
the operator function

N M
G@3,8) =% 3 bnadrdtn

n=0 m=0

(E32)

(where the b, are constants), is mapped onto the
c-number polynomial

F®(z,2%) = O{G(4,d")}

N M _
=3 ¥ banFam®(2,2%;0). (E33)

n=0 m=0

Since Fun™® and Fn.,? are each a polynomial of
degree m in 2* and # in z, Eqgs. (E29), (E30), (E32),
and (E33) imply that eack Q@ maps a polynomial (irrespec-
tive of whether ordered normally or antinormally) of
degree M in & and degree N in & onto a polynomial of
degree M in 5* and degree N in 2.

It is remarkable that the two functions Fpm,™ and
Frnn™® defined by (E15) and (E20), respectively, play
such an important role in the @ mapping of polynomials
in z and z* as well as in the inverse ® mapping of
polynomials in & and &'.

APPENDIX F: DERIVATION OF (3.44) FOR WEYL
EQUIVALENT F®)(z,2%)

The mapping A operator AM)(z—g, z¥—3d") is,
according to (3.14) and Table III, given by

1
AW (z—a, z*—df)=—2/exp[:(—-az*—a*z):|
™

Xexp(adt —a*d)d?. (F1)

According to Theorem III [Eq. (3.25)] and (F1), the
c¢-number equivalent, for the Weyl rule of association,
of an operator function G(4,4") is given by

1 .
F)(z5%)= — f Tr[G exp(ad’—a*d)]
T

Xexp[ — (az* —a*z) 1d%:, (F2)

ie., it is the Fourier transform of the function (1/x)
XTr[G exp(adt—a*d)]. We will also make use of the
identity

1
exp(=2131)= — [ exp(~4lal?)
Xexp[ — (az*—a*z) ]d%. (F3)

It follows from (F2), (F3), and the convolution theorem
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on Fourier transforms that

F(3,5%) exp(—2]3]?)
= / Cla,o*) exp[ — (az* —a*z) Jd%a, (F4)
where C(a,o*) is the convolution product

1 A
Claa®) = / Tr{G exp[(a—p)d" — (o*—p*)d ]}

2m?

Xexp(—368*)d*8
1
- / TH(C exp[(a—p)d']

Xexpl —(o*—p*)d]}
Xexp(—3|a—p|2—%[B|?)d*8. (F5)

In passing from the first to the second expression on the
right-hand side of (F5), we have used the Baker-
Hausdorff identity.

The integral may be simplified by inserting the
resolution of the identity in terms of the coherent states
[Eq. (B3)] between the first and the second term, and
also between the second and the third term in the trace
in (FS5). We then obtain the following expression for
Cla,a™):

C(a,a*)=—1— exp[—%[a—B|*—%(8]"]
=)

X (22| G| 21) (21| 22) exp[(a—B)zr*— (a* —*)zs ]
X d2%1d%:d*8. (F6)

On integrating over 8 and on using Eq. (B2) for the
scalar product (z1]22), (F6) reduces to

Clavatt) = i [ [l

Xexp(—3%|z1]2—3%]22|2—%al?)

Xexp(—3a*zat+3az*)d%1d%,

_ 51_ / / (—Balz2)(eal G20

X (Zl | %a>d221d222
=(1/2m)(~}a|G|3a). (F7)

Finally, on substituting (F7) into (F4) and changing
the variables of integration from «, o* to 2, 2a*, we
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obtain formula (3.44) for the Weyl equivalent F ")(z,5*)
of an operator function G(¢,4"):

2 .
FO(e) = ~exp(2lz] f (—alCle)

Xexp[ —2(az* —a*z) ]d%a. (F8)
This simple expression for F")(z,2*) in terms of the
coherent-state matrix elements is very useful in com-
puting the Weyl equivalent of many commonly oc-
curring operators.

APPENDIX G: DERIVATION OF (7.16)

In this appendix we will derive the c-number equiva-
lent of the operator G=§*p™, corresponding to the
antistandard rule of association. From relation (7.11a)
it is clear that F(4)(g,p), corresponding to G= g p™,
is given by

FUs) (g p) =1 f (=] 57| @) (g—hE)" explitp)d. (G1)
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It should be noted that (G1) may be written in the form
F49)(q,p)

. @™
=coefficient of

in 7 / (g— Pt exp(iNp) | g)

m!

X(g—hE)mexp(itp)dt . (G2)

If we use the displacement property of the operator
exp(i\p) and the orthogonality of the |g) states, it
follows that

(g—nt|exp(inp) | q) = (g—AE| g—HN)
=08(hE—nN)=(1/1)6(t—N). (G3)

On substituting from (G3) into (G2), we finally obtain
the formula

m

F“48)(g,p) =coefficient of

in [exp(inp)(g—AN)™]
m!

(k)" nlm!
= (n-—r)!(m—r)!q P

8

(G4)

.1
I

which is the desired result.



