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d$2=
(U'+&)'4&2V2

dts+ p~ pl/ Jx~
(U2+$)2 47 2V2

(29)

and the potential

4 =7 (V' —~)/(V'+&)

satisfy the Einstein-Maxwell equations.

(30)

III. CONCLUDING REMARKS

The immediate use of the present result is in the
generation of electromagnetic metrics from known

form. Suppose that the metric

ds'= U'dts+ U 'y dx~dxe (28)

with V and y~p functions of x', x2, and x', satisfies the
field equations with incoherent matter as source. Then
the metric

solutions of the Geld equations corresponding to non-
empty spaces filled with dust. Further, from the corre-
spondence of the metrics (28) and (29), we note that
any singularity in p p of one metric is also a singularity
of the second metric. Also, if t/2«1, we observe that
the singularities V= 0 in Eq. (28) give the same singu-
larities as in (29). However, if V is large, V'/(V'+1)'
tends to zero and the two metrics behave differently
with regard to their singularities. Thus, there is a
one-to-one correspondence between the singularities of
both metrics except when

~
V~ —+~ in the nonempty

space. This correspondence between the singularities
of metrics (28) and (29) may have some relevance in
the study of the problem of gravitational collapse.

In conclusion, we hope that the results of the present
paper will lead to deeper understanding of gravito-
electrodynamics in nonempty spaces.
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EGects arising from relativistic corrections to the c.m. motion for particles interacting with an external
electromagnetic Geld and also for their interparticle interaction are considered. The Hamiltonian disclibing
the electromagnetic interaction to order v jc, including Coulomb, magnetic, and spin-orbit sects, between
two slowly moving charged particles is derived and the correct choice of c.m. dynamical variables is shown
to be diferent from the usual nonrelativistic form. With the modiGed treatment of the c.m, . motion intro
duced by considerations of relativistic invariance, the Hamiltonian is put in a form which exhibits, except
for one term, a clean separation of over-all c.m. motion and internal dynamics and, but for this term, is of
the required relativistic form to order v'/cs. The extra term, which spoils the above results, is demonstrated
to be removed by correct treatment of the Thomas precession of the internal orbital angular momentum.
Alternatively, the desired c.m. separation can be achieved by a modiGcation of the free c.m. relativistic vari-
ables induced by the interaction. The relativistic variables for an N-body system with arbitrary interaction
are briefly considered.

I. INTRODUCTION
" 'N order to discuss the dynamics of composite
& - systems, it is essential to distinguish the kinematics
of the motion of the system as a whole from the
dynamics arising from forces between the constituent
particles. Nonrelativistically, this is just the problem
of the separation of c.m. motion, which is well under-
stood for particles interacting through local potentials.

For slowly moving charged particles, the forces

*Present address: Stanford Linear Accelerator Center, Stan-
ford, Calif. 94305.

arising from electromagnetic interaction can be dj.s-
tinguished according to the order in v'/c' (where v is the
velocity of the moving particles) in which they arise.
After the Coulomb forces the next most important eftect,
of first order in v'/c', is the interaction due to the mag-
netic fields of each particle acting on the others. ' glhj]e

'A lucid discussion of the magnetic interaction between two
spinless particles is given in E. Breitenberger, Am. J. Phys. 3$
pe ($968}.This paper also provides a useful selection of back-
ground references on many aspects on electromagnetic forces and
slowly moving particles. For readers who appreciate a rather more
discursive approach, we would strongly recommend digesting this
paper erst. The present article has been written so as to avoid
unnecessary overlap.
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for atomic energy levels this effect is at most barely
noticeable, the magnetic forces due to charged particles
moving in macroscopic conductors are, of course, the
foundation of whole industries.

The point of departure of this paper is the well-known
result that for a system of two particles with a magnetic
interaction it is not possible, according to the conven-
tional treatment, to separate cleanly the over-all
motion of the c.m. and internal motion which should
contain the real dynamics of the system. Thus it would

appear, for example, that the position of the c.m.
itself does not move uniformly or that the internal
angular Inomentum is not conserved. These results are
obtained. )by applying the usual, nonrelativistic de-
composition of the single-particle dynamical variables
into parts describing the over-all c.m. motion and parts
pertaining to the internal dynamics. For a nonrela-
tivistic system this is sufhcient to produce the required
separation of internal and c.m. motion. However,
electromagnetism is the relativistic theory par excel-
lence and, since the magnetic interaction is a v'/c'
e6ect, we are not dealing with a purely nonrelativistic
situation.

A similar problem arises in the treatment of the
interaction of a system of particles with an external
electromagnetic field. It is conventional to write the
interaction of such a system, to given order in e/c, as
the sum of the Foldy-Woutheysen interactions of the
individual particles with the external field to that order.
However, when a nonrelativistic separation of c.m.
and internal motion is made, certain general theorems
on the low-energy behavior of the amplitudes are not
satisfied.

Recently we have given a unified derivation of the
internal and over-all c.m. variables for a quantized
relativistic system of particles with spin. ' ' These
variables, which reduce to the well-known expressions
in the nonrelativistic limit, allow for a relativistic
separation of the internal and over-all c.m. motion.
Furthermore, it is straightforwardly apparent how to
introduce an interaction while maintaining relativistic
invariance, and the equally necessary condition that at
large separations the particles should be free. 4 For

' H. Osborn, Phys. Rev. 1"/6, 1514 (1968).' F. E. Close and L. A. Copley, NucL Phys. B19, 477 (1970).
The literature on relativistic two-body equations in quantum

mechanics (by which we mean equations not directly derived from
relativistic Geld theory) is rather involved, so only an incomplete
resume is possible. A general discussion on the relativistic treat-
ment of internal variables, with suggestions for formulating the
dynamics in the c.m. frame, can be found in A. S. Kddington,
Proc. Cambridge Phil. Soc. 35, 196 (1939); P. A. M. Dirac, R.
Peierls, and M. H. L. Pryce, ibid. 39, 193 (1942);and A. S.Edding-
ton, ibid. 39, 201 (1942). The possible forms which relativistic
dynamics might take, and various alternative methods of intro-
ducing an interaction, are elucidated in P. A. M. Dirac, Rev. Mod.
Phys. 21, 392 (1949).The actual relativistic two-body single-time
Hamiltonian used here was first introduced by B.Bakamjian and
L. H. Thomas, Phys. Rev. 92, 1300 (1953);see also L. H. Thomas,
ibid. 85, 868 (1952); and B. Bakamjian, ibid. 121, 1849 (1961}.
A very good account of the problems posed by a relativistic treat-
ment of two-body interactions is in L. L. Foldy, Phys. Rev. 122,

particles vrithout spin the form of these c m variables
has been known for some time' but, probably due to
their extremely complicated form, have not appeared
outside their original home of general discussions on
relativistic two-body problems. However, for appli-
cations where relativistic kinematical effects are
significant but the phenomena entailed by covariant
local Geld theory, such as pair creation, are not, an
expansion in powers of v'/c' should be permissible. To
first order in o'/c' we have demonstrated how these
modifications are necessary for the correct treatment
of the electromagnetic spin-orbit interaction in E-body
bound states' ' and a Hamiltonian was derived'»"
with which it was possible to satisfy the low-energy
theorems.

Encouraged by the above success, we here apply the
relativistic c.in. variables, to first order in v'/c', to the
quantized Hamiltonian describing the Coulomb-plus-
magnetic interaction for two charged particles. We
shall also briefly discuss the more general case of E
particles interacting through arbitrary two-body
potentials.

In the electromagnetic case there are three insights
to be gained. First there is the very delicate interplay
between Coulomb, magnetic, and also spin-orbit terms
so as to achieve a Anal form for the Hamiltonian which
is inainifestly relativistic to e'/c'. This demonstrates
the subtle consistency of the electromagnetic inter-
action: how the Coulomb force entails the existence of

289 (1961). It is here that the asymptotic separability require
ment, viz. , particles should be freely propagating at large separa-
tions, is strongly emphasized. An approximate, to low orders of
~'/c', solution of these constraints is obtained, closely similar to
the Bakamjian-Thomas expressions for the Hamiltonian and other
generators of the inhomogeneous Lorentz group. Alternative rela-
tivistic two-body theories have been given by E. C. G. Sudarshan,
in Lectures in Theoretical Physics (Benjamin, New York, 1962),
Vol. 2; and by T. F. Jordan, A. J. Macfarlane, and E. C. G.
Sudarshan, Phys. Rev. 133, B487 (1964). Formal two-particle
scattering theory based on the Bakamjian-Thomas Hamiltonian
is amply treated by R. Fong and J. Sucher, J. Math. Phys. 5,
456 (1964); and G. Schierholz, Nucl. Phys. B7, 432 (1968). Fong
and Sucher introduce the internal momentum in the form used
here and are then able to satisfy Foldy's separability condition
without approximation. Further discussion of scattering theory
and generalization to a relativistic description of three particles is
contained in T. F. Jordan, J. Math. Phys. 5, 1345 (1964); and
F. Coester, Helv. Phys. Acta 38, 7 (1965).The above papers are
all rather formal and/or mathematical in nature. The only cal-
culations we know of that have been performed in the Bakamjian-
Thomas framework are in N. D. Son and J. Sucher, Phys. Rev.
153, 1496 (1967); 161, 1694(E) (1967);D. Avison ibid 154, 1583.
(1967); and M. R. Wallace, J.iPhys, A3, 505 (1970), where a sur-
prising numerical result in a bootstrap calculation is obtained.' B. Barsella and E. Fabri, Phys. Rev. 126, 1561 (1962); 128,
451 (1962).It is the correct definition of c.m. variables that allows
the solution of Foldy s separability condition, mentioned in Ref. 4.' H. Osborn, Phys. Rev. 1/6, 1523 (1968).The same problems
were also solved by S. J. Brodsky and J. R. Primack, Ann. Phys.(¹Y.) 52, 315 (1969). These authors have derived a modified
two-particle electromagnetic interaction Hamiltonian to take
account of relativistic modifications of the spin-orbit term; see
S. J. Brodsky and J. R. Primack, Phys. Rev. 1/4, 2071 (1968).
The same modified Hamiltonian is also given in the first article
cited in this reference.

7 R. A. Krajcik and L. L. Foldy, Phys. Rev. Letters 24, 545
(1970).
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magnetic and spin-orbit interactions so as to achieve
relativistic invariance. Secondly, once the Hamiltonian
is in this form, the separation of internal and over-all
motion has been achieved. In particular, contrary to
other treatments, ' the position operator for the over-all
c.m. has a uniform rate of change and the internal
angular momentum is conserved. Finally, the above
melliQuous results cannot be achieved without the
introduction of an additional term in the two-body
electromagnetic interaction Hamiltonian. This has an
immediate interpretation; it corresponds to the Thomas
precession of the internal orbital angular momentum of
the two-particle system.

In Sec. II we discuss relativistic kinematics for
quantized theories and the introduction of c.m. vari-
ables with the usual desired properties. In Sec. III
we discuss the Hamiltonian derived in Refs. 3 and 7
which described, to O(v'/c'), the interaction of a weakly
bound composite system with an electromagnetic Geld.
This Hamiltonian has terms present in addition to the
conventional sum of individual particle-Geld Foldy-
Wouthuysen Hamiltonians in order that a correct
separation of the c.m. and internal motion of the
system results when conventional (Galilean) defini-
tions of the c.m. and internal dynamical variables are
used. In Sec. IV the form of the two-particle Hamil-
tonian describing Coulomb and magnetic interactions
is obtained from the Hamiltonian describing the inter-
action of a single particle with the radiation Geld. The
result, with the correct ordering of the operators, is
not new, but the derivation, of slightly novel form, is
perhaps worth including here for completeness and for
demonstrating where the various terms arise. Section
V sees the combination of this Hamiltonian and the
modified c.m. variables so the desired Gnal form is
obtained, provided internal orbital-momentum Thomas
precession is introduced in the original Hamiltonian.
The origin of this extra term as related to the relativistic
invariance of the system is examined by introducing
the operator for Lorentz boosts. Some technical matters
and the direct proof of approximate relativistic in-
variance for an arbitrary potential interaction between
particle charge densities is relegated to the two
Appendices.

II. RELATIVISTIC CENTER-OF-MASS MOTION

At this point is is necessary to be more concrete about
the basic dynamical variables out of which the Hamil-
tonian and other operators describing the quantized
theory are to be constructed. As mentioned in the
Introduction, we wish to develop a relativistically
invariant theory with a fixed number of particles, and
we take as the basic dynamical variables the individual
particle "position, " momentum, and spin operators,
with the usual commutation relations. This far is just
as conventional in nonrelativistic physics. The reason
for the quotes around the word "position, " however,
is that the operator r, which we use and which has the

canonical commutation relations with the momentum
operator p, does not transform covariantly. ' Thus the
Lorentz transformation properties of r are not the
same as the transformation of position in going between
inertial reference frames. For a quantized theory this
lack of immediate observable interpretation for r is
unimportant. It is only necessary to regard r as an
operator out of which observables can be constructed,
in the same way as in quantum Geld theory the ob-
servables are constructed out of the unobservable
(certainly for the spin-2tease) basic fields.

The requirement of relativistic invariance for a
quantized theory is achieved by exhibiting the gener-
ators of time and space displacements (Hamiltonian
and momentum), rotations (angular momentum), and
boosts, which induce transformations between dif-
ferent inertial reference frames, in a form which obeys
the Lie algebra of the Poincare group. ' For a single
parti:cle of mass m the generators constructed out of r,
p, and the spin s, taking h=c=1, are

H = (m'+p')"'=—E, P =p,
J=r Xp+s,
K=@—,'(ra+sr) —p Xs/(Z+m),

(2.1)

8 It is impossible for a many-particle theory with interaction to
have a position operator that is both canonical with respect to the
momentum operator and also transforms covariantly; see D. G.
Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys.
33, 330 (1963); D. G. Currie, I. Math. Phys. 4, 14'10 (1963);
J. T. Cannon and T. F. Jordan, ibid. 5, 299 (1964); and H. Leut-
wyler, Nuovo Cimento 3V, 556 (1965).For a demonstration of the
transformation properties of the "position" operator used here,
see Appendix A of Ref. 2.

~ Throughout this section, see Ref. 2 for further details.

where s'=s(s+1), s being the spin of the particle.
For two free particles 1 and. 2, the Hamiltonian and

other generators are obviously formed by adding the
respective individual particle expressions given by
(2.1) (with subscripts 1 and 2 now appended to the
dynamical variables r, p, and s and also Z and m).
To separate the over-all c.m. motion from the internal
dynamics, the crucial requirement is that the motion
of the c.rn. be uniform, effectively as for a single free
particle. This can be realized by introducing a total
momentum P and over-all "position" operator R, and
ensuring that the Hamiltonian, momentum, angular
momentum, and boost generators for the two-free-
particle system should have exactly the same form
expressed in terms of P and R as for a single particle.

II=Sr+82 (iV'+P')"= E, P——=pr+p2, —
J=r &Xpr+r2 Xp2+s t+s2 ——RXP+S,
K=Kr+Ka ——tP —-', (RE+SR) (2.2)

—PXS/(E+3II) .
In (2.2) a mass operator 3E and spin operator S have

been introduced for the two-particle system. Along
with P and R, expressions for these dynamical vari-
ables in terms of the basic dynamical variables r&, r2,
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p, , p2, si, and s2 can be found by solving (2.2). By
virtue of their implicit definition (2.2), automatically
the expected commutation relations are obeyed:

[R,P]=il, SXS=iS,
(2.3)

[R,M]=[P,M]=[8,M]= [R,S]=[P,S]=0.
These definitions are such that uniform motion of the
two-particle c.rn. and conservation of the internal
angular momentum are guaranteed:

dR/dt =i[H,R]=P/E, d2R//dt2 =0,
(2.4)

dS/dt = i[H,S]=0.
Since the over-all c.m. motion is described by the

operators R and P, the internal dynamics is governed

by operators which commute with R and P. To find

the relative momentum y and position operator q and

spin operators s~, s2 with the canonical commutation
relations is a straightforward mathematical problem,
albeit algebraically complicated (we are introducing
the caret to mean operators which describe the internal
dynamics, i.e., commute with R and P). This has been
solved for the general case when the particles have

spin in Ref. 2. p results from p& or —p2 merely by
I,orentz transformation to the instantaneous c.m. rest
frame P=o, and, unlike the nonrelativistic case, the
spin operators are also transformed by the Wigner
rotation necessitated in going to this frame. In terms of
these operators, "

M —
(r/2 2+p2)1/2+ (rN 2+p2)1/2

(2.5)
S=qXp+si+s2.

There is not too much to be gained by displaying
explicit expressions for q, p, s&, or s2, they reduce to the
well-known forms in the nonrelativistic limit (note
that nonrelativistically, it is always implied, even if
not stated, that si ——si, s2=s2). To order v2/c2, or,
what amounts to the same, 0 (M ')," the single-

particle operators in terms of c.m. variables are'

my mg m] 1

pi = —R+2+ 2'+ R 2)R
M 2m ymca% 2M'

my —mg

r, =R+(m, /M)q+-', q 2' — R 2)+R.c.
2mgm23f 2' '

1 1 m2. m2
+-,'q. P — -p ——p — P +H.c.

3f' 2 mg 2M

1 . 1
pXsi+ pXs2

2%my 2'm2

m2
+ PX4-

23E'my
PXS2,2' ~

(2.6)

&0 ppr typographical reasons we are forced to use q for the in-
ternal position operator.

' Reckoning interchangeably in inverse powers of
M =ml+m2.

si=si+(1/22/21M)(pXP) Xs, ,

M = r/21+m2,

and also 1 ~ 2, when p —+ —p, q~ —q. For a general
system of A noninteracting particles the analogous
relations are given in Ref. 3.

To introduce an interaction while maintaining
relativistic invariance, it is merely necessary to modify
the mass operator M keeping the conditions (2.3); i.e. ,
JIB is constructed out of the internal operators p, q,
s~, and s2 so as to corrimute with S. If 3f reduces to the
free form (2.5) for large particle separations, then the
physically necessary condition of asymptotically freely
propagating particles is satisfied. Hence we add for
an interaction extra terms to the free form of M which

commute with S and vanish for large
~ q ~. This assumes

a weak condition on the physical interpretation of q, or
x'& —r2, on which q depends linearly, namely, that as
particle separations increase indefinitely, then so does
the expectation value of ~q~ or ~ri —r2~.

It is our aim in Secs. IV and V to show that the
electromagnetic interaction between two particles, to
order v2/c2, gives rise to a Hamiltonian H and a mass
operator M which is consistent with H=(M'+P')'"
and M satisfying the above conditions, to the extent
appropriate for the order of approximation in 2|2/c2.

The result provides an a posteriori justification for the
above assumption on

~ q ~
.

III. INTERACTION HAMILTONIAN FOR
COMPOSITE SYSTEM IN ELECTRO-

MAGNETIC FIELD

When a composite system interacts with an external
field and is not excited, the over-all motion of the system
is identical to that of a single particle, whose mass,
total momentum, spin, and static electromagnetic
properties (electric and magnetic moments and form
factors) are the same as those of the systein in its
ground state. If additivity is postulated, the sum of the
I'oldy-Wouthuysen Hamiltonians of the individual
constituents [H2w(r, )] must separate into two parts.
One part is dependent only upon the c.m. variables and
has the same form as that of a single particle HFw(R)
when IIFw is written as a function of the total mass,
charge, spin, and momentum of the system; the other
part (IIFw') consists of the remaining terms which are
called "higher-moment" interactions, depends upon
the internal variables, and leads to excitations of the
system.

It is well known that for a Galilean system interacting
with the electromagnetic field through its Coulomb,
convection current, magnetic, and spin-orbit inter-
actions to O(M ')," the Galilean definitions of the
individual particle operators in terms of the c.m.
variables yield the above-desired separation of the c.m.
motion and give also the dipole and higher multipole
moment interactions. However, if these Galilean
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definitions are used in the Thomas-precession terms of
HFw(r~), the above-desired separation is not obtained
and for this reason previous calculations" gave in-
correct results for the Thomas precession. " The
definitions of the single-particle operators in terms of
c.m. variables [Eq. (2.6)] reduce to the familiar
Galilean results to lowest order in the masses. To
O(M ') there are seen to be terms present in addition
to the Galilean results. Therefore, the interaction of a
composite system in an electromagnetic field, when
written to O(M ') as the additive sum of individual
Foldy-Wouthuysen interactions to that order, needs
the O(M ) definitions in Eq. (2.6) in order to yield a
consistent separation of the c.m. motion of the system
from the internal dynamics. We shall first give a de-
tailed discussion of Thomas precession because an
understanding of this effect is crucial both here and
later in this paper.

In transforming between relatively moving inertial
frames, the spin of a particle undergoes signer rota-
tion. ' The origin of this rotation may be found in the
conimutation relations obeyed by the Lorentz group
generators, in particular, that the commutator of two
diferent boost generators is a rotation generator:

$E;,E;]= jc;,I,
—Ji/c' (3.1)

which describes a rotation of the spin about an axis
(pX8)/~pX8~. For an accelera, ting particle the spin
is not a constant of the motion, but rotates, or rather
precesses, at a rate proportional to the acceleration a.

"In electron-nucleus scattering, see, e.g. , K. McVoy and L.
Van-Hove, Phys. Rev. 125, 1304 (1962); in muon capture, see
J. Friar, Nucl. Phys. 87, 407 (1966). Both of these papers work
to O(m ~) and use as interaction Hamiltonian for the system the
sum of the constituent Foldy-Woutheysen interactions. The fail-
ure of such an approach to satisfy fundamental low-energy the-
orems for Compton scattering is shown in G. Barton, University
of Sussex report (unpublished).' L. H. Thomas, Nature 11'7, 514 (1926); also J. Frenkel,
Z. Physik 37, 243 (1926).

The velocity of light c has been explicitly included so
that the contraction to the Galilean group is seen by
sending c —+ ~. The Wigner rotation of the spin is a
relativistic effect because for the Galilean group boost
generators are seen to commute.

For any operator 0 in a reference frame A,

0' =exp(i88 E)O exp( i88 E—), .tanh8=
~

v
~

(3.2)

represents the same dynamical quantity referred to a
reference frame 8 moving with velocity —v with
respect to A. Therefore, if in frame A there is a particle
with spin angular momentum 8 and linear momentum
then p, then an observer in frame 8 will see the particle
with momentum p' [given by Eq. (3.2)j and for the
spin he will find that

ds
(O'X8) Xs',

dg E'+m

(—e/23P)(PXE) S, (3.3)

in order to yield the correct time dependence of the
system's total spin S.

As remarked to Eq. (3.1), the Wigner rotation is a
relativistic effect and hence the same is true of the
Thomas precession. For this' reason the Galilean vari-
aibles were unable to separate the c.m. Thomas pre-
cession satisfactorily" and, therefore, in order to
obtain the desired separation, the relativistic O(v'/c')
results (2.6) are required. For an interaction

N
V= 2 HFw(r, ),

if one wishes to use the conventional Galilean, non-
relativistic, . c.m. definitions for r;, one must include in

a set of terms Hgpw which take account of the
O(3f ') corrections of (2.6):

V= Q +Fw(ri )+Ifkpw )

N SSqr.NR —R+ P q,, q,,—r,N& r,NR
~=~ M

(3.4)

Expressions for II~pw have been derived for both two-
body and X-body systems. '' Explicitly, as in Refs.
3 alid 7,

N'

+AFw g P (pi'Ei+Ei pi) q (3 3)

where E; is the electric field at ri . The forms for pi
in Refs. 3 and 7 are shown to be identical in Appendix

14 For a modern derivation, see J. D. Jackson, Classical Electro-
dynamics (Wiley, New York, 1962), Chap. 11, p. 364; or D.
Shelupsky, Am. J. Phys. 35, 650 (1967).

To see this, write M8 = 88 =aB in Eq. (3.2), neglecting
v'/c' corrections, so that we have introduced. an acceler-
ation. . Then simply 0 ~ t and f) ~ a. For a single
particle with charge t.', at position r, and interacting
with a field E(r), we have a=eE(r)/m; and so for
this case

ds/dt = (c/2m') (p XE)Xs.
This kinematical time dependence, in the framework
usually employed, is ascribed to an additional term
in the interaction Hamiltonian for the particle and the
electromagnetic field. This is the origin of the Thomas-
precession term in the interaction. '

The argument above did not depend upon whether
the particle was simple or a composite system of
"subparticles. " In the c.rn. frame, the system has a
well-defined angular momentum (spin) S and mass M.
Therefore, when a composite system interacts with
an external electromagnetic field, there will be in the
Hamiltonian a term of the form
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E;
j;Xp.E; j Xp "E'

+p
2m;3f ' 2m'

1
SXP E;

2M'

mj
Uq' P)p'+q* (p' P)] E'

j 2';M '

mj
q;,"PP E;

j 2M'
m Ig—E E (q;s f,)p "E', (3 6)

2m M'

A, and the individual terms in IIq F~ can be written the desired c.m. Thomas precession. The reason for
this happy event is that the spin operator undergoes a
moinentum-dependent transformation (Wigner rota-
tion and Thomas precession) when transforming be-
tween relatively moving frames. Then because R and
the internal position variables are required to commute
with the transformed spin, there wil l arise spin de-
pendence in the position operators, with origin in the
spin rotation, and so the correct Thomas precession
results in a consistent fashion.

IV. DERIVATION OF MAGNETI C INTERACTION
HAM ILT ON IAN

where
j,=s,+(l' NE —R)Xp;, S=Q j;. The Hamil tonian for the electromagnetic interaction

of two charged spin- —,
' particles with charges e l, e2

and magnetic moments p l, p2 is"
The first three terms can also be written (compare
with Ref. 6)

i
Xp.NE. E,

(2ns;M 2m;MP

and if a Galilean separation is made in the HFw (r;),
we will obtain the desired form of the c.m. interaction,
Hrw (R), when the Hnrw is included. In particular,
we note that the correct c.m. Thomas term is present
at the third. term in (3.6) .

The methods used for deriving Hq Fw in Refs. 3 and 7
are quite di8erent. The form of HdPw at (3.5) is
perhaps more readily appreciated by the approach of
Ref 3, which was to write r;=r Na+ y; in Hpw(r;)
Lwhere NR denotes nonrelativistic, and r,NE are those
terms of leading order in the masses; see Eq. (3.4)]
which are then expressed in terms of x .NR with
—V,C (r,) being replaced by E (r;) and where C (r;) and
E (r;) are the Coulomb potential and. electric field. at
position r;. Then we see that H~ Fw is formal ly an
electric dipole interaction whose origin is the non-
coincidence of r; and r; R. Thus the H~ Fw is the
relativistic correction to the electric dipole interaction
caused by the Lorentz transformation Lto 0(v'/c')] of
of the position operators, and its presence is required
due to the description of the internal structure of the
system by wave functions which are invariant under
Lorentz boosts. ' ' It is interesting to compare this
approach with that of 8rodsky and Primack. ' They
obtain a Hamiltonian whose spin structure is identical
with the two-body version of our (3.5) with (3.6).
The wave function te (xi',xs') to be used for evaluating
matrix elements of their Hamiltonian must include the
Lorentz contraction x' =Ax. They point out that this
is important for evaluating the low-energy theorems
for bound states with orbital angular momentum
l& 1 (see Ref. 3 and the first article of Ref. 6.)

The fact that a position operator does not transf orm
covariantly' yields the spin-dependent terms in H~F~.
It may at erst sight seem surprising that such spin
dependence will occur and, moreover, give birth to

Hrod+Hcoul+Hi KE+Hs KE

+Hi; e+Hs; g, (4.1a)

1
H„d = — dx+r(x) '+B(x) ']

2
(4.1b)

1 e lcm
Hc 1 dx Ve (x) Ve(x) ~—

2 4ir j
1'i—rs )

Hi KE—mr+pi /2mi —pi'/Smi',

(4.1c)

(4.1d)

B(x) =V XA (x), E (x) =E,(a) —VC (x),
—V% (x) = ei& (x—ri) +es5 (x—rs)

=p (x)
(4.2)

V A(x)=V Es (x)=0, ei s ——2si s.

The following points should be noted.

(i) The Hamiltonian, particularly Hi;„&+H, ;,, has
been written in a manifestly Hermitian form.

(ii) We are using the Coulomb or radiation gauge,
which is certainly the best gauge to use for electro-

' We are using Heaviside-Lorentz units, if e is the electron
charge 8'/4n = 1/137. We assume in terms of order of magnitude
eq es e, p& eq/m&, s's es/ms, and Ref. 11 applies. When it is
convenient we use dyadic notation, and if an equation applies
both to particles 1 and 2, it is written for particle 1 only. The Anal
Hamiltonian is an approximation for the electromagnetic inter-
action to order e2/cm, and throughout equations are written con-
sistent with this approximation. The Hamiltonian (4.1) is not
really restricted to particles of spin ~~ but should be valid for par-
ticles of arbitrary spin sq, ss provided the replacements er =s&/sq
and (2isr 8$/2m') ~ (2pI sjeg/541) are made.

Hi;„t = — LA(ri) pi+pi. A(ri)]
2m 1

1 ei
t—pier B(ri)—- 2pi-

4sN, 2m, l

XPV E(ri)+el E(ri) Xpi —ei piXE(ri)], (4.1e)

where
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magnetic bound-state problems, since the instantaneous
Coulomb potential gives the dominant contribution to
the binding energy. Further, the radiation field is
quantized without any indefinite metric:

$A(x),E&(y)j„„,i t; ..—— t—(1 V—V/V )8(x—y).

FIG. i. Particle absorption of a photon.

&' Pg

(iii) In (4.1c) the Coulomb self-interaction is
neglected. This infinite self-interaction term is strictly
necessary in the formal proof of relativistic invariance
but, since we are dealing with a relativistically invariant
theory and self-interaction is irrelevant to our dis-
cussion in this paper, we shall, without further com-
ment, throughout neglect self-interaction and assume
that observed values are to be inserted for parameters
in equations.

(iv) The relativistic v'/e' correction to the kinetic
energy is retained in (4.1d). For an electromagnetically
bound state,

(~ri —rt~ ) 1/mrna, n=
~
eiea~/4tr, mit =mimt/M,

(pi'/mit) = (p2'/mit)-mitn' when P =0,
so that this kinetic-energy correction is of the same
order, m~o.4, as the electromagnetic interaction effects
due to (4.1e). {This becomes more apparent later when
the radiation field is eliminated. )

(v) The interaction (4.1e) is exactly that obtained
by the Foldy-%outhuysen transformation of the Dirac
equation with an anomalous magnetic moment. "The
Foldy-%outhuysen transformation applied to the
Dirac-equation representation of the generators of the
inhornogeneous Lorentz group gives exactly ' (2.1),
when factors P are disregarded. Hence the discussion
of the c.m. motion which is given in Sec. II is appropriate
for the Harniltonian (4.1).

(vi) It is not directly possible to write Ev(x)
= —A(x), except in the interaction picture, "since the
interaction itself depends on Er(x). For the problems
of interest here this is quite unimportant.

The interpretation of the various terms in the
electromagnetic interaction (4.1a) is well known. 'r The
first two terms are here referred to as the electric and
magnetic interaction; the last, which also contains the
V E term resulting from smearing of the charge due
to zitterbewegung, is called the spin-orbit interaction.
That part of the spin-orbit interaction proportional to
the magnetic moment appears since a particle moving
with a velocity v=p/m in an electric GeldlE;sees a
magnetic field vxE; the remaining part arises from
Thomas precession" which was discussed in Sec. III.

After these digressions it is now possible to derive a
Geld equation from the Hamiltonian (4.1) where, using

"H. Neuer and P. Urban, Acta Phys. Austriaca 15, 380 (1962)."See standard textbooks such as J. D. 3jorken and S. D. Drell,
Ee4tivistic QNaetgm Mechanics (McGraw-Hill, New York, 1964),
Chap. 4.

From (4.3) the current j(x) is of order v/c, so when
the transverse photon Geld A(x) couples to both part-
icles 1 and 2 it gives rise to an interaction of order
v'/c'. Suppose now, as in Fig. 1, a photon is absorbed
by a particle, changing the energy and momentum from
E», y», to E2, p2. The photon energy and momentum
are obviously given by

k =p& —pi, ~ E2 Ei=——p2'/2—m pi'/2m, —(4.4)

where the last part of (4.4) holds, of course, only if
the particle is slowly moving. From (4.4) it is at once
apparent that, in this case, co is smaller than

~
k~ by a

factor v/e. So, in (4.3), when the transverse 'photon
field A (x) couples to a slowly moving particle, '

A(x) is
smaller than VtA(x) in the ratio aP/k'= v'/c' Hence it
is valid to neglect A(x) in (4.3), if only effects due to the
transverse photon field of lowest order in % are
required. To the extent that effectively a&=0, ~kj %0,
the transverse photon field propagates instantaneously
and so retardation is being neglected. Thus, if a Hamil-
tonian correct only to first order-effects in v'/c' is
required, to be consistent {4.1b) is modified:

1 1
H,.d — dx B(x)'= — ——dx A(x) .j(x), (4.5)

2 2

where the modified field equation

—V'A(x) = (1—VV/7') j(x) (4 6)

is used. Combining (4.5) with (4.1e), we can now write

+rad++1 int++2 int +1 int ++2 int

8»
Hi;„t' ———— LA(ri) pi+yi A(ri) j+pei B(ri)

2 2m»

1 ( ei
+ I 2i i——— LV'C'(~i)

4mi( 2m,

+tri. VC'(ri) Xyi —tri. pi XVC'(r )j, (4.7)

current conservation,

A(x) —VtA(x) =j (x)—VC (x)
=(1—VV/V'). j( ),

(4.3)
j(x) = (e,/2m, )(p„ li(r, —x)}—p, tr, XV.8(r,—x)

+1~ 2+0(v'/c') .
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(4.6) can be solved:

A(x) =
16xmg

(x—rl)
Pl,

'

+Pl (x—rl)
fx rll Ix —r

(x—rl) (x—rl) Xo,+ (X—rl) pl
4~ fx —rl

f

'

Using

V V

C(x) =e]/47rfx —rl
f
yt, 2/42r fx —r2f .

1 (x—rl)(x —r,)-1—
P fx —rl f

(4.8) t:1 pl X (x—rl)
&(X)= - +-,'Plt218(X —rl)

4~m, fx —r
f

(X—rl)t21 (x—rl)
+3+1

4~I» —rll' 4~I» —»I'

where @ is given by (4.2) and A by (4.6). Equation
(4.6) is no longer a dynamical equation but an equation
of constraint, and it may be used to eliminate the
photon field A from the Hamiltonian in the same manner
as the scalar potential C may be exactly eliminated in

the Coulomb gauge.
As usual, the scalar potential is

(4.10)

(V,V —217')
x—ry

x—ry

-3(x—rl) (x—rl)

Inserting (4.8) and (4.10) into (4.7), forgetting self-
(4.9) interaction as discussed earlier, and indulging in sollle

simplifying albegra, in particular, using at one point

(rl —r2) 8(rl —r2) =0,
we obtain for the Hamiltonian

H =H 1 KE+H2 Ka+Hcon 1+Hint r

H;.t =H'1 .t+H'2

1 . j
pl p2+pl' (rl r2) (rl 12) 'p2+H. c.

16~mlm2

elp2 122 (rl —r2) Xp«2+1 trl' (rl r2) Xp2

4~2221
f
r, —r2

f

'

p~p2 oy o2
Pl+2ol' 1225(rl r2)+

t21 . (rl r2)&2' (rl r2)

ry —r2

ele2 1 1 )+ I

— — ~(» —r2)
m~2 jg22 2m' 2m2

e2 t'1 221' (rl r2) Xp1 t:1 f 4 trl
' (rl r2) Xp2

2@1— + —
f

2@2— — . (4 11)
82rml 22221

f rl r2
f

' — 82rm2( 2m2
f
r 1—r2 f

'

is is the conventional Hamiltonian which is
supposed to describe the electromagnetic interaction of
two spin-21particles to order v2/c2. For an electromagnet-
ically bound state each term in H;„& gives corrections
to the binding energy of order m~o.4. The interpretation
of the various terms in H;„~ is, according to the various
lines in (4.11), (1) straightforward Darwin or Breit
interaction''8 resulting from unretarded one-photon
exchange; (2) interaction between magnetic moment
of one particle and the field produced by the motion
of the other particle; (3) conventional interaction
between two stationary magnetic dipoles plus a point

C. G. Darwin, Phil. Mag. 392 537 (1920) G Breit, Phys. Rev.
34, 553 (1929); 51, 248 (1937); 53, 153 (1938); and B. Leaf,
Physica 28, 206 (1962).

term representing the effect of interpenetration of the
two dipoles; (4) effect of zitterbewegung, this results
from the Darwin term in the Harniltonian (4.1e); (5)
conventional spin-orbit interaction including Thomas
precession.

If one of the particles becomes very massive, as in
hydrogenic atoms, and its magnetic moment neglected,
the only terms which survive are part of the zitter-
bewegung effect and one of the spin-orbit interaction
terms.

V. SEPARATION OF CENTER-OF-MASS MOTION

The expression (4.11) is certainly not in any form
which displays manifest relativistic invariance to
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order 2/2/c2 or which shows the separation of the over-all
c.m. motion from the internal dynamics. Convention-
ally, the c.m. frame P=O is used to derive a Hamil-
tonian to calculate, for example, the various cor-
rections arising from H;„2 in (4.11) to the binding
energy of an atomic state. While this is certainly correct
(in our formalism the Hamiltonian in the c.m. frame
reduces to the mass operator), the above problems have
been swept under the carpet.

As promised, we apply the relativistic c.m. variables
to order 2/2/e2. Since H;„, and the relativistic kinetic-
energy corrections in Hi KE+H2 KE are already of this
order, we can here apply the conventional nonrela-
tivistic formulas

8y82 1 1 1
px 'P2

4m 12/22
I
ri —r,

I

It is now apparent that the Coulomb interaction, by
itself, contains parts dependent on the total momentum
P. Since the mass operator, which we wish to contain
the real dynamics, must be independent of P, we
require that these P-dependent terms in the Coulomb
interaction should completely cancel with the P-de-
pendent parts of H;„~, except for terms corresponding
to expressions arising from the consistent expansion
of (3f'+P')" Let us first combine the Coulomb and
Breit interactions:

m] m2

q =ri —r„pi———P+p, p, = —P—p,
M M

(5.1)

1
+pi' (rl r2) (rl r2) 'p2+H c.

ly —f2

+1 +1) +2 2 ~

In IIc,„& and the nonrelativistic kinetic energy
pi'/22/21+p22/2m2, the relativistic modifications (2.6)
must be used. Treating the kinetic energy first,

P2 P4
II1 KE++2 KE =/lf +

42r
I ql

P2

2' 2 2m m,

1 1 ) eie2
x p p+pq Opl-

lel lqI'

q)&P 1
X —(-,'~ +qXp) ——(-;,+qxp)

Iql' -mi m2

1 )-O'I + I, (52)
(8m 12 82N22l

which is already consistent with the form

(~ 2+P2)1/2

~KE—(2/2 12+p2) 1/2+ (2/222+ p2) 1/2
(5.3)

1 ox (r2 q XP

4M', m,
(5 4)

to order 2/2/c2. Of course, this is not surprising since our
c.m. variables were constructed to transform the two-
free-particle Hamiltonian to the canonical expression
(5.3) and. the result (5.2) serves only to check our
calculations. To demonstrate that the electromagnetic
interaction can also be consistently expressed is less
trivial. From (2.6), to order v2/c2,

qP 1/1 1
ri —r, =q — P—

I

———(q Pp+H. c.)
2M2 231 k2/21 2/22

1
+ PX 121— PXo'2,4'my 4'm2

1 (q P)'

101 2~'
I
ql'

+H.c. . (5.5)

The first line on the right-hand side of (5.5) is of
the desired form. Looking at (4.11), then it is easy to
see that the magnetic dipole interaction and zitter-
bewegung terms depend only on internal variables,
to zero order in 2//c as required here. Further, the inter-
action of the "magnetic dipole with the field due to the
other charge" combines with the magnetic moment part
of the spin-orbit interaction to eliminate dependence on
P. There remains in (4.11) the Thomas-precession term,
whose dependence on P is canceled by the spin-de-
pendent terms on the right-hand side of (5.5). We are
now left with the parts on the right-hand side of (5.5)
proportional to the internal orbital angular momentum
A

l=qXp. If the arguments so far were complete, these
terms would Qout our desired final form for the Hamil-
tonian expressed in c.m. variables. However, the fact
that the spin-dependent terms were canceled by part
of the Thomas-precession interaction in the original
Hamiltonian provides the necessary clue. From our
discussion in Sec. III it is evident that the internal

orbital angular momentum 1 will suGer Thomas pre-
cession when the over-all state of motion is changed,
just as does the spin of a single particle undergoing
acceleration. As in (3.3), the effective interaction is

(5 6)
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eye2 ( 1 1 „ I'y —12
1 PX +H.c.

16frM imi m2 (ri —r2) 'v =P/M, a =eiE(r 1)/mi+e2E(r2)/f222. (5.7)

In this case the velocity v and acceleration a are given contribution to the two-particle interaction is

by

Hence for two particles interacting with the electro-
magnetic field we should add an additional term to (4.1)
in order to be correct to order f)2/c2:

1.
Vr(2) = — 1.PX

4M

f'1E(ri) e2E(ri)
— + — +H.c. , (5.8)

where we have given an explicitly Hermitian form. The

f:ie2 1 1 (qXP „
( I+H.e.), (5.9)

162rM f121 f222

to lowest order in 2)'/f;2, when we may legitimately, if
desired, take 1=% '(ri —r2) X(2222pi —ffiip2). As hoped
for, this necessary extra contribution finally eliminates

the 1-dependent terms on the right-hand side of (5.5).
We may now combine results to obtain for the two-
particle Hamiltonian

P' P' f 1 1) elf, 2 P' ( 1 1&=~+ — + i'I + I+- . 1 —— —i'I — +--
2M 8M2 (22221 2m2~ 42(-

I q I
2&2 '1822212 822222)

e]e2 1 1 3f q Xp e&e2 ~x ~2 QXp

4~m, ~,
~ ~P+P q q P — —(eifi,fr2+e2P101) ' + + ' ill+2(21'(228(q)

lql' 1«m,
pyp2 0'y eg 3oy qe2 q e~e& 1 1 e~pi eip~+ — — + + — — (1(q), (5.10)
4~ lql' lql' 8 ~,2 ~22 2mi 2mi

which is consistent, to order f)2/c2, with

(~2+P2) 1/2

~1~2 el~2 (lf=(e '+i')'"+(e '+f)')"'+ +
l 2 .i+i 2,t) 2)4~lql 8~F1~2( lql Iq['

M qXp ~1~2( pl ~2 qXp pli 2 &1'&2 3~1 q~2 q
(f lf12(22+e2flifri) +

I
+ —2ili 2(21'(22()(q)+

4xmgm2 16 &mi' m'

e~e~ 1 1 e2p& e&p2

f)(q) . (5.11)
mg2 ~g2 2ysy 2m2

This Anal expression for the mass operator, or
Hamiltonian in the c.m. frame, is well known. It can
be derived in a variety of different fashions" but the
basic ingredient is neglect of retardation of the elec-
tromagnetic interaction.

VI. MODIFICATION OF CENTER-OF-MASS
VARIABLES

The arguments given in Sec. V for the presence of the
additional term, (5.8) or (5.9), are essentially heuristic,
so in order to obtain a clearer understanding of why
the extra term produces the consistent relativistic
Hamiltonians (5.10), it is necessary to inquire more
deeply into the approximate relativistic invariance of
this system. In this approximation of keeping only
f)2/c2 or" O(M ') corrections beyond the nonrelativistic

"%'.A. Barker and F. N. Glover, Phys. Rev. 99, 317 (1955);
see also T. Itoh, Rev. Mod. Phys. 37, 159 (1965).

Ki free+K2 free+Kooulorub 1

Ki f Qi fill 1, 2 {11pi /22221)

(6.1a)

(6.1b)

1
Kc;.„1=—— dx xvC(x) vC(x) ~

2

—-', (r,+r,)- (6.1c)

result, the Hamiltonian H in (4.11) was derived con-
sistently from a formally relativistic theory. Hence to
this order of approximation it must necessarily be an
element of generators H, P, J, and K obeying the Lie
algebra of the Poincare group, as explicitly demon-
strated in Appendix B. With Ez ——0, the momentum
P and angular momentum J still have the simple two-
free-particle form (2.2), but the generator of boosts
K in the same approximation is
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By employing the c.m. variables (2.6), the sum of the
free-particle boosts (6.1b) becomes

Kt rrpp+Ks frpp= &P MR

p21 1 1 1
—R, y-;ps —+— ——PXS. (6.2)
2 2M my m2 2M

This is consistent with the canonical forms (2.2)
for free particles, as required by the construction of the
c.m. variables. However, the expected term required

by the presence of the Coulomb interaction in the mass
operator (5.11) is

where R, P, q, and j are given in terms of the basic
single-particle variables by our normal equations, to
this approximation, implicit in (2.6). Then R', P', q',
and p' are new c.m. variables such that H, K and also
P, J defined by reductions from conventional electro-
magnetic expressions are reduced to the canonical form
(2.2), to order v'/c', without any extra terms or unitary
transformations. The important property of these new
variables is that the division of the angular momentum J
into an over-all orbital part and a spin S' constructed
from particle spins and internal orbital angular mo-
mentum,

eye2—R
4 IqI

mlrl+msrs eles
(6.3)

J=R'XP'+ S',
S'= q'Xp'+s, '+s, ',

(6.7)

to our approximation. For unequal masses this is not
the same as (6.1c). The discrepancies between K, H
and. their canonical forms (2.2) are related since they
can both be restored to the canonical expressions by the
same unitary transformations which does not affect
P or J. The algebra of H, P, J, and K is obviously the
same as the unitarily transformed canonical generators,
which is that of the Poincare group, so this is consistent
with our relativistic starting point. For veri6cation let"

Then

my —m2 eye2
P q.

2Ms 4 IqI
(6.4)

—i[X,MR]
mtrt+msls ——,'(rt+rs), (6.5a)

M

eqe2

4~I» —"I—
1 1

i X -'p'—
m/ m2

m] —m2 eye2
R'=e ' Reix=R— „q.i

2M

p& e
—ixpe —ix —p

e
—ixqeix —

q

(6.6)

p~ e
—ixpeix —y

mq —m2 eye2

qX(qXP),
2M' 4~lqls

"Alternatively, one can solve for R (and R') in terms of the

ee, p1 1)/EXP „.1/H. c. I. (6.5b)
16prM &m, m, ) 4

I
q['

So e' e ' is the unitary transformation which to
O(M ') achieves the above-mentioned desired results;

compare (6.5b) with (5.9). Alternatively, this can be
viewed as a modi6cation in the de6nition of our c.m.
variables induced by the interaction. Suppose

depends on the interaction. Now S, as de6ned by the
canonical representation (2.2), is such that under
Lorentz boosts it undergoes just Wigner rotation, ' and
hence S is the dynamical variable which undergoes
Thomas precession. With the free-particle form of the
relativistic c.rn. variables (2.6) used in Sec. II, S did
not allow for Thomas-precession effects arising from
the interaction, so the theory could not irnxnediately
be cast into the canonical relativistic forms. But when
an effective interaction for this eGect was introduced, S
then had the correct Thomas precession and so the
desired form was obtained.

In conclusion we brieQy discuss the modi6cations to
the definitions of the c.m. and internal varibles R,
P, q, and p in terms of the basic single-particle vari-
ables for an arbitrary E-body system when inter-
action is present. The de6nitions for these variables,
when the S particles were free, have been derived in
Ref. 3. The system consists of particles of mass mi and
charge e;, with the position r;, momentum y;, and spin
si as the basic dynamical variables, where i= 1, . . ., E.
If the interaction takes place instantaneously between
the conserved charge current densities for each in-
dividual particle, '

p;(x) = e,5(x—r;) —(1/4m;) (2p;—e,/2m;)

X[—Vsb(x —r,) —pr; p;XV $(x—r~)

+pr,".V,5 (x—r;) Xp;], (6.P)

j,(x) = (e;/2m~) (p, , 5(x—r,))—p,;e,XV,&(x—r,),
then, as explicitly veri6ed in Appendix 8, a consistent,
approximately relativistic, form for the Hamiltonian and
the boosts is obtained where the leading interaction-

generators Hp (and H=Zp+H ) Kp (and K=Kp+K'), etc. (see,
e.g. , Refs. 2, 3, and 5). Then to our order of approximation the
relation between R and R' is given formally by R' —R=Kp/Hp—K/II and the result is {6.5a) and {6.11).One could, in principle,
continue in this manner and solve algebraically for q', etc., follow-
ing Refs. 2 and 3. Clearly the method of unitary transformation is
much simpler and the required X is found uniquely from the cal-
culated R' —R.
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dependent terms are

a'= — dx-,' Q p, (x) V(lx —x'l)p, (x')
2

P e,e,V(lr, —r, l)

K'= —— dxx-,' Q p;(x)V(lx —x'I)p, (x')~
2 igj

(6.9)

—P e,e, —,'(r, +r,)V(lr, —r, l).

MR=pm, r;, M=+ m;.
(6.10)

The unitary transformation which achieves the same
desired results as previously obtained is now gener-
ated by"

In general, V may be an arbitrary potential but, as in
the two-particle Coulomb case, K' differs from the
canonical expression

K'„„=—R P ee;V(lr, —r, l),

internal orbital angular momentum. ' "Further effects
may then be expected when the binding energy is not
negligible.
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APPENDIX A

We show here that the Hamiltonian for the inter-
action of a system of 2V particles with an external
electromagnetic Geld as derived in Ref. 3 is identical
with that in Ref. 7. The system is ascribed a mass 3f,
total momentum P, and c.m. position R. It is com-
prised of E particles with the ith particle having mass
m;, internal momentum p;, spin angular momentum
s;, and position r;.

The interaction H=Hpw+Hrpw, where IIFw is the
sum of the Foldy-Wouthuysen interactions of the
individual constituents whileI= Q e;e, (2R —r;—r,) PV(lr; —r, l),

2M '»
(6.11)

N

&~Fw= —s Q (y; E,+E,'p, ),
so that ei K'e "=K' canonical. Correspondingly, the i=1

new c.m. variables are such that P and q;, are unchanged
with E, the electric Geld at position r;. Defining g;but =r,N~ —R, Krajcik and Foldy~ have

R'=e *Re'x—=R —p e;e, (2R r; r,—) V(—lr ; r, I).—
2M '&j

=R+ Z 2 m.q'«. e'V(I q' I),
2M' i~j ~

p .~ ~
—iXp .~iX —

p .

P m;
+ —p e e~V(lq rl) —& e'e~V(lq'il)~ j~y jgi

V'(I q' I)P e,e,q, , (r~+r, —2R) P. (6.12)
2M ~'

''
Iq;, I

When the modified internal momenta in (6.11) are
employed in the kinetic-energy terms of the Hamil-
tonian, they generate Thomas-precession terms for the
internal orbital angular momenta as induced by the
interaction such that a consistent separation of c.m.
motion to order n'/c' is obtained.

Thus, in general, the form of relativistic c.m. vari-
ables is dependent on the interaction. Already the
free-particle form has had interesting consequences
regarding the effective electromagnetic interaction for
composite systems of weak. ly bound particles, both
with regard to spin-dependent effects' and also the

p~
op= snp —+-

3f mp

P.'s1. (s1.Xp.) XP
+-', P +H.c.

~ 2m iV ~ 23f2

~pXP ~a pa
(A1)

4mp3f 4M m 3f

whereas in Ref. 3 one finds

m p~NR P)o.= & Q(r r.)NR. P
M' m, 2M)

SSIe+r Q Q(r r.)NR. P p NR

22' '

mjgr Q Q(r' r )NR p'NR'p+H c
j k 2mjM'

S. S. p.NR

+Q ———X ——, (A2)

"H. Osborn (unpublished).
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where

mj.
NR R+P —gij ~

mj
p .NR = —P+Pi )pi

(A3)

K—K,+K',

ct roofo t e orentz invar»ne here give a dire p
d

'
ed in the text, tointeraction, as erive

t e
o

ance with t e s ar
the magnetic»t

'
h tarting point of thder s&/q' in accord

tis~ Neglecting
~

l t stic electromagnconvention a re
'

s
(A4)

dA/d~ such a flalll .

pi = (m,.y„—m.P,)
11

( ) VC, (x)+ — dx 8( )
2

first term» (
NR P

~( r)NR. P — — ' ~ m,. 2'ms

A1 andin-dependent te™InThe identity « th &'
(A4) in (A2) and(A2) follows inlnmdiate y y

The iclentity pf thenoting that ~™
'A2'n A1) and

dx j(x) .A(x)

11
( ) VC, (x) — dxx8(x)dx xVC' x '

22

dx xj(x) A(x)lativistic varia lesthat since»»e a;s seen by noting
( r )m, /~=r, R—are being used, t en

~ 't fpllpws at once.Th with the use of ( )~ ' '
terms in (A2)

A4 the i ent»T enw
he two remainingproof 'tllat t

~ ~

n (A1) followshe two remaining iare i

=—Q and using the vectorZ. (r NR —R)m./M=—0, an
identity f X")X

constraintwith the equations o co

—V C(x) =p(x),
—V'A(x) = (1—VV/V2)j(x).

y
' '

of 81) using (82),By manipulation o

1H'=—
2

or (q p

(x—x') (x—x')—

x —x'~ ~x —x'~ &

dxdx' p(x)
47r

(
x—x'

(82)

1
K'= ——

2

1
x')+ — dxdx' xj(x)dxdx' xp(x) p(

4vr]x —x'[

(x—x') (x —x')—
J(X

ix —x'[' (x—x') j(x').dxdx ] x
8~ x —x

(83)

dxdx' j(x) D(x —x') j(x',

dxdx' xp(x) X)(x—x')p(x')(84) K= — xxxp

dxdx' xj(x) D(x —x') j(x')

dxdx' j(x)Z(x —x') j(x'),

H' and vector K' satisfyingrela- form for a scalar H an ve ' inthe commutation re a- orm

K'P =H',[H'P]=0, ~ K,
~ ~ ~ ~ ~ ~

ith arity and time-reversal invariance ish th t th h

tis coconsistent wit
d which are no

action, obey the Poincare algebramo e
ved 4-vector, at easand (p,j) is a conserve

iLH„p(x)]+V j(x) =0,
i[K„p(x)]=XV j(x)+j(x),

L'K '(x)]= —»LHo, j(x)]+1p x,
nventional commutators with, an

d td iti, th lr e and currenbetween the charg d n

(85)
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s metric dyad)
and this requires

x—x') =-,'(x —x') x)(IX—x' (811)

l arespe«~ e y'
a s57mme

I( or ppincare inbeing gnvarian ',
nutators are

nt un erx~
to ho ld the two crucial comm

[K H]=iLKp, Hp]=P,Z )

KXK=KpXKp ———iJ, (86) tion consistent39 and, '
tio811) an interactio

' t
'

variance is given bywithe c relativistic invariance

86) becoinesin the interact&on,sot ah t to 6rst order 1n

~ 1 0iI K',Hp]+iLKp, H ]=
iKOXK' =0.

H'= dxdx' p(x) 2 V(l x-x'I)p(x')(87) H =

1
dxdx' j(x)— 1V(Ix—x'

2

I(x—x') (x—x

2K XKp+

rs 86) to second order

so the results here are onodel dependent, so e
r the interaction. rfirst order in e

lecting Bj/Bt, then

' K H']= dxdx' j(x)p(xK',Hp]+i Kp, H
Ix —x'I

Ll $(x—x') —,—x' —,x x)
so t a, —x = $(Ix—x I)& torso that, writing S(x—x

dxdx' xp(x)-'V(I x —x'
I )p(x')—' V n x—x')+2D(x —x')], (88) (312)

1
D(x —x') = —— 1K)(IX—x'

2

(x—x') (x—x')

IX—x'I

roximation and using 89),With the same approxima io

1
+ — dxdx x] xd ' j(x) — 1V(IX—x'I

2

(x—x') ( —x')

IX—x'I

K' = dxdx' p(x')2 Kp, ]
x' —E(x—x')j(x))Xf x)(I x—x xj—'I )I:xj(x)+2j(x)(x+x )]-

n'(Ix —x'I)
+ dxdx' p(x )

IX x—x') j(x)-'(x—x')(x—x

—x' j(x)1. (310)+fdxdx p(x jE(x ')j 'xx—

dxdx' j(x)-,'V(Ix —x I)(x—'x —x' j(x') .
2

nsistent witns' '
h (33) when V is

Th f 'llb, , ddl
'ust the norm

se arate in o
'

go if andy are s po g

12 ot}1 toclu e in
d neral interpartic ed d to include genmotion can e exten e o

potentials.


