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possible deviations from a universal curve. It is an
open and intriguing question whether the statistical
character of the distributions continues to prevail at
higher energies or whether it undergoes some systematic
changes.

Note added il proof. The distribution E'ol has been
suggested by H. A. Kastrup, Nucl. Phys. Bl, 309(1967).
We thank Dr. Kastrup for bringing this to our attention.

We would like to thank our colleagues at Caltech
for stimulating and helpful discussions.
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We have evaluated the m.~ scattering lengths, using current algebra but without the use of a power-series
expansion or extrapolation of the scattering amplitude. We have used the usual Lehmann-Symanzik-
Zimmermann reduction in terms of an axial-vector current J=A+cd@, where A is the usual axial-vector
current, c is the Goldberger-Treiman constant, and @ is the pion leld. The scattering amplitude is de-
composed into four terms, three of which are due to the equal-time commutators; two of these three are
evaluated using the 0 model in order to show that the usual current algebra of the current A holds for the
current J. The other terms are evaluated in terms of single-particle intermediate states; we show that
among these states, only s waves contribute at threshold. Assuming that the e resonance is the only s wave
dominating the low-energy (irir) scattering, we find a relation connecting the form factors arising from the
equal-time commutators of the current J to the e-pion coupling constant. Finally, we obtain the scattering
lengths corresponding to isospins 0 and 2, and e resonance width 200 MeV, as a0=0.278m ' and
a2= —0.044m ', where m is the pion mass.

I. INTRODUCTION

0TH experimental data and theoretical arguments
have been extensively used in the discussion of

the ~x scattering lengths. ' 7 I,ow-energy 7t-x scattering
has been studied by many authors, using dispersion
relations, phase-shift analysis, and the current algebra.
Owing to the lack of adequate, accurate experimental
data, the results of these calculations cannot be com-
pared with well-established experimental numbers.

* Work supported by the U. S. Atomic Energy Commission and
the National Science Foundation.

'Since 1960 many authors have studied the (ver} scattering
lengths. We start with the work of J.Hamilton, P. Menotti, G. C.
Oades, and L. L. J. Vick, Phys. Rev. 128, 1881 (1962), and the
the references given therein.' See, e.g. , Ref. 1, and Heinz J. Rothe, Phys. Rev. 140, 81421
(1965), where the scattering lengths (in units of m ') for iso-
spins 0, 1, and 2 are claimed to be ao ——1.7, a1 ——0.4, and a2 ———0.4.
See also S. H. Patil, ibid. 179, 1405 (1969),where it is claimed that
a0 ———1.2 and a2 ———0.4.' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

4 N. N. Khuri, Phys. Rev. 153, 1477 (1967).' F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967);
158, 1709 (1967). In this reference the authors have a special
prescription for the use of Adler sum rule. Their results which
satisfy this sum rule are very close to those obtained in the present
paper, and differ by about 25'Po with those obtained in Ref. 4.' Haruichi Yabuki, Progr. Theoret. Phys. (Kyoto) 39, 118
(1968).' J. R. Fulco and D. Y. Kong, Phys. Rev. Letters 19, 1399
{1967}.

Even so, the smallness of the scattering lengths as
obtained by Weinberg' from a soft-pion treatment seems
valid.

However, some plausible arguments raise questions
concerning this calculation. The znain objections to the
application of the sof t-pion treatment, ' which have been
pointed out by some of the previous authors, may be
summarized as follows: First, there is the well-known
partial conservation of axial-vector current (PCAC)
assumption of the scattering amplitude with respect to
k', for 0&4'& m', where m and k are the pion mass and
four-momentum, 9 respectively. Yet this assumption, as
pointed out by Sucher and Woo,"contradicts the result
of the power-series expansion of the amplitude which is
involved in applying the soft-pion limit in wm scattering.
Also, it is known that the results of Weinberg's sof t-pion
treatment do not satisfy the Adler sum rule" without
some additional assumption concerning the zx scatter-
ing ranges. 5

As a contribution to the clarification of these points,

8 By soft-pion treatment or technique we mean the complete
procedure and the treatment used in Ref. 3.' Y. Nambu, Phys. Rev. Letters 4, 380 (1959); M. Gell-Mann
and M. Levy, Xuovo Cimento 16, 705 (1960).

'0 J. Sucher and Ching-Hung Woo, Phys. Rev. Letters 18, 723
(1967).' S. Adler, Phys. Rev. 140, B736 (1965}.
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we evaluate the xm scattering lengths, using a technique
described in a previous work, " which allows all the
pions to remain on the mass shell. This method avoids
using the power-series expansion of the amplitude, the
Adler consistency condition, " and the extrapolation.
We use the standard I.ehmann-Symanzik-Zimmermann
(LSZ) formalism'4 to reduce partially the s.s. scattering
amplitude. The matrix element involving the pion fields
is then reworked into one involving the current
J=A+cB&, where A is the usual axial-vector current,
c is the Goldberger-Treiman coefFicient, and p is the
pion interacting field. Note that B„J&=c(Bs+m')p Th. e
current J contains no pion pole. This and the fact that
the action of the Klein-Gordon operator on the pion
held is included in this equation will allow us to find
manageable expressions with the pions on the mass
shell.

Our expression for the scattering amplitude consists
of four terms: three terms, 8"', 8"', and 8", due to the
equal-time commutators, and one term, 8', due to an
unequal-time commutator of the current J. For the
evaluation of 8" and 8"' terms we shall use the result
of an application of the 0. model'~" from which we find
that the commutation rules of the current J are similar
in form, and in fact are related, to those normally used
for the weak current A. '7

For the evaluation of the other two terms W' and
8', we assume that the main contributions can be
gotten by inserting single-particle intermediate states.
We show, however, that among these states only the
spin-zero particles contribute to the threshold values
of these terms. We then further assume that there is
only one spin-0 particle significant for low-energy (7rs)
scattering, Namely, the ~ resonance with m, =720
MeV, F, =200 MeV.""

For the calculation of the scattering lengths, we take
advantage of the transformation properties of the
above 8" terms under the interchange of the pion
states. In doing this, we also obtain a relation between
the form factors of the scalar and vector terms 8"and
8", and the ~-pion coupling constant.

"A. A. Golestaneh and V. P. Gautam, Phys. Rev. 179, 1449
(1969).In this reference it is shown that at ks=0, the commuta-
tion rules of both currents J and A, used in the LSZ formalism,
lead to the same results.

' S. L. Adler, Phys. Rev. 13'7, 81022 (1965); 139, 81638 (1965).
'4H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo

Cimento 1, 205 (1965).
"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960)."One of us (A.A.G.) has studied the equal-time commutation

relations of the current J=A+cp, Eq. (3d) of the text, on the
basis of the Lagrangian of the strong interaction, and the 0- model
combined with the usual canonical commutation rules. This work
is under preparation for publication.

"The commutation rules of the current A are those suggested
by M. Gell-Mann, Physics 1, 63 (1964).

"See, e.g. , B. Dutta-Roy and I. R. Lapidus, Phys. Rev. 169,
1357 (1968), and references in this paper to C. Lovelace in Pro-
ceedings of the Heidelberg Conference on IIigh-Energy Physi cs, 196i,
edited by H. F. Filthuth (North-Holland, Amsterdam, 1968);
W. D. Walker et a/. , Phys. Rev. Letters 18, 630 (1967).

' For the latest data on the ~ resonance, see Particle Data
Group, Rev. Mod. Phys. 42, 128 (1970).

Our results for the scattering lengths a~ and a~

(corresponding to the isospins 0 and 2) are as= —0.044
rn ' and up=0. 278te for F =200 MeV, where m is the
pion mass. If the ~ resonance width is 400 MeV, then
we find u2=0.03m ' and up=0. 383m '.

II. EVALUATION OF SCATTERING AMPLITUDE

A. General Formula

The two-particle scattering amplitudes given by the
I.SZ formalism may be expressed as

—s(27r) 454(p'+k' —p —k)
~Pb, aa

(2s ) '(4k sks') "'c'
(g oo+g +P ylf ) (Ia)

where

Il '=' d'«-" (p'el 5(«)Ps'(0), B.J. (s)hl p~),

W'=k„' d's s '"(p'pl &(»)LJ.'(s),Js"(0)jl p~)

n = —sk„'k„d4s e '" (p'p~ &p"-(0)&."(s)))l p~), (1d)

W =c d'se-'"5(s, ) (po —po') —s
Bsp

&(p'Ill:B.J "( ) 4.(0)jl p ) (1 )

In these amplitudes, (k,u) and (p,n) are the momenta
and isospin indices of the incident pions, while (k,b)
and (p', p) are the corresponding items for the final

pions, and p is the pion interacting field. The current
operator J represents the source of the pion interacting
field which we have chosen as'P

(B„'+m')y(s) =c 'B„J„(s), (2)

where c is the Goldberger-Treiman coeKcient. We shall

give further information on this source-current relation
(2) and the relation of the current J' with the usual weak
axial-vector current of hadrons at the beginning of Sec.
II B. Here we continue our remarks on Eq. (1a) as
follows.

We note that the amplitude (1e) is due to the last
term in the expression of the time-ordered. product"

(B.'+m. ') (B„'+m.') T(y. (x)y&(y))
=c 'T(B„J.&(x),B„J&"(y) }

+c 'b(xp —yp)l B„J.&(x),By(y) 1,
'The expression (2) has been also used by other authors for

the source of the pion field. In addition to Ref. 12, see, e.g. , G.
Halliday et a/. , Phys. Rev. 164, 1834 (1967); S. Gasiorowicz,
Elementary Particle Theory (Wiley, New York, 1966), p. 379.

"See S. S. Schweber, Relativistic Quantum Field Theory (Row,
Peterson, Evanston, Ill. , 1961),p. 696. See also Ref. 12 for further
information on the term W«, Kq. (1e).
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which is used in writing Eq. (1a). The terms (1e) do
not appear in the expression of the amplitude which is
usually used for the soft-pion treatment. We also note
from relation (2a) that there are no pion poles in the
amplitude (1a)."Finally, as we shall see below, under
the interchange of the pion states, while the sum of
W's in Eq. (1a) is invariant, each of the W's is not.
This fact allows us to derive two independent expres-
sions for the (s-s.) scattering amplitude in Sec. III.
From these relations we shall obtain the scattering
lengths for isospin 0 and 2, as well as a relation between
the form factor of the scalar and vector terms 8' and
8", and the e-pion coupling constant.

B. Terms 8'0 and W'

To evaluate these terms, we need the current algebra
of the current J. Previously, in Ref. 12, it has been
assumed that the equal-time commutation rules of the
current J and the weak axial-vector current of hadrons
have the same form as suggested by Gell-Mann. '
Recently, one of us (A.A.G.)" reached this result by
choosing the original Lagrangian which is used in the
0- model, "and the usual canonical commutation rules.
On the basis of this model, we 6nd that our source-
current relation (2) represents the equation of motion
for the pion field variable, where

J„=Nr'y„ybN+2i (o8„&). .

Here N, o., and p denote the coupled fields of the
nucleon, the scalar meson, and the pion which appear
in the o. model based on the SU(2) 3SU(2) scheme.
Also, r represents the isospin operator of the nucleon
field. Now we recall that in the 0- model the usual weak
axial-vector current of hadrons comes out as

A„o=Nr'y„ybN+2i (tr'Bg), (3b)

where 0-'=0- ——,'ic is the shifted scalar-meson field, and
we get

(3c)

which is the mathematical expression of the PCAC
hypotheses. ' Combining either Eqs. (3a) and (Bb), or
(2) and (3c), we find

Two interesting facts about this current operator J,
given by relations (3), are that it has a closed algebra,
and that its equal-time commutators are similar in form

22 In some hard-pion treatments we note that the axial-vector
current also has a part which does not have singularities on the
mass shell. See, for example, the work on the current algebra and
%ard identities by I. S. Gerstein and H. J. Schnitzer, Phys. Rev.
1'70, 1638 (1968), anti particularly the material after Eq. (11c).

with those of the weak current A. That is, following the
above o model, and expressing our result within the
SU(3) scheme, we have

8(so) LJb'(0), cl,J."(s)]=id.b,z, (s)b'(s), (3e)

~(»)LJb'(0),J-"(s)3 =~(«) LA b'(0), A."(s)j
+ (1 —8o,)S.b" (Bf)

9'~l~(0) IP &=I (2-)'(4P.P.')"'0-'&-pf(f, P',P"), (6)

in which

f=(P—P')'.

also f is the scalar form factor which we discuss in
Sec. III.

Combining Eqs. (5), (Be), and (1b) we find, for
k=p=0,

w'= —L2m(2s-)'$ '8 p8, bf(0m') (7)

To evaluate the amplitude 8", we write the matrix
element of the vector current V,s, in (3g), as

(P'&
I
V."

I P~& =+i p-Ls(2~)'(4PoPo')"'j '

x(P+P')"g(f). (8)

Since V,i" is the usual electromagnetic current operator,
the CVC (conservation of vector current) hypothesis
and normalization of the pion charge to unity give

g(f=0) =1.
In general, combining Eqs. (8), (3f), and (1c), we have,
for y=k=0,

W'=2m(2s-) s(b. bb, p b,bbp) g (0—) . (10)

23 Generally in Eq. {32) there is also an isospin-symmetric
tensor qP(0)pb(s)h4(s). Because of the symmetry, however, one
can show that the matrix elements of this term {at least between
the pion states) vanish unless a=b. Thus, effectively, we have
included this term in Z.

6 (so) LA b (0),A "(s)]=2if b, V "(s)b (s)

+ (1—&o„)S'.b". (Bg)

Here Z is a scalar operator" which differs from that
appearing in the equal-time commutator LAo, cl„A„b],
while the vector-current operator V„ is the same for
both currents J and A, as seen in Eqs. (3f) and (3g).
Also, d, b, and f,b, are the structure constants of SU (3).
Note that the Schwinger terms S ~" in the above
commutators are proportional to (1—4„), so they
vanish at the threshold k=y=0, where we shall make
use of these commutators. The expression (2), or (Bd),
permits us to identify

J +=(1/v2)(Jt&iJs), J ~=Js.

Using (4) in (3e),

d.b&.=&.bL(V's&s+(V's)&oj=—&.»
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where we have introduced a sum over a complete set of
intermediate states. For the summation over spin e,
we introduce the projection operators

Ops ——m„'p ps
Ot s=g s —m„'P P„s,

(12a)

(12b)

Os s'&=-', Ot 'Ots&+-', Ot its' —-',Ot &Ot &, (12c)

where m„ is the mass of the particle Ie&, and Op, Ot,
and 02 are the operators for spin e =0, 1, and 2, respec-
tively. For the higher spin states the operators O„j'
can be expressed in terms of the spin-1 projection
operators.

We now note that because of the P functions in Eq.
(11), the states with spin higher than zero do not con-
tribute to the threshold value of the amplitude W. To
see this we consider the matrix eelment of the current
J, viz. ,

&Pl~"(0) P-, )=(f A"A +f A B.+f,B A.
+f&"8 +fog.-)e-(~) (»a)

for spin-0 or spin-1 states,

&P I

~"(0) IP-, &

= (f,A&A ps+ fsA&8~ps+ )e s(e) (13b)

for spin 2, and so on. Here the f's are form factors,
A&= (p+p„)&, 8&= (p p„)&, and the e'—s are the polar-
ization vectors satisfying

Q e es=O„=o,t s,
spin

(13c)

and similar expressions for states with spin e&2.
Using expressions such as (13),and projection operators
(12) in (11), we encounter terms such as A Ot s,
A Ot sB„, 8 Ot &As, etc., multiplied by t&'(p —petit).
The P function and the fact that we are at threshold
guarantee that the momenta have only time com-
ponents; excepting spin 0, all the projection operators

C. Term W

To evaluate the terms W, we use Eq. (1d) in the
following form:

W= Wt+Ws,

I P-&(P-I
W = —(2~)' 2 &P'Pl &.'~o"(0) —& J."(0)

I p, &

p.o
—po —&p

X~t'&(p,.—p —1), (»b)

I P-&&P-I
Ws= —(2~)' 2 Qp'I I ~-"(0), 4'~o"(0)

I P~&
p.o

—po'+&

X8~'&(p„—p'+k), (11c)

will have only pure space components. Hence only
spin-0 intermediate states contribute at threshold.

Considering this point, Eqs. (11) and (AS) of the
Appendix yield

c'tg...s 1
t

m

24m'k 4pr mm, Em, —mI

X[(m,—2m) '8, Ss»+m,—'8,s8„s], (14)

where m, and g, are the mass and coupling constant
of the ~ resonance, the only I=0 single-particle inter-
mediate state known in the xm interaction.

D. Woo Term

For the evaluation of this term, we may write Eq.
(1e) as

(P o
—Po)

Woo = —(2~)s PB„S..S»S t»(p„—p —k)
t„—m2

(p o
—po')

+ g orat& 5 (P P+ir), (1Sa)
t.' —m'

with t„=(p„—p)', t„'= (p„—p')', and

8-=(p'-P-).&p'~l~ (0) I p- &

X&&p. l

J"(0) I p )(p —p„)„. (1Sb)

Here again, because of the t&&s& functions in (16a), the
argument given for the term W, Eq. (11), shows that
the intermediate states with spin higher than zero do
not contribute to the threshold value of lV". Hence,
the only single-particle state in Eq. (16a) which con-
tributes at k=p=0 is the e resonance. Considering this
and combining Eqs. (16), (13a), and Eqs. (A1)—(A3)
and (A6) of the Appendix, we find

g...') 1 m. —m

24ms 4pr )mm 'm, —2m

XP.sc.&+&..Sos]. (16)

III. SCATTERING LENGTHS

A. Amplitudes at Threshold

The well-known expression of the (o.s.) scattering
amplitude is given as

Tss . =Ao,bpo+Bt'&„so. o+Ct'& st'&,s, (17a)

with A, 8, and C being functions of the usual inde-
pendent variables s, I, and t.'4 These coeKcients are
related to the amplitudes Ao, A ~, and A2 which are the
amplitudes corresponding to isospins 0, 1, and) 2,
respectively. That is,

A p 3A+8+C, ——
At=8 C, As=B+C. —(17b)

'4 G. V. Chew and S. Mandelstam, Phys. Rev. 119,497 (1960).
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g(0) y' —3y'+47 —3
F(0) = - —G,

v'(v —1)'(7—2)

We may calculate these a,mplitudes by evaluating the find B=C in (16a,), or
expression (16a,) from Eq. (1a) and our treatment in
Sec. II. Thus, inserting Eqs. (16a), (14), (10), and (7)
into Eq. (1a) and omitting, conveniently, the 8&4'

function in the latter equation, we And

(22)

v' —3v'+4m —1 C(0)
Tpb...=zL G, + & .8pb

— v'b-1)'(v —2)

—,—3, +4,—3 g(O)-
F6~ p6~ +bG» ~b~+p

— v'(v-1)'(v —2)

Here y =m, /m,

F(0) =4zrm 'f(/=0),

(18a)

(18b)

in (17a), which is valid for the threshold k =p =0. Note
that inserting (21) in (17a) gives Ai=O at k=p=O, in
agreement with the Bose statistic.

B. 8-Wave Scattering Lengths

The scattering amplitudes corresponding to isospins
0 and 2 are obtained by writing (—in./2) times the
scattering amplitudes Ab and A& given by Eqs. (18).
Hence using the relations (21), and taking the mass of
the ~ resonance as m, =720 MeV, "we And

G, = (2.767r) 'm '(g, '/4zr) .

Also I. is a convenient length used in Ref. 3, as

(18c) g(o)
F(0) = —0.006m 'g, '/4zr, (23K)

I =g„'m/8zrg~'3P~0. 115m ' (18cl)

g(0) v' —3v'+4m —3
Az —— iL F(0)+— —G,

v'h -1)'(v-2)-
(19a)

g(o) v' —v'+4m —1—
A b i3L ——+G, +A 2.

v'(v —1)'b—2)
(19b)

In order to obtain the scattering lengths from these
results, we shall make use of the transformation proper-
ties of the W terms in Eq. (1a), or those of the co-
efTicients A, B, and C in (16a), under the interchanges
of the pions. We consider the interchange (k', b)
(p', p) which corresponds to the amplitude

where g„ is the pion coupling constant, (g„'/4zr) =14.6,
g~ is the axial-vector coupling constant, g~

———1.23,
and M is the nucleon mass. In writing our equations
we have taken the Goldberger-Treiman coeKcient as

C~ —g~M/gp.

Combining Eqs. (16)—(18), we find for k=p =0

m
—'(g,. '/4~) =32. (24)

Using this and Eq. (9b) in Eqs. (22), we find the on-
mass-shell values of the scattering lengths:

a~= —0.044m ',
a0=0.278m '.

(25a)

(25b)

Note that if the ~ resonance width is I', =400 MeV, then
Eqs. (22) give

a2 ——0.03m ',
ao ——0.383m '.

(26a)

(26b)

~z= —LB(0)—19 8~10 'm 'a '/4~j (23b)

+o=mLLg(0)+19.1X10 'm 'g, '/4zrj. (23c)

The sca,ttering lengths (22) are expressed in terms
of the p-pion coupling constant given by Eq. (A3) of
the Appendix. Experimentally, the width of the
resonance is not well established and is estimated to be
between 150 and 400 MeV, more likely 200 MeV."
Hence using m, =720 MeV and I', =200 MeV in Eq.
(A3),

Tbp, ,=A'B,fibp+B'8 bti p+C h pb b. (2o) IV. COMMENTS AND CONCLUSION

Since the amplitude (1a) is invariant under different
reductions of the pion states, it follows that for a given
set of invariants s, t, and zz, the two amplitudes (19)
and (16a) are equal, and the crossing symmetry gives

(21)

Thus Ab and A&, Eqs. (19), are invariant under the
above transformation.

On the other hand, we may calculate the amplitude
Tbp „by interchanging (k', b) and (P',P) in our master
amplitude (la). If we do this, we find the same ampli-
tude (17a) in which the last two coeKcients are inter-
changed. From this result and Eqs. (19) and (20), we

The essential points in this on-mass-shell treatment
of z~ scattering may be summarized as follows: We
have calculated the scattering lengths, using the LSZ
reduction formalism, the mathematical expression of
the PCAC, and crossing-syrrunetry relations.

Our master amplitude (1a) decomposes into four
terms, 8'~, 8", t/t/', and 8'. For the evaluation of the
scalar and vector terms, S' and 8",we have the current
algebra of the current J, which is shown" to be similar
to the usual current algebra. " For the evaluation of

' See the survey article by R. Arnowitt, in Proceedings of
Argonne Conference on 7r7i- and E~ Interactions, 1969, p. 619
(unpublished).
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the terms 8" and W, which do not appear in the soft-
pion treatment, we have introduced a set of one-particle
intermediate states. Among these intermediate states,
only spin-0 states contribute to the threshold values of
S' ' and 8'; so we have assumed that only the s-wave
~ resonance contributes appreciably.

The results may be summarized as follows: (a) Both
the scattering length uo and a2 are expressed in terms
of the form factor g(0), given by Eqs. (9), and the e-pion
coupling constant g, . (b) The values a2 ———0.044@i '
and ao ——0.278m ' are based on Eq. (9), which gives
g(0) =1, the Goldberger-Treiman coe6icient in which
g~= —1.23, and the ~ mass and width, m, =720 MeV
and F,=200 MeV. We see from Eqs. (22) that ao is
always positive, while the sign of a& depends on the ~

mass and width. For F,=400 MeV, we have a2 ——0.024
m ' and a0=0.383m '. (c) We have Eq. (21), the
relation between the form factors F(0) and g(0) which
belong to the scalar and vector terms 8' and W', and
the e-pion coupling constant g, . (d) Our results lie
between a~~ (0.25—0.38)m ' and a2 ———(0.00-0.064)m ',
which are the ranges deduced from the work in Refs.
5, 6, and 26, where the calculation is made using the
unitarized Veneziano formula. Our results, particularly
those given by Eqs. (25), are small, in agreement with
the prediction of Weinberg'; and those given by (25)
are not substantially difterent from ao—0.23m ' and
u2——0.06m ' of the soft-pion treatment in Ref. 4.

ACKNOWLEDGMENTS

(~,p-l @.(0) I p,~) =
(2~)'(4p,p„,) 'i' m' —t„

where m is the pion mass and

4m„'
r

(m„'—4m') "'

(A2)

(A3)

is the decay coupling constant corresponding to the
width F„of an isoscalar state Iii). Combining Eqs.
(A1) and (A2) and letting lr=p=0, we find

(A4)
(2~)'(4m.m„)'t' m„—m

Note that in the soft-pion case ko ——0, so (A4) vanishes.
Finally, using this we can show that

where t„=(m —m)', m is the mass of the intermediate
state In), and u and ~i are the isospin indices of the
pion. We may evaluate the matrix element of the pion
interacting field p by considering the decay of a state
lii) into two pions, i.e.,

(~,p-) ~ (o,&)+ (P,p) .

By writing the 5 matrix of this decay in terms of an
effective Hamiltonian, and by the reduction formalism, "
we find for an isoscalar state le):
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-(~.—2m)-'S..S„-
m„'8 gb, p

(A5)

APPENDIX

Here we evaluate the amplitude 8" given by Eqs.
(11), at the threshold p=k=0, for the single inter-
mediate states In) having isospin I=O. Also we shall
give some relations which will be used in the evaulation
of the term W" given by Eq. (16a).

From the PCAC relation (2c) we find,

(p- —p).&,p- I
I."(0)

I p, )
=i,c(eP t )(e,p„lofti, (0) I p,—a), (A1)

"C. Lovelace, in Ref. 25, p. 562.

In writing Eq. (A5), we have expressed the intermediate
states Ie) in Eqs. (11) as

I n) = P C(I.,I.; I„)I I.) .

Here J„and I, are the isospins of the two colliding
particles, and I the isospin of the state II ). Also

C(I,I„I„)is the Clebsch-Gordan coeKcient. Note
that at k=p=0 the only known contributing single
particle in Eq (11) is e .with I,=0 (see Sec. Il C). Thus
the sum in (A6) reduces to one term, namely,


