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One of the major problems in understanding solutions of the gravitational 6eld equations is to determine
the physical meaning of the coordinates involved. In particular, for the Weyl solutions if the standard coor-
dinate descriptions are used, then physical interpretation becomes diffjcult. A means of interpreting the Weyl
coordinates for static axially symmetric metrics is presented which allows a reasonable physical interpre-
tation of any given Weyl metric.

INTRODUCTION side of some hypersurface x'= const, and this hypersur-
face will be said to correspond to the (surface of the)
source.

In a coordinate system (rt, g,p, t) the metric has the
canonical form

HE initial work on static axially symmetric solu-
tions of the Einstein field equations was done by

Weyl' and Levi-Civita' shortly after the development of
general relativity, and in principle all of the Weyl (i.e.,
static, axially symmetric) metrics are known.

However, although more than fifty years have passed
since these solutions were discovered, there is still no
consensus as to their true physical interpretation. This
situation has been illustrated by Zipoy' for a restricted
class of Weyl metrics. It is unpleasant for two reasons.
First, solutions of the gravitational field equations are
hard to come by, and it would be nice to at least be able
to understand those which are known. Second, if there
is to be any hope of doing actual physics, it is not enough
to have a mathematical solution of a problem; there
must also be some means of relating that solution to
physical reality.

Before continuing, it is necessary to make precise the
meaning of the terms "solution" and "source. " In
referring to a solution of the fieM equations, we mean a
metric g & which satisfies the static axially symmetric
vacuum field equations. This metric is then to be
thought of as the exterior solution for some configura-
tion of matter referred to as the source. For example, the
Schwarzschild metric can be considered as the exterior
gravitational field of a spherically symmetric shell of
matter, which would then be referred to as the source.

It is assumed that coordinates (x') are chosen; these
are adapted to the symmetries of the source in the sense
that the exterior solutions obtained will be valid out-

ds2 e
—2 yLe2 v

(d 2+ d(2) +~2dg2) e2ydt2 (I)

where y, v, and p depend only on the coordinates (rt, )).
If 5 is the Laplacian D=B/Brt+iB/8$, then the field
equations reduce to4

DDp =0, 5y =0,
(2)

2DvDp =D'p+2p (Dy) 2,

where the bar means complex conjugation.
Thus, p(rt, $) is an arbitrary harmonic function, while

y is a solution of the Laplace equation, and v is de-
termined uniquely by p and p. This exhausts the set of
Weyl solutions.

WEYL SOLUTIONS

Consider some specific solution p, v, p. Since gpp 1
+2& asymptotically, g being the Newtonian potential
associated with this solution, it is necessary that p=&.
Thus if some suitable mass distribution is given, having
a Newtonian potential P, then it is necessary to choose

in computing the corresponding relativistic
solution.

The prescription for calculating a Weyl solution is
then as follows: (a) Choose coordinates (st, $) adapted to
the source; (b) choose a function p, harmonic in (rt, $);
and (c) let y be the Newtonian potential and solve for v.' H. Weyl, Ann. Physik 54, 1'17 (1917).

T. Levi-Civita, Atti della Accad. dei Lincei Rendiconti
2 (1918).' D. M. Zipoy, J. Math. Phys. 7, 1137 (1966).
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There is an ambiguity in this procedure, however,
caused by the arbitrary character of the function p. If s
is the conjugate function to p, then for 2/=p, $=s the
Laplacian resembles the cylindrical Laplacian; hence,

(p,s) are called the canonical cylindrical coordinates, and

(h/, f) are taken as defined in terms of (p,s). Since p is
initially an arbitrary harmonic function of (2/, $), there
will clearly be no intrinsic means of determining what
the coordinates (2/, $) represent physically.

As an example, suppose that y is the Newtonian poten-
tial of an oblate spheroida, l homoloid, y = (m/~) cot 'u.
Then according to prescription, the oblate spheroidal
coordinates defined by'

pg(u2+1)1/2(1~2)1/2

8=XQV

are to be chosen and the resulting solution is'

to the Schwarzschild metric by the transformations

u =r/m —1, 2/ =cos8.

Since the Schwarzschild solution is the only static
spherically symmetric vacuum solution of Einstein's
field equations, the following assumption is suggested:
The coorchnate system defined by (6)for which /1 =m, is, in
the sense of (7), a spherical coordinate system

A result of this assumption is that in the coordinates
(6) the surfaces u= const will be elongated spheroids if
~&m and Qattened spheroids if ~pm.

Let 5=m/x, (up) be the special prolate spheroidal
coordinate system for which 6=1, and (x,y) be another
prolate spheroidal system adapted to the source. The
metric is then

(—m
dsh=xh exp~ cot 'u

~
(u'+1)(1—2')dg'

a'+a') '""' dm' da'

)+(u'+ ')
I

— +
u'+1/ u'+1 1—2/2

(x—1
+(x'—1)(1—y )&24 2—

l

«2 (g)
I x+1

It is simple to find (x,y) in terms of (u,e):

2 2—exp —cot 'u dt' (4) .* + +
K2

Now, if this is actually to represent an oblate spheroid
in the expected manner, then in the limit ~~0, it
should reduce to the metric obtained by setting

y = —m(p'+s') '/', and this should be the Schwarzschild
metric.

When this limit is actually taken, the result is the
Curzon metric

g2 2 4Q2~2- 1/2 1/2

+ u'+~'+—
$2 $2

1—8

y = —u21 2/2+
W2 v2

g2) 2 4u2o2- 1/2 1/2

u'+2/2+ ———i-
@ j y

(9)

ds'= exp (exp) m2p2/ (p2+ 22)2$ (dp2+ ds2)
(p2+ 22) 1/2 and the metric (8) is given in spherical coordinates by

substitution of (9) and. then (7). As expected from the
oblate spheroidal example, (8) reduces to the Curzon
metric in the limit g —+ 0.

If (x,f/) are oblate spheroidal coordinates, the equiva-
lent of (9) is obtained by taking co =i/1 to obtain

+phdgP} —expL —m/(p2+s ) / jdt . (5)

Since this is clearly not the Schwarzschild solution,
the true source configuration of the metric (4) remains
uncertain.

In light of this example, it is natural to ask what form
the Schwarzschild metric takes in Weyl coordinates. It
is a well-known result that if the prolate spheroidal
coordinates defined by'

M t 1+co ) 4u2/
X= — Q

v2 k M ) M

1+~2 1/2

+u +2/2 ——
GOp =x (u' —1)'/'(1 —2/')'/',

(6) (10)
1+~2)2 4u21/2-1/2

-I+
zQ8

GD ft'

are used. , the solution for a "rod" of length 2g is ob- & ~

u+~
tained, and in the special case ~=m, this may be reduced

v2

' To put the metric in the canonical form, set I=sinhg, @=sing.' M. Misra, Proc. Natl. Inst. Sci. India A26, 673 (1960).
7The canonical form of the metric is achieved by takingI=cosh', v=sin(.

/' ]+~2 1/2

Q
CO

2 F. J. Ernst, Phys. Rev. 167, 1175 (1968).
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which when coupled with (7) allows (4) to be written in
spherical coordinates.

Note that the above represents only two speci6c
examples of a general procedure for interpretation of the
Weyl coordinates.

So far the only basis for the proposed&interpretation
of the Acyl solutions has been a rather, intuitive one.
This can be made more plausible by considering the
intrinsic geometry of the coordinate surfaces p=const.
Inspection of (4) and (8) shows that y=const corre-
sponds to x=const or x=const, respectively. Thus, the
surfaces x= a& x = (a' —1)'/' will be examined. '

The corresponding surfaces in spherical coordinates
are given by

a s' —1+8' sinai'e)'I~
r=m 1+—

u' —cos'8
(prolate case), (11)

g2 1—b~(

X
~

1 —.
—sin'$ ~' "dP+cos'Pdi/Pa'-1 5 a'

(13)
dQ2 = g2g2 exp/ —

&i/ cot &(g2—1)&/2j

&&{a'"+~'P] —(j./a') cos'Q+~'dP+cos']@'}

where @=a, x= (a' —1)'/' as before
The metric for a two-surface of revolution has the

canonical form

(a' —1)"'/a'+ 'sin'8)"'-
r=m 1+-

k a' —sin'8

(oblate case), (12)

so that once a and 8 (or cv) are given, the source con-
figuration is specified.

Consider the canonical coordinates (g, $) such that
(x,y) ~ (cosh', sin)) and (S,f/) —+ (sinhi/, sin(). The
metrics of the p =const surfaces are, respectively,

///+1
dq' =g2~ (g2 —1)

&u —1

Since 0.—+ 1 as a —+~ and the modulus of the elliptic sine
is 1/a, this becomes the sphere metric asymptotically.

The coordinate f is deaned by

)—1/2

~

1——sin'P
~

d$',
a'

(16)

/$2
dr'

+r2(d8'+ sin'8'') —
~

1—
1—2m/r

2m
~dP, (18)ri

which is Dnxnediately recognizable as the standard form
of the SchwarzschiM metric. Also it is possible to
calculate the quadrupole moments of the source con-
6gurations' and, as expected, they correspond to prolate
objects for 8& 1 and to oblate objects for 0(8(1and all
values of co. This can be compared with the Newtonian
theory by expanding e'& in the "Schwarzschild" coordi-
nates and comparing the asymptotic form to the
asymptotic form of the Newtonian potential expressed
in the normal'spherical coordinates. To order (1/r)', we
obtain

m 1/ 1)ma /1——+ —
~

1——
~

—(-,'cos'8 —-')+O~—
8'i ~

(prolate case),
(19)

and the real period of sn'(g/n) is given by

7 =2~P(-,',—', ; 1 1/a')

Thus, we expect to 6nd a cusp or node at the poles of
the surface x=u. This is reasonable since in the coordi-
nate picture being used the surface x= 1 corresponds to
a rod with length 2~.

If the metrics (4) and (8) are studied asymptotically
using our proposed coordinate interpretation to cast
them into the "Schwarzschild" coordinates (r,8,g,t),
then to first order in 1/r both of these reduce to

de'= ~'LdÃ+f'68d4' j (14) (oblate case).
in which R is some constant. For general values of 5 or ~,
it is diflicult to+cast~the metrics"'(13) into this form,
although/it is possible to do so in terms of„'elliptic
functions. One particularly simple case is the'prolate
spheroidal metric with 8=V2. Now the metric of the
y =const surface is

dO' = Z(dP+ sn'(P/n) dqP),

with n= (1—1/a')'/', and

m'//a+1) ~
(o' —1).

2 ka-1)
9 The form of the constants involved is chosen for convenience

These have Newtonian analogs as the 6elds of disks
(if the coefficient of r ' is positive) or rods (if this
coeKcient is negative). Clearly the case 8 = 1 corresponds
to a point mass.

As a brief digression, we observe that the Newtonian
potential for a disk of radius R is asymptotically given
by

m m3 1——+ (-', cos'8 ——',)+0-
36K 7

(20)

and results from the identification x =cosh', g =sinhg, which can
be made. Observe that a&1.

B. Godfrey, Ph. D. thesis, Princeton University, 1970 (un-
published}.
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and if 01 (or 5) is allowed to become infinite in Eq. (19)
(corresponding to the Curzon solution), a comparison
with (20) suggests that the Curzon solution represents
the exterior metric for a disk of radius m. In this case
such a disk would be hidden behind the horizon pos-
sessed by the Curzon solution.

It is also worth noting that our coordinate interpre-
tation removes the problem of directional singularities
that has been~discussed by several authors (e.g. ,
Stachel, " Gautreau and Anderson, '2 and Godfrey'0).
This can be seen by studying the surfaces on which
some curvature invariant becomes singular.

It is simple to compute the curvature tensor for the
metrics (4) and (8). The only independent components
of E &,& for a Weyl solution are E']p] + ]pQ + &p2

E'3p~,"and these are given by"

2iTI 1

0&8& I

(SCH WAR ZSCHILD)

8-I

2m

I(')
(CURZON)

(a) PROLATE SPHEROIDAL SOLUTIONS

2+Ill

Bp
& 101=— +

BQ2 BQ BQ

8+ Bp
&~ lp2
vp

BQ 88

—

(Bv)'

(21)

(b) OBLATE SPHEROIDAL SOLUTIONS

R& 2m

By Bv Bp)
+202 +

BMBu Bu&
'

Bp cIQ Bp
E. 3pg= —P 8

p BNBN BQ

In terms of these, the scalar. k =E,~,~R "",is"given by

& =4(g")2{(7/4) L(&0101)2+(&0202)2+(&»)2(g38)2(~0808)2j

+4(+ 102) 2 L+ 101+ 202+gllg + 101+ 808

+gllg ~ 202+ 303$) ~ (22)

A long but straightforward calculation shows that for
8/1 this is singular on the horizon g=0 and at the
points q=0, $=122r in the prolate case, while for the
oblate case, it is singular on the ring q= ]=0.The last
two of these singularities correspond to the classical
singularities found'at„the ends of a rod or at the edge of
a disk, respectively. The singularity at the horizon has
no classical analog.

In Fig. 1 the horizons and singular surfaces are

"J. Stachel, Phys. Letters 2/A, 60 (1968)."R. Gautreau and J. I.. Anderson, Phys. Letters 2SA, 291
(1967).

'3 They are the only independent components in the sense that
the remainder of the nonzero components of R q,q can be obtained
in terms of these four by use of the vacuum field equations."M. Walker (private communication).

O((y & Q)

I' IG. 1. Singularities of spheroidal metrics. Singular surfaces
are solid; nonsingular surfaces are dashed.

sketched in the Schwarzschild coordinates defined by
(7) with B and &o as parameters. In particular, note their
close relation to the Schwarzschild horizon.

observe that for 6) 1 in the prolate spheroidal solu-
tions the singular region does not cover the entire
r =2m surface, and if one approaches this surface along
the symmetry axis, no singularity is encountered. The
usual interpretation of the singular region as having
directional properties arises when the canonical cylin-
drical coordinates (p,s) are used since in these coordi-
nates the surface r =2m corresponds to p =0 or for
8=-,'x to z=0.

CONCLUSION

A simple and intuitive means of relating the Weyl
solutions to physical source con6gurations has been
proposed and several of the consequences studied.

Further results of interest should come from an
analysis of other vacuum solutions generated by the use
of different axially symmetric coordinate systems. It
would also be interesting to attempt to Gnd a corre-
sponding set of interior solutions.


