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mation of neglecting terms in J„proportional to g/cV„,
we get only 6nal states with j=j.= j„=—,'. It is easy to
see by conservation of angular momentum that in the
transition Jr=tV&~ —& Js =1V&s (Jr——Jr&1), we
have only one hyperfine state J=Jp& —,'. Since there
can be no interference, Etl. (10) follows immediately.
Hence, we find for any pure Gamow-Teller transition
that

D ou l(lgl/lf' l)(Z/Z), (11)

where E~OpV/J)/I„). DMa can be neglected com-
Pared to DoouL as long as

l fsrl is not too small
compared to lgl. r If we use experiments on 1 —+0

transitions as a guide, we expect' that
l fsr l

&
l gl and

l
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'There will also be a contribution. DM o~D uL(R/Z) from
weak magnetism Gamow-Teller interference and another contri-
bution DM ~D ouL((g ~/( fss )R/(AZ) from the bottom com-
ponents of the nuclear spinors. These may also be neglected.

We expect that fsr/g for fermion transitions is of order
tFss/Fg

~
(see Ref. 1 for boson transitions. Experimentally we

have (Fsr/Fg (
=4.7 for B" N"-+ C"+e+v. ; (FM/Fg (

=40
for P"—& S"+e +vr and (Fsr/Fg ( =6.
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First-order corrections, due to chiral symmetry breaking, to the E'-+ 3m soft-pion theorem are calculated.
The corrections turn out to be independent of any assumption of specific properties of the chrial-symmetry-
breaking Hamiltonian.

HK success of soft-pion theorems' derived from the
hypothesis of partially conserved axial-vector

current (PCAC) and current algebra has an elegant and
simple explanation in the notion that there exists an
underlying broken SU(3) SU(3) symmetry for strong
interactions. ' In this approach the low-energy (or soft-
pion) theorems, which are only approximate in the real
world, would become exact in the symmetry limit where
axial-vector currents are conserved and the pseudo-
scalar-meson masses vanish. Such a symmetry does not
manifest itself in the multiplets of particles, as does

'See, for example, S. L. Adler and R. F. Dashen, Current
Algebras and Applications to Particle Physics (Benjamin, New
York, 1968); R. E. Marshak, Riazuddin, and C. P. Ryan, Theory
of S"eak Interactionsin Particle Physics (Wiley-Interscience, New
York, 1969), where references to original literature can be found.

2 The original suggestion that PCAC is related to broken chiral
symmetry is due to Nambu and his collaborators. See Y. Nambu
and D. Lurie, Phys. Rev. 125, 1429 (1962), and earlier papers
quoted therein. The first paper relating the modern work on
current algebras to chiral symmetry seems to be S. Weinberg,
Phys. Rev. Letters 16, 163 (1966). See also S. steinberg, in
Proceedings of the Fourteenth International Conference on High-
Energy Physics, t/'ienna, 1W8, edited by J. Prentki and J. Stein-
berger (CERN, Geneva, 1968), p. 253, where other references can
also be found. This point of view has recently been clearly stated
by R. F. Dashen, Phys. Rev. 183, 1245 (1969);R. F. Dashen and
M. &einstein, ibid. 183, 1261 (1969); 188, 2330 (1969).

SU(3), but through the appearance of eight Goldstone
bosons (massless in the symmetry limit). The language
of approximate symmetry is useful in that it not only
gives a precise meaning to PCAC but can provide a
scheme for keeping track of corrections to PCAC
approximation. The picture that emerges is that the
hadronic Hamiltonian can be decomposed as follows:

H =H p+eH',

where Hp is invariant under SU(3)I3SU(3), and H'
breaks the symmetry. ~ is small so that symmetric-
theory predictions approach the real world. In the
symmetry limit when ~ —+0, the axial-vector currents
are conserved, and the symmetry is realized by the
appearance of eight massless pseudoscalar mesons.
Further, the basic symmetry is broken according to the
pattern

SU(3)SU(3) —+ SU(2) g SU(2) —& SU(2) .

Assuming that major deviations from the predictions of
symmetric theory may be computed by working to the
lowest order in e, there have been computed two types
of corrections to the results of the symmetric theory,
namely, those which are independent of any specific
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assumption of the properties of ~II~, and those which
depend on the assumption that ~H~ is a particular
component' of the (3,3*)+(3*,3) representation of
SU(3) SSU(3). In the first category, there is a theorem
of Dashen and Weinstein4 giving a relation between the
K~3 form factors which hold to order ~. So far, this is the
only calculation which falls into the first category. In
the second category, Dashen and Weinstein' have also
derived a sum rule relating the corrections to Goldberger-
Treiman —type relations for X—+ X+e+v, A~ X+e
+v, and Z ~ 1V+e+v. The sum rule is correct to first
order in symmetry breaking, but is difficult to test, as
there is as yet no accurate experimental information
about the various coupling constants involved in the
sum rule. Into the second category also falls the correc-
tions calculated by de Alwis' for X&4 form factors. In
this note we consider first-order corrections, due to
chiral symmetry breaking, to the soft-pion theorem on
E—+ 3x decay' and show that these can be calculated
without making any specific assumption on the trans-
formation properties of ~H~. We follow a method which
we' utilized in giving an alternative proof to the
theorem of Dashen and Weinstein on E~3 form fa,ctors.

We begin by defining the quantities

M;q=i d'x e '" *(PI T['A,q(x)H„v '(0)]IE,')

which gives us the low-energy theorem

—k),1'o, ——(f /%2)1', +I',+i d'xe '""8(xo)

where we have ulitized the equal-time commutation
relation

aiid

8(xo) [A;o(x),H„v' (0)]= [F,',H„v' ]6'(x)
=[F H v']8'(x) (6)

X(pI[A, (x) H v']IE,'). (3)

We now consider the process

E2'(E) —& m+(qi)+~ (qg)+z'(q3)

and define the variables

s;= —(E—q,)', Sp =-, (si+s~+s, ) =-,err'+m, '. (4)

We shall take II„to be of the current-current form and
assume octet dominance. We 6rst take i=3 so that
k =q3, P =a+(qi)+~ (q2), and obtain from (3)

—q»r»- (f./vz)(~+(q, )+~-(q,)
+ '(q, ) IH„'.(0) IE ')+f',

y-', i( +(q,)+ -(q,) IH„'- IE,o), (3)

i(f./&2)k„
=ir,,+ "I„

k'+m '

i d4xe "(pI Tpi, A,g(x)H v' (0)]IE2O)

m 2—I';+ I', ,
%2k'+m '

F,IE;)=——;IE,O), F, I2 (I=o))=0.
1a)

Now from Lorentz covariance we can write the most
general form for I'3q as

I » [Fl($1)$2)$3)qlk+F2($1)$2)$3)q2X

+F3(»P&P3)q»] (g)
(1b) We thus obtain from (5)

v2 1
= —I'~+ [(s,—2m ')F i(si,s„sa)

f- &~f-

z

where I';is clearly 0(~')=0(m '), «' being a parameter (w+w w'IH„v'(0)IEp)+ —(n+w IH„' (0)IEio)
which determines the strength of SU(2)SU(2) sym- ~&f

metry breaking, and

1,=(P;(k) IH„' IE,O). (1c)

Now we have the Ward identity
+(si—2m ')F2(sr, s~,s8)+2m 'Fs(si, s~,$8)]. (9)

We use linear expansion for (7r+~ ~OI H„v' (0) I
EP):

A+ '(si,s,,s8)—= (~+m=s'I Hv '(0)
I
Em')

d'x e
—'" '8(xo)(PI [A,o(x),H "(0)]IE2'), (2) =A+ '(0) 1 ——

+—0

(s3—so), (10a)
mx'

' M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 {1969);S. L. Glashow and S. Weinberg, Phys. Rev. Letters
22, 224 (1968).

4 R. F. Dashen and M. Weinstein, Phys. Rev. Letters 22, 1337
(1969).

5 R. F. Dashen and M. Weinstein, Phys. Rev. 188, 2330 (1969).' S. P. de Alwis, Phys. Rev. D 1, 2131 {1970).
7 Y. Hara and Y. Nambu, Phys. Rev. Letters 10, 875 (1966).

For other references see the second book quoted in Ref. 1.
s Fayyazuddin and Riazuddin, Phys. Rev. D 1, 361 (1970); 1s

2716(E} (1970}.

We select the point

s~=m, s2= 2m s3 ——m~'

where A+ (0) is the value of the amplitude at the
symmetric point. We define

i(7r+mIH ' (0) I
Ei') = —. A (Ei' —+ 7r+~—

) . (10b)
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so that the right-hand side of (9) is clearly of order m ' Thus (n —P) must also be of order X. Hence
or 0'. Thus we obtain from (9) + 0

1 0+—0
A+ '(0) 1 —— (2m~' —3m. ')

3m 2

A(Eio —+ m-+~ ) =uO(0') . (11)
v2

A+ '(0) (m~' —m. ')
2m~

A(Eio —+ a+or ) =O(0'X) . (15)
v2f.

Taking i=1+i 2 so that k=qo, P=m-+(qi)+m'(q, ), we
obtain from (3) a relation similar to (5). [Note that the
equal-time commutator gives here a matrix element of
the form (sr+~'(I=2)

~

[Fi+iFo, II 0 (0)g~E ') which
is zero, since we are assuming octet doininance for IJ„.j
( + — o

i
H ' (0) i

E,o)

Now we know from soft-pion calculations~ that

= —3 +O(0') .
m~ m~

Substituting in (15), we obtain

1 A(Eio +or+~ )—

(16)

= —I'i+, ,+ [(so—2m. ')Gi(si, s„so)
f' 2f-

+2m 'G, (si,s,,so)+(si —2m ')Go(si, s, ,so)j. (12)

392f„A+ '(0)

mx2 m 2

+0(0'X) =~ 1—
mx2 l

m 2

i+O(0'X) . (17)
ma'

Selecting now the point

sy=2m, $2=m~, s3=m2 — 2 2

we obtain from (12)

1 0+
A+ '(0) 1+— mrr' =PO(0').

3m2
(13)

Subtracting (13) from (11),

m~ —m~
A+—0(0) 0+—0

2m 7p

~'~ ) = ( —P)o( ') (14)

It is well known' tha, t A(Ei' —+ sr+or ) vanishes in the
exact SU(3) limit. Thus the first and second terms on
the left-hand side of (14) are each of order X, where X is
a parameter which characterizes the SU(3) breaking.

Thus Eq. (17) holds to first order in symmetry breaking
and has been obtained independent of any speci6c
assumption of the properties of ~Hj. The quantity
m '/mrr' in (17) represents the first-order correction to
the soft-pion result of Hara and Nambu. ~ This correc-
tion tends to improve the agreement with experiment.
A similar correction has also been obtained by Okubo
and Mathur' in a rather ad hoc manner and their
argument depends on a specific assumption of the
properties of ~H)L.
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9 S. Okubo and V. S. Mathur, Phys. Rev. D 1, 2046 (1970).


