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Application of a Finite Dispersion Approach to the Calculation
of the ~ -+ ~~T Decay~
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The contribution of high-mass states in the dispersion relation for decay amplitudes is considered. A
finite dispersion relation (FOR} implemented by duality and finite-energy sum rules (FKSR), is suggested
as a useful tool for such calculations, and an application to the decay co —+ m~y is done in some detail.

INTRODUCTION

ANY estimates of hadron decays amount to
- ~ simple pole models. Quite detailed experimental

information on such processes is available at present,
and calculations using new theoretical concepts and
methods are called for.

In this paper we apply duality and 6nite-energy sum
rules (FESR)'' to the calculation of ~~ mrs decay.
Duality is used here simply as a device for estimating
the contribution of the tail of the 6xed-t dispersion
integral when direct information on the couplings of
the exchanged Regge pole is not available. %e do not
use a speci6c dual-resonance Veneziano modeP ' for
the amplitude since no relatively simple form exists
for the process of interest and also since the difference
between the simple polynomial expansion used by us
and the "exact form" is probably quite negligible over
the Dalitz region.

The choice of decay process was motivated by the
experimental value for I'(u ~ m-iry) quoted recently' '
which exceeds earlier theoretical estimates' ". The
same methods are applicable to a wide class of decays
and low-energy scattering amplitudes.

The plan of the paper is the following: After de-
scribing briefly in Sec. I the method t the finite dis-
persion relation (FDR) approachj, we describe the
calculation in Sec. II. Section III contains a few more
comments and speculations.

L FINITE DISPERSION RELATION (PDR)

Let A(v, f) be one of the invariant Mandelstam
amplitudes for the process a+b —+ c+d, where

~= (P.+P~)' ~= (P. P)'—
pi= (p,—p„)', and v=-,'(s—u).

Let us assume that for t, 2 (v, t) is analytic in v, so that
using the Cauchy theorem we have"

1 A (v', t) 1 ~ ImA (v', 3)
A (v, t) = —— dv'=— -dv

2Ã't p p P —P

1 A (v', t)
+— dv', (1)

2x''t g~ p p

where the contour used is shown in Fig. 1. In this
FDR, the contribution from the two semicircles (Cii)
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F10. 1. Contour used in Eq. (1).

» In an application for decay processes we consider A(v, t) at
points (v, t) inside the Dalitz region. The analytic properties of
A(v, t) may be more complicated than that implied by Eq. (1).
Our present discussion ignores these singularities and also involves

- a simple resonance approximation to the first integral in (1). In
the particular case of co ~vrvry» rescattering corrections which
are of higher order in e' are unimportant.
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replaces the "tails" from S to ~ and —~ to —E of
the ordinary dispersion relations.

As in the derivation of the FESR, vhich starts with
„(t"A (v', t)dv'=0 over the same contour, we assume that
X is chosen sufficiently large so that an asymptotic
Regge form is adequate on the semicircle. Assuming 2
is crossing even, "

to fix the residues of the Regge trajectories —rather
than resorting to universality arguments.

We write the lowest moment FESR

g ug (t)+2

v ImA (v, t)dv =+ 'r, (t)
()., (t)+2

A (v, t) =A (—v, t) = -,'l A (v, t)+A (—v, t)],
Eq. (1) takes the form

1 +" v' ImA (v', t)
A (v, t) =- dp

7l ~ P —P

1 v'A (v')
+ — dv'—=I+X.

2mg g„p"—y'
(2)

Equation (5), like Eq. (4), will be considered in practice
only in the region of small t so that we will use the con-
ventional pararnetrization 'Y, (t) =P,/r(n, (t)+m) with
no extra t dependence beyond that of the "ghost-
nonsense eliminating" I' function. We will also assume
linear trajectories ()(, (t) Prov. ided only a few tra-
jectories need be considered, the P, can be determined
by expanding both sides of (5) in powers of t, and keep-
ing the lowest few terms.

In practical application the first term L will be ap-
proximated by the contribution of the low resonances
and Born terms. Also Ã is larger than v values occurring
in the Dalitz region which is relevant to the calculation
of decay amplitudes. We can therefore expand the
denominator in the second term in powers of (v'/v").
Substituting the asymptotic Regge form,

~q, (t)
A("t)l)"(=~=K . l.(") ""+(—") '"'], (3)

2 sin2rn, (t)

we can explicitly perform the v' integration:

A (v, t) =pl resonances]

The last term clearly displays all the poles which lie

(in the narrow-resonance approximation) on the even-

signatured trajectories contributing to A. If t values
close to some of these poles occur in the decay problem
of interest, the last term wi11 be large and a simple s+I
resonance saturation v ill obviously be inadequate.

Independently of the occurrence of poles the contri-
bution of the Regge terms may be quite important-
and this is indeed the case for the reaction at hand. In
some of the earlier works, such t-channel contributions
were included by adding a Feynman diagram corres-
ponding to the 0. exchange. '' The present approach
avoids possible double counting and allows a more
sophisticated structure for the t-channel exchanges
suggested by the Regge-pole phenomenology. This is
quite important, and indeed in the co —& m.xy calculation
quite different results were obtained when just one
effective t-channel trajectory was included rather than
the f' and e trajectories. Finally, our work differs from
the earlier calculation in that we use FKSR's in order

"An essentially analogous treatment can be given to the cross-
ing-odd amplitudes.

II. KINEMATICS OF ~ —& ~~y
In specializing to the decay co ~ mrs, we denote by

(p, a&„) the monentum and polarization vector of the
vector meson. Similarly, (k, e„) specify the photon
state. The pions' momenta are q;.

Defining
P= k(p+&) Q =

2 ((t2—(t))

we write the Feynman-invariant amplitude

(6)

The covariant decomposition of the gauge-invariant
tensor is

T„,=A(v)t)L(P I2)g„, P„&,]-
+&(v,t) L(Q &)g"—Q.&.]
+(-"(v t)L(Q &)P.Q —(P &)Q.Q.] (7)

where s= (p —q))', t= ((t(+q,)', and v=-', (s—u).
The contributions of the two low-lying p and 8

mesons to the various amplitudes are readily evaluated:

A: [g v.g„.,/(s mv')]X 4 (t 4s —4m. '+m. ')— —
+Lca-"ga- /(s ma')]-
X[-,'(m„'—2s —t+2m ') (1j&)

—-,'(m„'+m))' —m.')]+ (s ~~ u); (Sa)

Lg„v~gu~v/(S mv )]X2(t+2$+m„—2m~)—
+ l g.-'ga-, /(s m')]X —

L:(m-' t)(-1+0)—
—-'(m '+s —m.')]—(s &~ u); (Sb)

C 2Xg g /(s m )+gI) g)2

X 2 (1+$)/(s —ma')+ (s ~~u), (Sc)

where we used the couplings

r v D )(. aa
g(opal ~t vA(r+ (co) + (p) p

Lga-'(~"P(-) "—~"P(-)")
+ga-'~"P(-) "]P(a).& 0» (9b)

and the corresponding y couplings (only the trans-
versal part occurs in 8—2r —y). The parameter g is
defined as t= g „.2/)g z„, 2.)r
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The leading trajectories exchanged in the t channel
are the P, I", and e. Adopting the Harari-Freund"
conjecture, we omit the P (Pomeranchon) contribu-
tion to the FESR and also neglect its presumably small
contribution in the low-energy Dalitz region. "

The A amplitude is even and gets an e-pole contribu-
tion at t=mP. According to the remark following Eq.
(5), we parametrize its Regge expansion as follows":

~v,"(t)
~(,~) Z —L(). '+(—). j (10)

&smm=n, (/)

,A A

'y~" (&) = 7~"(f) = (11)
I'(&p'(~)) I'(~.(~)+1)

+np ~ (t)+2 go. s(t)+2

,A (~) +~ "(~)—
n~ (t)+ 2 n, (t)+2

1mB (v, t)d v

g~p (t)

=~. '(~)
g cr, (t)

+&,e (t) —, (17)
n, (t)

where "[resonances j" is given by Eqs. (8), with
numerators calculated at the poles.

The lowest-moment FESR"is applied as a convenient
tool for the calculation of the f-channel couplings P, :

The e trajectory decouples from the t-channel helicity-
flip amplitudes 8 and C at n, (t)=0. Introducing the
nonsense factor for the n =0 state, we get for the
antisymmetric 8

v ImC(v, t)dv

+ap~(t)
,e(~)

()
g cr, (t)

+7, (t)
n& t n, (&)s VP(/)

B(v,t) —+P Lv
~' '—(—v) ~ 'g

&sin'=n-n, (t)

and for the symmetric C

12
We will use these equations for t&0 where real linear
trajectories can be assumed.

with

~'Y,e(t)
C(v,&)~Z L

' '+(—v) ' '3 (13)
i=& sinmn, (t)

p
'rP(&) = V,c(&) =

I'(~v (~)) I'(~.(~))
(14)

V,c(t) = , ~'(~)=
r( .(t)) I'(, (t))

(15)

The Qnite dispersion formula described in Sec. I
then gives

A (v, t) =PLresonancesj

p 2 A g u~'

+2 P — P V," —, (16a)
=o iV i=~ a, (t) 2e—

8 (v, t) ——+[resonances j
2n—1 g n~' —1

+2 2 — Z~;9)-, (16b)
1V i' ~ n, (t) —2e

C(v, t) =pl resonancesj

2 p )2'~ 2 2 g~j
+2 P —

~
P &,c(t) —,(16c)S) i & n, —2S

'3 P. G. O. Freund, Phys. Rev. Letters 20, 235 (1968); H.
Harari, ibid. 20, 1395 (1968).

"The consequences of . assuming that the Pomeranchukon
does not contribute in the low-energy region were discussed in
detail recently by M. Kugler, Phys. Letters 318, 379 (1970). It
must be stressed, however, that in the cases considered by him
there was at least one exotic channel, which is not the case for the
~ —& mary, considered here.

'5 The usual scale factor was take'n equal to 1 BeV. In general,
all dimensional quantities will be given by powers of BeV.

III. RESULTS AND DISCUSSION

The contribution of the p pole to the various ampli-
tudes (which turn out to exceed considerably that of
the 8 meson) depends on g, ,g, . The linear procedure
of solving the FESR's tends to endow a similar depen-
dence to the Regge residues —and hence to the whole
amplitude.

Vector dominance suggests"

g.- = (g./g-)g-. „
g-.-= (g./e)g-. .

(18a)

(18b)

"In principle, we could use two I ESR's—the 6rst and third
moment sum rules —at t =0. This would be, however, completely
unjustified in view of the low cutoff, as previous experience with
the wN has taught us.

17 M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev.
Letters 8, 261 (1962)."J.Augustin et al. , Phys. Letters 283, 503 (1969).

g„~ can be obtained directly from the width F„~ ~
(which we took as 1 MeV). We used the values g„'/4n
= 14.8 and g, '/4~= 2.1 obtained by the recent analysis"
of the colliding-beam experiments. This yields g„, = I4
BeV '. To the extent that the extrapolations of the
cope vertex to zero-mass co—or to zero-mass p, are
similar, Eq. (18a) may be more accurate than (18b).
Nonetheless, the combined error in determining

g, g, ~ may well be =30%. This will affect the com-
puted I'„~ „by roughly a factor of 2 in either direc-
tion. ge„r depends on the little-known $. It turns out
that the final results for I'„~ ~ are almost independent
of P. We have used )=0 (g~=0), g&„r——2.9 BeV ',
and by the vector-dominance model g& ~ egr, „ /f . ——

In evaluating the right-hand side of the FESR's
(17), we used n~ (t)=0.5+t, n, (t) = 0 5+t, a valu—e.
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Pro. 2. Calculated photon spectrum
plotted with respect to t=(ft1+q2)'
=m-'-2m Ev

= t (GsV/cl

P~."=2.35,

P."= —3.36,
Pi ~=1.19, Pg ~=0.05,

P,ii ——0.11, P,o= —4.11.

These values were then used in Eq. (16) where, in
order to take account of the 6nite width of the e meson
which occurs at the physical Dalitz region, we added
an imaginary part to e, (/) and used the parametrization
suggested by Lovelace4:

a.(t) = 0 5+0 2—8(f. 4m..')'~'i—+t (20.)

The calculated photon spectrum is shown in Fig. 2,
and the total width for I'„o o o„was computed to be
0.1 MeV. Ke made several "standard" checks for
the stability of the predicted F„- ~ with respect to
variation of the cut-off iV and the e width in Eq. (20).
We also tried varying the parametrization of P;(/) by
introducing an additional nonsense factor at n(t) =1
in the 8—C amplitude. This had a negligible effect
on I"„~.Ke found that decreasing the cutoff to
-', (iii,'+mii')+-,'t —(m„'+2m. ') (wluch may perhaps
be justi6ed by the dominance of the p contribution)
roughly doubled I'. Bearing in mind also the ambiguity
in

~ g„,g, ,~', we can only give the prediction

0.05 MeV&r„...""eo &0.4 MeV. (21)

This prediction is consistent with the upper bound
F„„o0~(0.2 MeV (90% confidence level) quoted in
Ref. 7. Reliable lower bounds will be necessary, how-
ever, in order to choose between the present calcula-

"Th~s corresponds to s=-', (mgP+m~'), halfway between the
last resonance included and the next one. Our Anal result, Kq.
(21), includes also the e6ects of some variations of the cutoff.

of the cutoff"

E=-,'(m '+m, ')+-,'t ——,'(ns„'+2m. '), (19)

and the parametrization of the residues indicated in
Sec. I I see remark following Eq. (5)j.

Linearizing the equations and solving for the P, s,
we 6nd

tion and the much smaller values (F &0.004 MeV)
predicted in earlier calculations. '0

The prominent feature of the present calculation is
the large enhancement (by roughly a factor of 5 in

amplitude) caused by the FESR-PDR cycle over the
direct low-energy contributions. This enhancement
does not reflect only the e-pole contribution (which
was included in some way in Refs. 9 and 10). The
computed photon spectrum rejects no e resonance in
the low-energy region, 2' and also the I' computed from
the /t amplitude was (recall that /1 is the only amplitude
that has the "Feynman" e pole) smaller by a factor of 4.

Indeed, the detailed structure of a leading I" and
"secondary" e trajectory seems to be very important
in our calculation. The attempt to dispense with the &

trajectory altogether, using an effective leading tra-
jectory with n(0) =0.5, leads again to much smaller
values of I'„

Co+CLUDI56 REMARKS

%e have shown above that the Regge-tail corrections
to amplitudes may be quite important in processes
at low energy. FESR are suggested and applied in the
+ ~ awe case as a tool in estimating these contributions.

It would be interesting to apply the same approach
to other decay processes. It should be emphasized,
however, that in decay processes leading to three
hadrons in the final state (such as X -+ 3z.), rescattering
corrections are present (unlike our present particular
case". Our present analysis, which assumes a very
simple analytic pole structure, may be less adequate
1n such cases.

&0 gt may be that the charged decay mode co ~ ~+~ y, when
related to m0 —+ ~0m0y by isospin, would be more convenient for
this purpose.

21 We note that phase space is very small in the ~-pole region,
which strongly suppress its contribution to I'„

"The importance of the secondary trajectory structure in the
low-energy region is illustrated by the special Veneziano-type x~
amplitude of Ref. 4.


