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Neutral-Pion Decay and the Weak-Coupling Limit*
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An exact version of Pagels s sum rule for neutral-pion decay is derived for massless pions. It is incon-
sistent, however, in the weak-coupling limit. If we modify this limit by including the 0. meson, then the sum
rule is consistent and also yields the physically reasonable relation Ky = K„.

I. INTRODUCTION

HE electromagnetic decay of vr ~ 2p has aroused
much concern lately owing to the null result of

current algreba. ' Adler' has recently shown that a
model-dependent extension of the neutral PCAC
(partially conserved axial-vector current) relation gives
a reasonable correction to the lowest-order triangle-
graph Steinberger calculation' of Ii .

On the other hand, Goldberger and Treiman, 4 Pagels, '
and Abarbanel and Goldberger' have derived sum rules
for F based on the gauge invariance of nucleon Comp-
ton scattering instead of on current algebra or PCAC.
Fox and Freedman~ have rederived the Pagels result
from finite-energy sum rules in order to tighten Pagels's
original arguments and to point out the sum rule's
conspiratorial nature. Nevertheless, such sum rules are
still suspect until tested against the weak-coupling

(g,~~ small) perturbation answer of Steinberger. '
It is to this end that we reconsider the Pagels sum

rule. Moreover, by taking pions to be massless, we re-
derive in Sec. II the Pagels sum rule independently of
conspiracy. This is analogous to the statement that the
Goldberger-Treiman relation gf =mg~ is exact in the
limit of zero pion mass. '

In Sec. III we show that this massless-pion Pagels
sum rule is not consistent, with what is usually thought
of as the weak-coupling limit (WCL). The problem is
the anomalous magnetic moment of the proton ~„
which occurs in the Pagels sum rule. However, inclusion
of the 0- meson in theWCI. leads to a„=—~„, and then
the sum rule gives the known Steinberger result.

In the conclusion, we stress the importance of this
WCI and test the various sum rules for F against it,
as well as against the data.
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II. SUM RULE FOR MASSLESS-PION DECAY

2 dv
A v" (0 0) = — —ImA v~"'(v', 0) .

o V

(3)

No separate s- and I-channel pole terms are needed on
the right-hand side of Eq. (3). This is because the
nucleon Born graphs LFigs. 1(a) and 1(b)] give, from
Eq. (1) and the Appendix,

A p'"'~(v, t) =-,'e2ns(1+x„)
(s—m')(u —m')

g2

+ [,+l(.'- -')j, (4)
2m

'

and at 3=0 the pole term of Eq. (4) vanishes.
On the other hand, we can evaluate Av~'&(0, 0) by

considering the Mandelstam double dispersion relations

{a) {b)

FIG. 1. Born graphs for Sy —+ Sy.

{c)

o H. F. Jones and M. D. Scadron, Nucl. Phys. B10, 17 (1969);
also see Imperial College Report No. ICTP/67/26, 1968 (un-
published).
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We begin by deriving the zero-pion-mass Pagels sum
rule. In the Appendix we review the kinematics of
nucleon Compton scattering, extract the nucleon Born
contributions, and write down the Regge behavior of
the various invariant amplitudes. Using the amplitudes
of Ref. 9, we note that the asymptotic behavior of
A4, A5, and A6 indicates that the combination

A ~{.)=2,g 45(.)+2~gg, C.)

(where A45 ——mA4+4A;) is dominated only by the
pseudoscalar-pion trajectory

Av&"&(v, t) —& 2mP6, tv .&" as v —&~ . (2)

Hence, when t = 0 (cose, = 1), even though n (t = m '= 0)
=-0, A~&") still vanishes for large v. Because A4, A5,
and A6 are kinematic-singularity-free (KSF) and A p
is even in v, we have
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A ,~'& (v, t) =—
4mm ' —t

(6)

Next we form A~~"& from Eq. (1):

for 245 and A6 and thus indirectly for A& through Eq.
(1). The f-channel pion Born graph [Fig. 1(c)],as well
as the direct- and crossed-channel nucleon Born graphs,
will contribute to A~. Separating off the continuum
amplitudes 245' and A6', we write

A ~(&,t) = 2& A4P""+ 2m' P""+ 2' 4g'+ 2m/A 6'. (5)

Clearly the second term of Eq. (4) contributes to Eq.
(5) even at »=3=0.

We proceed to calculate the t-channel pion Born
graph. We use the Goldberger-Treiman choice for the
pion decay amplitude F, so that the y(k)+&r ~ y'(k')
vertex is'0 —F e"*(k')e"(k)e„,(k'k). From the de6nition
of the covariants in the Appendix, we see that the pion
Born graph contributes only to A6,

which is the zero-pion-mass Pagels sum rule. We stress
that the Reggeized pion need not conspire to obtain
this result if m =0. The conspiracy condition of
Freedman' " is manifested by the structure of Eq. (1)
with 84= —A» and 86——4mA45 (see the Appendix).
For future reference, we also note the Drell-Hearn sum
rule, "which in terms of our amplitudes is the state-
ment that 24~"~ is superconvergent, "' so that

g2 00

2 g 2

8m'
d&' ImA4'"&(»', 0) . (11)

III. WEAK-COVPLING LIMIT

Now we investigate Eq. (10) in the WCL. In this
limit, the coupling strength g is assumed to be small
enough so that ordinary perturbation theory is vahd.
For the moment, we neglect the continuum integral in
Eq. (10) (we shall return to it later), and the term g„'
—I»:„', it being of a higher order in g than I~:„. Then we
have

A& &"'(» f) = 'gP—-
m. -t

However, in our world m = 0, so Eq. (7) becomes

A»&"& (&,t) =-,'gP.

(7)

(8)

—gF.= (e'/m)K„ (12)

to lowest order in g. On the other hand, the lowest-order
graph for neutral-pion decay is the triangle graph, Fig.
2, first calculated by Steinberger, ' giving for zero-mass
pions

for all t, including t= 0. If we keep m NO and evaluate
the numerator of AJ instead of A6 at the pole,
3/(m '—

&!) ~m '/(m '—3) in the spirit of Hearn and
Leader" or Pagels, we also obtain a nonvanishing
result at t=0, but with opposite sign as Eq. (8). This
limit is nonuniform if m —+ 0 before t ~ 0. Moreover,
A~ is not one of our six fundamental invariant ampli-
tudes; hence setting 3=m„' in the numerator of Zq. (7)
is an incorrect procedure for us."

Finally, we set /= 0 and let &
—& 0 in Eq. (5). Because

245' and A6' are KSF in» and t, only the Born terms
survive and

A p& "&(0,0)= (e'/2m)[~„+ ,'(x„' «„')5-+ ',—gF, (9-).
Comparing Eqs. (3) and (9), we see that

—le-=( '/2 )["+l(.'—-')3

2 Zp—ImA» &"&(v',0), (10)
r;p V

—gF =(e'/m)n /n, - (13)

where n =g'/4m Com.paring Eq. (12) with Zq. (13),
we see that

(14)
to lowest order in g.

If, instead, we consider the usual perturbation-theory
graphs for the anomalous magnetic moment of the
proton, " Figs. 3(a) and 3(b), we obtain a different

I We use e»(k'k) =c» pk' k& with metric g»=(1, —1—1—1)
and ~p12g ——1. Our convention at the pion-nucleon vertex for the
Hamiltonian density is ggp5$@, where

'~'- 1 0

in the Pauli representation and g 0~„=—g O„„=g. Thus the
7I.P -+ &'(0') +p {k) amplitude is Sp; = —i{2'-)'8'(Ep;)e„*(k')e,*(A:)
)& ~»(k'k).

"A. Hearn and E. Leader, Phys. Rev. 126, 789 (1962).
"The sign change in the pole term for m @0 versus m =0 is

similar to the PCAC statement 8 3 =em 'p, where m =0 im-
plies that the pion pok occurs on the left-hand side with opposite
sign in the g'=0 limit.

FIG. 2. Triangle graph for w ~ 2)e.
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hury and D. Z. Freedman, ibid. 168, 1739 (1968)."S.D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
(1966).

~' B. Fried, Phys. Rev. 88, 1142 (1952); see also H. A. Bethe,
S. Schweber, and F. DeHo6man, Mesons end Iiields (Row and
Peterson, Evanston, Ill. , 1956), Vol. II, p. 292,
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answer than Eq. (14).For massless pions, the pion cur-
rent, Fig. 3(a), contributes n, /2a. , whereas the proton
current, Fig. 3(b), contributes —n, /4a. . Hence in this
limit K~ ~ n /4zrath. er than n /vr

The apparent inconsistency can be resolved by in-
cluding a 0- meson in the WCL. This can be justified
when we realize that the Pagels sum rule is primarily a
consequence of the low-energy theorems, and therefore
of gauge invariance.

Adler and Dothan" have shown that the Wa, rd
identities arising from the local commutation relations
LV, V]= V and [V,A]=A also follow from gauge in-
variance (and massless leptons). Moreover, massless
pions are consistent with axial-vector current conserva-
tion. A Geld-theoretic model which respects axial-
vector current conservation and the local commutation
relations is the o- model. "

In this model, the neutral scalar 0- couples to the
nucleon with the same strength as do pions,
gÃ(o+&5~ m)1V. It also couples directly to pions and
other 0-'s through another independent coupling con-
stant P, which is essentially the four-pion contact inter-
action. We stress, however, that the cr model is not
really a model in the WCL because A, can be computed

r
Mnm

(b) (c)

FIG. 3. Nucleon anomalous magnetic moment graphs.

in terms of g to renormalize the logarithmically diver-
gent box graph, "so that 7& O(g'). Moreover, the 0 mass
is related to the z mass by' "

m&r 1g7r

Thus, for m =0, the o- mass is zero to order g.
Returning to the WCL, we include zero-mass 0-'s to

the same order as zero-mass m's and keep the 0 mass
corrections only in higher order. Consequently, we add
the graph of Fig. 3(c) to our previous WCL graphs for
the proton anomalous magnetic moment, Figs. 3(a) and
3(b). A simple calculation shows that Fig. 3(c) adds an
amount —n /4a+n /a. to «~. Hence, to lowest order in
the WCL,

which is consistent with the Pagels-Steinberger limit,
Eqs. (12)—(14).

"S.L. Adler and Y. Dothan, Phys. Rev. 151, 1267 (1966).
'7 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
~ L. M. Brown (private communication).
'~ See also S. Gasiorowicz and D. A. Gefkn, Rev. Mod. Phys.

41, 531 (1969}.We follow their notation.

(a) (b)

(e)

FIG. 4. Higher-order dispersion graphs for Sp ~ E"/.

K

So in the WCL we find that

(19)

which, of course, is very nearly true in the real world
(«„=1.79, «„=—1.91). The Drell-Hearn sum rule, Eq.
(11),gives us an indication that Eq. (19) is indeed true
in the WCL. We assume that ImA4('=0 to order

O(g4). This would be very difficult t,o verify because
the relevant graphs are of sixth order 0(&."g'). If this
assumption is correct, then Eq. (11) implies that K~'

=K„'. This sign could be checked because Eq. (19)

Now we return to a more careful analysis o:f the dis-
persive integral in Eq. (10). In fact, the "box" graphs
having a-N and 01V intermediate states, Figs. 4(a)—4(e),
are of lowest order O(e'g'). Nevertheless, they do not
contribute to the amplitudes ImAe&'&(v, t=0). For ex-
ample, Fig. 4(a) occurs with a.+ intermediate states for
external protons and ~ intermediate states for external
neutrons, which means that Im(A "—A "'I

g +»'
—

g -„„'=0.Other graphs are not as trivial, so we use
the identity (HL means Hearn-Leader, see Appendix)

—,
' Tr(y&;(P'+ )mM„„(P+m) }= e„„(k'k)APL

(4m&/tP 2)(P„—'N, +1V„P„')AenL, (17)

which allows us to pick off the amplitude ASH~= —2 p.
The only contributions from Fig. 4(b) which survive
the trace operation of Eq. (17) are of similar structure
for the three meson exchanges 0-, x', and x+. But then
ImAr" g,»'+g„o»'= 2g' and ImAe" g +~„'=2g', so
again Imd~(') =0. Finally, when we consider the even-
crossing property of Ap, the remaining graphs, Figs.
4(c)—4(e), contribute terms containing at least one
factor of t and therefore vanish at t=0.

To further appreciate the signi6cance of the WCL
with the a included, we calculate the anomalous mag-
netic moment of the neutron K„ in this limit. Now the
o. does not interact with a neutron and charged proton
current as would be necessary for Fig. 3(c). The usual"
cha.rged-pion (m =0) contribution of Figs. 3(a) and
3(b) to« is
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imPlies 2K"=Kv+K„=O, and the Beg' version of the A;(v, t),
isoscalar Drell-Hearn sum rule replaces K„2—K ' in
Eq. (11) by (K&'&)2.

6

34Ip, =g A, (v, t)Kp„',

IV. COmn, USIOm

We have shown that there does exist a consistent
weak. -coupling-limit perturbation theory for massless
pions. One can in fact test various strong-interaction
sum rules against this WCL in much the same way one
can check that a sum of graphs to a given order in e
must be gauge invariant.

In particular, we have investigated the neutral-pion-
decay sum rule of Pagels. The WCL indicates why the
Steinberger calculation corresponding to a x' decay
width (F =2m 3F 2/642r) of I' 15 eV for 42 15 is in
the neighborhood of the real-world result, " F =7.37
&1..5 eV. Instead, following Pagels and keeping only
the first term in the real-world version of Eq. (10) yields
Eq. (12) with K„=1.79. This gives the correct sign for
F„, as determined by Okubo" and by Gilman, 23 but
implies I' 2 eV. In order that I' 8 eV, it would seem
that the real-world continuum integral of Eq. (10) must
be of the same order of magnitude as the Born term
e2Kv/222. However, according to Fox and Freedman, ' the
continuum integral is small; alternatively, one might
extrapolate the pion pole, Eq. (7), from t=222 '= (140
MeV)' to t=0 in such a way as to pick up the needed
factor of 2.

In contrast, the neutral-pion-decay superconvergence
sum rule of Abarbanel and Goldberger' seems more
compatible with neglecting real-world continuum inte-
gralS, giVing gF =2e2Kv/2—22 and henCe F 8 eV. Yet
this pole term alone is not consistent with the WCL.
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PK
cy ———mK —— ——f,

4m
C2= ——

p

m

K

c3 = t4+ t, —
Sm'

C4= p~m2'
t4K K(tl 2K)

C3= — V, C3 = 2tl+-
2m Sm'

where K and p, are the anomalous and total magnetic
moment of the proton or neutron in units of e/2222.

For large v and fixed t, the Regge asympototic be-
havior of the A ") is"

where the A„(v,t) are free of kinematic singularities and
zeros in v=P Q=4(s I) —and in t=h2, with P
=-', (p'+p), Q= ', (k'+-k), 6= p' p=—k k', —and s
= (P+k)', 24= (P—k')'. The six covariants K„„'can be
taken to be'

K„„'=tg„„', K„,'=tPp'P'„' ,'(tP'+—4—v')g„„',

K..'= t(P'V'+V'P') 4vg..'—Q,
K„,'= 4P„'P„' 2v(P p'—yp'+p„'P„')

+vh' QV' V'QV')+ltg—.'Q

K..'=- tb p', v.'3+ g(~Q —v) g,.',
K..'=-

tI v.'Qv. '-v. 'Qv, '3= 4m', .(k'k),

Lwhere 4p„(k'k) =4p„ak' ka). These covariants are es-
sentially those of Yamamoto24 and of Bardeen and
Tung. "The prime on the covariants indicates the gauge
projection operator g„„'=g,„—k„k„'/k' k, which guar-
antees gauge invariance of X„„and hence of Jtt/I„„.' "
The isotopic decomposition is A;(v, t) =A,"&(v,t)I
+A, &"&(v,t)r3, so that A, l'&=-2, (A "+A ") and A &"&

= —,'(A v —A,").
Writing the sum of the s- and u-channel nucleon Born

terms as
A p = e2c,/(s —m 2) (24 —2222),

we have

APPENDIX

We brieQy review the kinematics of nucleon Compton
scattering. ' ""The covariant M function is dined
from the S matrix as

Sr, ——br;+i (22r) 4tt4(P'+ O' P k) ep*(k'—)24(P—')

XM"24(p).,(k) .
where

iV„, can be developed into six invariant amplitudes

A2&")

2P3p= P4p= 4224P3p', —P3p= —4P3,

~ plpVa" +Ply p2Vagl 3

P2pv ' +P2&,v

~ P Vap 2+P P2Va34 —3—
~ p4ptv +P4~ v "'

~P3ptv P '+P3p'tv P +P3~ v "'
~ P3,v"+P3 v",

~ M. A. S. Beg, Phys. Rev. Letters 17, 333 (1966)."Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
'2 S. Okubo, Phys. Rev. 179, 1629 (1969)."F.I. Gilman, Phys. Rev. 184, 1964 (1969).
'4 K. Yamamoto, Phys. Rev. 169, 1353 (1968)."W. A. Bardeen and W. K. Tung, Phys. Rev. 173, 1423 (1968).

Ply, = 2P2g, = —224P3g, =--2, 222P4g, = —2P3g, .

Similar statements can be made on the A;&').

"F. D. Gault and M. D. Scadron, Imperial College Report No.
ICTP/67/33, 1968 (unpublished).
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Finally, we relate our covariants' A; to the sets of Fox and Freedman, 8;, and of Hearn and Leader, "A;:

Bi=2(PsA s+2mA s), Bs= 2A4) Bs= 4A s,
B4=As= 2—(vS4s+mtAs) = —Ai,
Bs= —4L2P'(A i+mA s)+vA4s),

Bs——As+As ——4mA4s= 4m(mA4+4A5),

A i+A s ———2Lt(A i+mA s) —2vA gs],

A i—A, = (tP—'+4v')A i+4vA 4s,

A4 —As ——4(2vA s+P'A4),
A6 ——tA3 —2sA4.
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Low 1Th-eorerns for Charged-Pion Photoyroduction*
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Low-t theorems for charged-pion photoproduction are proven on the basis of gauge-invariance restrictions.
They can be simply formulated by means of the minimal gauge-invariant extension of pion exchange (MPK).
It is shown that whereas MPK leads in yÃ —+ m+E only to weak restrictions for do/dt's near the forward
direction (~ t

~
&vsl, it does actually account for all the structure observed in vp ~ v a++ in this t domain.

Results for these reactions as well as the other charge modes of yE —& ~+6 are discussed and compared with
experiment.

I. INTRODUCTION

'HE properties of the photon lead to unique conse-
quences for any process in which a photon par-

ticipates. We know that in any such four-point function,
one finds low-energy theorems in all channels in which
a Born term exists' at the position relevant to this
particular exchange. In high-energy photoproduction,
one may reach very low t values; therefore, one can look.

for a manifestation of the low-t theorems. Alas, the low-t

theorems affect only some of the amplitudes, and
therefore we are not guaranteed a priori that their eRect
will be visible in the shape of the differential cross
sections.

The low-3 theorem is enforced by gauge invariance.
Whereas, in general, any individual exchange can be
written in a manifestly gauge-invariant form, that is not
the case when a Born term is involved. (We mean here

by Born term the exchange of a particle that appears
also among the external ones. ) It turns out that the sum
of all possible Born terms is a gauge-invariant combina-
tion. As a matter of fact, it is usually built out of several
pieces that are separately gauge invariant. The condi-

* Work supported in part by the National Science Foundation,
and in part by the U. S. Atomic Energy Commission, under
Contract No. AT(11-1)-68 of the San Francisco Operations Ofhce.

t Also a member of the Department of Computer Science,
University of Texas, Austin, Tex.

f On leave from Tel-Aviv University, Tel-Aviv, Israel.
~ D. Horn and M. Jacob, Nuovo Cimento 56A, 83 (1968).

tions of gauge invariance' ' may force one amplitude to
have a specific value at the point where another ampli-
tude has a pole. This behavior is exhibited in Sec. II,
in which we review the situation in yX —+ w+Ã. Thus
the form of a certain set of invariant amplitudes is
determined at the position of the Born term. In our
case, this corresponds to the pion exchange in the t

channel.
Since we cannot determine all possible amplitudes at

t=IJ,' on these grounds, we cannot predict in general the
shape of the cross section near t=o. Nevertheless, we

may take the following attitude: Compute Co/Ct as if
only the minimal gauge-invariant combination corre-
sponding to a n. exchange existed (the exact meaning of

this minimal combination, to be denoted MPK, will be
clarified in the text). Compare the result at t==0 with

experiment. If you find an agreement in magnitude, it
means that the other contributions are small and you
should therefore predict the right shape near the for-
ward direction. H, however, the result at t=o does not
agree with the experimental number, then all you can
hope for are bounds on the rate of the variation of Co/Ct

near 3=0. This procedure should work. in the range
t& —p' and is simply based on the assumption that

' J. S. Sall, Phys. Rev. 124, 2014 (1961).
'F. S. Henyey, Phys. Rev. 170, 1619 (1968); T. Kbata and

K. K. Lassila, Phys. Rev. Letters 21, 250 (1968); W. A. Bardeen
and W.-K. Tung, Phys. Rev. 173, 1423 (1968).


