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The author argues that Dirac monopoles, if they exist, could be strongly bound to those naturally occur-
ring free nuclei with magnetic dipole moments, and discusses the effect this binding would have on the
interpretation of experimental monopole searches.

I. INTRODUCTION

~ 'HIS subject was first discussed by Malkus, ' who
concluded that there cannot be bound states

between Dirac monopoles and naturally occurring free
nuclei. I disagree with Malkus's interpretation of his
results, and believe that bound states of this type with
binding energies up to the GeU range are a definite
possibility if monopoles exist at all.

Because they involve assumptions about the proper-
ties of an unobserved particle, the arguInents in this
paper, based on simple nonrelativistic calculations, are
not conclusive. We cannot be sure that we are not,

neglecting certain crucial features of the problem.
What these calculations do indicate is that the possi-
bility of magnetically charged nuclei must be con-
sidered in the design of magnetic monopole searches. '

The plan of this paper is as follows. In Sec. II we
discuss the formulation of a nonrelativistic, quantum-
mechanical Hamiltonian for the problem. In Sec. III
we obtain the eigenvalues for the angular operator for
a spin-0 monopole and a spin--,' nucleus. In Sec. IV we
examine the radial equation in two separate cases in
which binding is possible. The hrst case occurs when
the monopole has an electric charge and the problem
is similar to that of the hydrogen atom. In the second,
the monopole is electrically neutral and there is a hard-
core repulsion at small radius. In each case, we calculate
typical values for the binding energy. Finally, in Sec.
V we briefly discuss the validity of the calculations
and the e6ect the results would have on the conclusions
of various types of experimental monopole searches.

II. FORMULATION OF PROBLEM AND
CHARGE QUANTIZATION

We work in units with A=c=1 and, since we are
primarily interested in binding to nuclei, choose the

* National Science Foundation Predoctoral Fellow.
'W. V. R. Malkus, Phys. Rev. 83, 899 (1951). For related

discussions, see also P. P. Bandaret, Helv. Phys. Acta 19, 503
(1946); C. J. Eliezer and S. K. Roy, Proc. Cambridge Phil. Soc.
Ss, 401 (196i).

'A complete review of monopole searches can be found in
E. Amaldi, in Old and Eez P'roblems in E/ementary Particles,
edited by G. Puppi (Academic, New York, 1968), p. 20. More
recent experiments that rely on magnetic fields to extract mono-
poles are R. L. Fleischer, H. R. Hart, I. S. Jacobs, P. B. Price,
W. M. Schwarz, and F. Aumento, Phys. Rev. 184, 1393 (1969);
R. L. Fleischer, P. B. Price, and R. T. Woods, ibid. 184, 1398
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basic unit of energy by taking the mass of the nucleon,
31~=1. In these units the nuclear magneton is given
by —,'e. The properties of the charged particle and the
monopole are summarized in Table I. Note the possi-
bility that the monopole carries electric charge, as
emphasized by Schwinger. ' We do not necessarily adopt
Schwinger's suggestion that the monopole be given
fractional electric charge and identified with the quark.

The magnetic field of a monopole of strength vg

located at r=0 is given by

8= (vg/r')t„. (2.1)

In order to construct a nonrelativistic, quantum-
mechanical Hamiltonian, we need to construct a
suitable vector potential. 4 This is awkward when
V 8/0, as in (2.1), since we cannot define A by

Bp ——~ &&A

together with the gauge condition

v A=0

(2.2)

(2.3)

Dirac's solution to this problem was to find an
expression for A which satisfies (2.3), such that the 8
field given by (2.2) agrees with (2.1) except on certain
singularity lines. Two possibilities for the vector
potential are

A„oi =Ae "=0, Ae
"i= vg(1 —cos8)/sino, (2.4)

A„&'& =As&'& =0, Ae"' ———vg cos8/sine, (2.5)

where A&" is singular along the negative z axis (r = —z,

(1969). An example of an experiment that does not depend on
extracting monopoles is L. W. Alvarez, P. H. Eberhard, R. R.
Ross, and R. D. Watt, Science 16'7, 701 (1970).

s J. Schwinger, Phys. Rev. 144, 1087 (1966); 173, 1536 (1968).
Giving the magnetic monopole an electric charge is permitted
provided one uses a vector potential with a two-sided singularity
line, and the appropriate quantization. We do not consider the
extra factor of 2 that Schwinger obtains by considering surfaces
which intersect a gauge line on their boundary.

4 P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931);
Phys. Rev. '74, 817 (1948), The use of the vector potential in
quantum mechanics is obligatory because of the necessity of
obtaining a gauge-independent translation operator —J. Zak,
ibid. 134, A1602 (1964). It is easily shown that the correct gener-
ator of the translation group in the presence of a magnetic field is
P = —iV —eA —2r)&B. See the discussion of B. Zumino, in
1966 Irtterrtatiortal School of Physics "Ettore Majoralu, " edited
by Z. Zichichi (Academic, New Vork, 1966), about the interpreta-
tion of the singularity lines and alternative forms for the vector
potential.
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Magnetic charge
Electric charge
Mass
Spin
Magnetic dipole mom.
Electric dipole mom.

Magnetic monopole

vg, v=0, &1,+2, . . .
Fe, Y=O, +1, . . .
My
0
0
0

Nucleus

0
Ze, z=0, 1, 2, . . .
M'z

cp,e
0

TABLE I. Assumed properties of the magnetic monopole and
the nucleus (Refs. 3 and 5}.The unit of magnetic charge is chosen
to be g =1/2e, from (2.16}.The mass of the monopole is, of course,
undetermined. In making sample calculations we have taken

Afar

= 10, 100, but the author has found no theoretical arguments
to indicate that this is the right order of magnitude.

where T=MrMz/(Mr+Mz), e is the Pauli spin
operator, and U(r) is an undetermined potential which
is assumed to be appreciable only at small distances.
The necessity for including this undetermined potential
is discussed later, but at this point it reQects our igno-
rance of hadronic and form-factor effects at small

distances.

Schrodinger's equation is separable:

a(')R(') (r)y(') (8 y) =BRo) (r)P(') (8,(t) (2.1O)

becomes

8=7r) and A(" is singular along the entire z axis. The
correspondence between (2.1) and (2.2) is then given

by sin'0

8 q
2-

sin8—sin8—+ ——iZveg(1 —cos8) !)88 88 8$

where

(vg/r') f„=v &(A (")—Bf(")

4~vga(x)8(y), z(O (8=~)s ~'~=~,

(2.6)

(2.7) and

+ l egT& i. 0"'(8,4) = 0"'f'"—(8A) (211)

Bf&'& =i,

0, z) 0 (8=0)
1 8 8 P("

2zvg8(x)8(y), z(0 (8=m) ———r' —+ +2TU(r) R&')(r)
(2.8) r2 8r 8r r2

27rvg—8(x)8(y), z) 0 (8=0) . =2TER ("(r) . (2.12)
It is, of course, also possible to take alternative orien-
tations for the singularity line or to find expressions
for the vector potential involving curved singularity
lines. In order to have rotation invariance in the theory,
all physical observables must be independent of the
singularity line.

Within the approximations of nonrelativistic quan-
tum mechanics, it is acceptable to use either vector
potential, (2.4) or (2.5), directly in the Hamiltonian,
although we must subtract the appropriate 6ctitious
field, (2.7) or (2.8), if we intend to calculate the correct
stress-energy tensor. ' We therefore have the Hamil-
tonian6

There are completely analogous expressions for the
Hamiltonian obtained by inserting the vector potential
(2.5) instead of (2.4). As yet, we have no way of
knowing that the results depend on whether we choose
a vector potential with a one-sided or a two-sided

singularity line.
To investigate this point, we look at the solution of

the angular eigenvalue equation for p, =0,

A(~)P( 0) (8)e(mt= —() ))()~ Zv)P) o)(8)e'~4 (2 13)

II(i) =— 1 8 8 1 8 8
r' + ———sin8-

2Tr2 Br 8r sin8 80 88

1 8
+ — iZveg(1 cos8)—

sin'8 8$

I'Ze'

g(&)—
8 8 8 1+cos8)

sin 9—sin8——
88 88 8$ 2

1—cos8 -'
+ —2Zveg!— (2.14)

ay i 2

+vtjeg TX ~ j„+ +U(r), (2.&) Equation (2.13) has the solution7

' K. Amaldi, Ref. 2, points out that in order to have the correct
form for the stress-energy tensor we must subtract the 6ctitious
field, (2.7} or (2.8}.The stress-energy tensor is invariant under
a rotation in "charge space" of the form

e' —sinb cosh e

If a suitable rotation is chosen, our calculation can be valid for
a spin-0 nucleus and a magnetic monopole with an electric dipole
moment.

'The Hamiltonian is in the Pauli approximation, neglecting
the spin-orbit interaction. Relativistic corrections are assumed to
be approximated by the undetermined potential U(r}.

IP)na"'(8) =dm z..v, z,.v'+'(8) (l=o, 1, 2, . . .), (2.15)

where s=max(!m —Zveg!, !Zveg!) and the d „~(8) are
the familiar representations of the rotation group. In
order to have rotation invariance, we must therefore

7 W. Magnus, F. Oberhettinger, and R. P. Soni, Formllas and
Theorerns for the SPecial Fzwcti ons of 3Iathematical Physics
{Springer-Verlag, New York, 1966},p. 209.' M. E. Rose, Elementary Theory of Angllar Momentwn {Wiley,
New York, 1957), p. 48.
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have the quantization condition9 III. ANGULAR OPERATOR WHEN @&0

Zveg=-.,'22 (22=1, 2, . . .). (2.16)

Proceeding in the same way for the vector potential
with the two-sided singularity line, we find the angular
eigenfunctions /)r &"+vyx

(2.17)
pp(1 —x) '/'(1+x)»2e'~

pl "'=d, z-, '+'(~),

Now, consider the solution of the angular eigenvalue
equation (2.11) for a spin- —', nucleus with p, &0. I.et
y=2/lT and x=cos8; then (2.11) becomes

and requiring rotation invariance in this instance gives
the stronger quantization condition, '

Zpeg =/2 (22 =1, 2, . . .) . (2.18)

n&2)(lmzv) =P+,'(lm+Zvegl+-lm —Zvegl)g

x[k+1+,'(lm+Zpeg-l+lm —Zvegl)g
Z2 v2e2g2 ~ (2.20)

From now on, we take

The familiar quantization conditions (2.16) and
(2.18) have been obtained in many independent ways. m

Here they are necessary in order that the angular
eigenfunctions of the quantum-mechanical Hamil-
tonian correspond to irreducible representations of the
rotation group. The eigenvalues corresponding to
(2.15) and (2.17), are, respectively,

n&')(lmzv)=D+ ,'(lm-l+lm 2zv—egl)g
X0+1+2 ( Iml+ lm —2zveg 1)j—Z'"e2g2 (2 19)

(4x = —
pl . (3.1)~ ~

ermp ( p erma

The polynomials pl„")(0), (2.15), are orthogonal, and
this suggests we make the expansion

i/A =P C lPl, m r(g—) v
(3.2)

PZ=E der "'(x) (3.3)

We have to consider separately two cases of (3.1),

Case 1: m~& 1, (m —Zv) ~& 1, (3.4a)

Case 2: m~& 1, (m —Zv) & 0. (3.4b)

Other values of m can be reduced to one of these two
cases by using the identity'

(2.21) d, „~(x)=d, ~(x) . (3.5)

and note that the stronger two-sided quantization
condition, (2.18), is equivalent to requiring v to be an
even integer in (2.16). We then have

n&')(t, m, zv) =nu)(l m+-,'Zv, Zv),
p=0, ~2, ~4, . . . , (2.22)

and all results can be obtained by using the )/tl o)(e)
and (2.22). Thus, from examining Schrodinger's equa-
tion with p =0, the only difference between a two-sided
and a one-sided vector potential are the diferent
quantization conditions, (2.16) and (2.18), and we
cannot distinguish between the two possibilities unless
we observe experimentally a magnetic monopole with
v=1. Note that the eigenvalues (2.19) and (2.20) are
positive definite.

E. P. Wigner, Grlppevll/leorie (Freidrich Vieweg und Sohn,
Braunschweig, 1931) has shown the d „~ are the wave functions
of a symmetric top. We can get a qualitative feel for why we have
eigenfunctions of the form d, z„g&~ instead of d 0~=I' ~ by
noting that applying a rotation to (2.10) also rotates the direction
of the singularity line of the vector potential and we must apply
the gauge transformation to restore the form, (2.4) or (2.5).
The theory would therefore not be rotation invariant without
gauge transformations, that is, without massless photons. The
quantization condition (2.16) comes from requiring sn and g in
d ~ to be half integral, while (2.18) comes from requiring m —n
to be integral.

' Perhaps the cleanest derivation of the quantization condition
{2.16) is that of A. Goldhaber, Phys. Rev. 140, $1407 (1965),
which does not depend on a singularity line.

In order to relate pl, and pl, 2 it is convenient to
express the d „~ in terms of Jacobi polynomials, r

(g) = (1—g)m/2(1+g) Im—Zvl/2p (m, lm —Zvl) (g) (3 6)

After the replacement (3.6), we see that Eq. (3.1) has
a different form in each of the two cases (3.4).

Case 1. Absorbing the normalization of (3.6) into
the coefficients of (3.2) and (3.3), we have the equations

g egL —n(k, m 1, Zv)+P—+vyxjP), &"—' "-'—z"'(x)

+P p+dl(1 x2)Pl(m, m—zv)(x) 0 (3 7a)

g e p~P (m—l, m—l—Zv)(g)

+P dlL —n(k, m, Zv)+P —vpxj
L=O

Xp (m, m—zv)(g) 0 (3 7] )

If the series terminates, then E~ ——Pe+1. Expanding
the Jacobi polynomials in power series and matching
powers of x, we find the eigenvalues

Pl+ PVe, m, zv, py) = (1VZ+m ——', Zv)' ——,'Z'v'

+L(1Ve+m —~zv)' —-'Z'v'+ PZv —vy) 2]"2. (3.8)
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These eigenvalues need not all be positive. The mini-
mum occurs when N14 ——0, 4rb=Z+1, or orb=1,

nlin (Pl ) =1+IZpt —Pi+)Zp[+(sZP py—)q' ', (3.9)
(N, m)

which can be negative when 41P'(Z AT)—' is large
enough. Inserting (3.5) into (3.7), we get the eigen-
values for the case when m&~0 and (4pb

—Zv) ~& 0,

ps+(Nn, m, Zv, yv) =pl+(N)r, —nb+1, —Zv, —yv),
m=O, —1, —2, . . . . (3.10)

Case Z. In this instance, the eigenvalues (2.19) are
independent of m and all equal to

n") (l,O,ZP) =l (1+1)+(l+-', ) i
Zv

i
. (3.11)

Equation (3.1) becomes

P CbL —n(k, O,ZV)+P+Vyz]PA(m ' Z" "+"(X)
k=0

+p d.v~(1 ~)P .(m, zv —m) (a) (3.12a)
j'=0

(1+g)P (m—1,Zv —m+1(g)
k=o

FrG. 1. Plot of Zv versus m
shows the regions where dif-
ferent expressions for the an-
gular eigenvalues are obtained.
In region 1, use Eq. (3.8); in
2, Eq. (3.14); in 3, Eq, (3.10);
and in 4, E(l. (3.16).

Figure 1 shows a plot of Zv versus m and indicates
where the various expressions for the eigenvalues are
valid. Tables II and III give a tabulation of p;„ for
naturally occurring nuclei with various assumptions
about the magnetic monopole mass and charge. As can
be seen, negative eigenvalues are in abundance and, as
is discussed in Sec. IV, this opens the possibility of
bound states between an electrically neutral monopole
and nuclei if there is a hard-core repulsion. Numerical
calculations of eigenvalues for spin-1 and spin- —,

' nuclei
also indicate the possibility of negative values for the
angular eigenvalue. The methods used for the spin--,'
case can lead to cubic or quartic equations involving P
for spin 1 and spin —,', respectively, so no attempt was

+p d L (r(~ () Zv) +p v+a]p (va, zv—m) (+) (3 '12b) TAnLE II. Typical values of P4 for spin--', nuclei. Tbe value of
monopole mass which gives P2 ———

~ is also shown,

where E&=X&. Using the identity'

(1 &)t P (ba) P (a,—l, b+1))

a+N 1—
—', (a+b)+N

P (c—1,5+1)

P (a—l, b+1) (3 13)
,'(a+b)+N—

we can combine the sums in (3.12) and obtain the
eigenvalues"

Ps(N1), Zv, yv) =Nl) (Nl)+1)

Nucleus
(% abundance) Z

0 —1.91

C" (1.11X10 ') 6 0.702

Monopole
mass

(M„=1)

0.35
10

100
0.15

10
100

1.16
10

100
0.812

10
100

10
32.2

100
10
23.3

100

—1—1—1—2—2—2

—0.25—0.87—0.95—0.25—1.74—1.89

—0.25—0.77—0.88—0.25—1.54—1.77

1.01—0.25—1.04
2.03—0.25—2.09

P Pb (0,Zv, )4T)

When E~ =0 this reduces to

Ps(OZP, pv) = ', Zv yv= ', v(Z pT-). — -—(3.15)

Inserting (3.5) into (3.12), we get the eigenvalues for
the case when m~&0, m —Zv~&1,

F'9 (100) 2.63 4.46
10

100
4.32

10
100

—0.25—4.12—M.6—0.25—8.24—33.1

p4(N1), Zv, yv) =ps(N1), —Zv, —yv). (3 16) P" (100)

"The eigenvalues (3.8) were obtained by Malkus in Ref. 1.The
eigenvalues (3.14) were omitted except for the special case
Ã~ =0, which gives the minimum value of Pg.

1.13 10
24.6

100
10
23.9

100

3.25—0.25—59
6.50—0.25—11.8
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TABLE III. Typical values of pI for spin--', nuclei.

Nucleus
( j& abundance) Z

Monopole
mass

(X„=1) V PI '"(E,m,,ZI,PT)

0 —1.91

He' (1.3X10 ') 2 —2.12

10
100
10

100

10
100
10

100

—1—1—2—2

—0.32—0.37—1.01—1.14

—0.86—1.45—2.20—3.55

r 9 (100) 9 263 10
100
10

100

4.81—6.80
9.70—14.32

made to obtain the analytic form for the eigenvalues
in these cases.

As can be seen in (3.8) and (3.14), the angular eigen-
values depend on the combination pT, where p, is the
strength of the dipole moment in nuclear magnetons
and T is the reduced mass. The value of P therefore
depends on the monopole mass. In Table I we have
therefore included the monopole mass that gives / = ——,'.
The significance of this value is apparent in Sec. IV.
Malkus' did not calculate P& for the heavy nuclei or for
values of the monopole mass larger than the "canonical"
mass

The positive root of (4.3) gives a divergence at the
origin, and in order for s to be real we must have
P &~

—4-. The confluent hypergeometric function,
&F&(—E; c; s), reduces to a polynomial when E is a
positive integer, and this gives the quantization con-
dition

P'2@2~4

2T
PZ+(4P+1)»2y1)2

(4.5)

Typical values of these binding energies are given in
Table IV. As can be seen there, these binding energies
are quite large for a wide range of values for the mass
and the strength of the monopole. Ke therefore justify
a posteriori the neglect of the atomic electrons in the

problem. Because of the factor e ~' in (4.2), the wave
function is small at the radius of a typical orbital
electron. Including the effect of electrons in the calcu-
lation gives a perturbation of order M,/Mz. This type
of binding can occur, of course, when p=0 so that the
nucleus can have spin 0.

Since Schwinger has emphasized the possibility of a
magnetic monopole's having electric charge, ' this type
of binding is potentially important.

Electrically Neutral Monopole with Repulsive Core

Let 7=0, so that we have a 1/r' potential and there
is an infinite repulsive core of radius rp,

Mr = (g/e)'M, —2.56. (3.17) ~ ) 0&r&rp
II(r) = (4.6)

He therefore neglected all the negative eigenvalues in
Table II except those of the proton and neutron.
Current monopole searches' are probing for monopoles
with ma, sses much larger than (3.17).

0, ro(r(~.
Equa, tion (2.12) then reduces to Bessel's equa, tion

subject to the boundary conditions

IV. RADIAL EQUATION

Hydrogen-Atom Tyye of Solution

R(ro) =0,
lim R(x) =0.

(4.7)

(4.8)

First consider the case when the Coulomb potential
is attractive and the 1/r' "potential" is repulsive. For
this case the form of V(r) is unimportant if it is appre-
ciable only for small radii. Ke then have the familiar
form of the radial equation for the hydrogen atom. I.et
k'= 2TF., TFZe'/k =p, a—nd p =2kr; then (2.12)
becomes

1 8 8 1 P p——p'—R— + R=O.
p' Bp cjp 4 p' p

Equation (4.1) has the solution"

R(r) =r ' 'PciI„(kr)+cd%„(kr) j, (4.9)

where I„and E„are Hessel functions of order

p= (l+p)" (4 10)

The asymptotic behavior of the Bessel functions is

TABLE IV. Typical values of the binding energy Eo given
by Kq. (4.5) for naturally occurring nuclei.

Let k2= —2TE, then the most general negative-energy
solution of (2.12) is given by

where
R(p) =e»'p &'+"I' qFq( —E; 1—s; p),

s = w (4P+1)'I',

(4 2)

(4.3)

Q' Magnus e~ gl. r Ref. 7, p. 239.

+2p =2K—s+1=2'+�(4/+1)'~'+1. (4.4)

Nucleus

p H
+12
N14
P31

0.52
6
7

12.8

My
(m =1)

100
100
100
100

Binding
energy {eV)

1.9X10'
5.8X10"
9.3X10'
8.4X10'
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given by

K„(x) (s-/2 r) 't'e (4.11)

TABLE V. Typical values of the binding energy, Eq. (4.15),
for common nuclei under the assumption that the monopole wave
function cannot penetrate the nucleus. The cutoff is therefore
chosen to be the nuclear radius given by ro =bA", where
b =31.5M„'.

I„(x) (1/2s.x)"'e+, (4.12)

so that in order to satisfy the boundary condition, Eq.
(4.8), we must have et=0. As for the boundary con-
dition (4.7) for p and g real, E„(x)h'as no zeros, as can
be seen by examining the integral representation

Nucleus

P, I4
C13
P19
P31

Sly
yr„= 1)

100
100
100
100
100

—0.95—0.88—1.04—16.6—5.9

Binding
energy (eV)

3.5X 10'
3 2X105
6.2X 10'
7.3X 104
1.5X 104

IC„(x)= exp( —x cosht) cosh(pt)dt. (4.13)

Therefore, from (4.10), we cannot satisfy (4.7) when

P~&—4. When P& —rt, p is purely imaginary and we
have the possibility of zeros. The location of the zeros
can be approximately determined by the asymptotic
expansion"

2(p —x)-"'
E;„(x)--,'s.e—»'

1 2(x—p) "'
XP'its+& —its] —

~ (4 14)
&C/2

=Ep for p( —4r .
2T'Fp

(4.15)

Typical values of this binding energy for different
nuclei are given in Table V. The importance of the
repulsive core is now evident. Without it, the wave
function would "fall" to the origin and the energies
(4.15) can become arbitrarily large in absolute value. '4

We emphasize that the use of a repulsive core is not
necessarily unphysical, since hadronic effects can give
rise to a repulsive Yukawa potential and since rela-
tivistic e8ects can give corrections of undetermined
nature at small radii. Even if the infinite repulsive core
is replaced by a finite potential, the wave function is
required to be small at some typical nuclear radius rp.

This leads to binding energies the same order of mag-
nitude as those given by (4.15), since the energy
depends roughly on the smallest radius on which the
wave function is allowed to fall. Table V gives values of
the binding energy for typical values of nuclear radi. i

The use of the infinite repulsive core attempts to
circumvent the limitations of Schrodinger's equation at

+ Equation (4.15l is an asymptotic representation of the
"Nicholsen" type valid for g/p near unity and a-p large, and
therefore gives only a rough estimate for the location of the zeros.
See W. Magnus et g/. , Ref. 7, p. 142.

14L. D. Landau and E. M. Lifschitz, Quamtunz Mechcnr'cs,
2nd ed. (Addison-W'esley, Reading, Mass. , 1965). See especially
the discussion in Secs. 22 and 35.

The first zero on the right-hand side of (4.14) is at
p=a, and this gives an approximate value for the
binding energy

small radii. Once these limitations are recognized, the
conclusion that bound states exist seems inescapable
although we cannot achieve more than an order-of-
magnitude estimate on the energy spectrum. This
approach diverges from that of Malkus, ' who did not
take seriously the radial equation (2.12) with P( ——,

'
since, without cutoff, it leads to infinite binding
energies.

V. DISCUSSION AND CONCLUSIONS

The possibility that magnetic monopoles can be
captured and bound by common nuclei must be con-
sidered in the evaluation of monopole searches. For a
complete classification and review of the experimental
situation the reader is referred to the paper by Amaldi. '
Here we discuss only those experiments which search for
monopoles trapped in geological materials that are
potential collectors. Many of these experiments rely
on extracting the monopoles from the host material by
use of pulsed magnetic fields. If the monopole is loosely
held with a binding energy of a few eV, the magnetic
fields can easily extract it. But the binding energies
proposed in this paper are orders of magnitude greater
than those envisioned by Malkus, ' and cannot be
overcome by conveniently available magnetic fields.

If the bound states discussed here exist, one must be
prepared to show that the external field used in a
particular experiment can remove a magnetically
charged nucleus-monopole bound state from the sur-
rounding chemical structure. If the magnetic charge is
measured by ionization, one must consider the possi-
bility that a large electric charge is also present. There
is also the possibility that the total mass of the mono-
pole and nucleus is considerably larger than the original
monopole mass. '5

Another consideration is the abundance of potential
collecting material. Many experiments have searched
for monopoles in ferromagnetic material that is scarce
compared with the quantity of material represented by
the nuclei in Table II. A rough figure of merit for experi-
mental searches of this type is given by the area, of the

"As long as experiments do not detect any monopole signal,
this criticism is academic. The problem is that these experiments
could not determine monopole properties from a positive result.
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material exposed to cosmic rays multiplied by the
exposure time. If common materials as well as ferro-
magnetic materials are potential monopole collectors,
experiments involving a larger surface area of material
may be considered.

It should be emphasized that those experiments
which do not extract monopoles from potential col-
lectors in order to detect them are cleaner than those
which do, since their detection apparatus depends only
on the classical, large-radius properties of monopoles.

Their results are therefore less susceptible of possible
modification from the quantum-mechanical properties
of the monopole.
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A factorization test for the Pomeranchukon is suggested for reactions with three particles in the Anal
state. It is applied to the available experimental data on ~N —+ eral% and N1V —+ md% and is found to be
satisfied resaonably well.

I. INTRODUCTION

HE nature of the "Pomeranchukon" singularity
in the angular momentum plane has been under

investigation for the last few years. In the beginning it
was believed that diffraction scattering is dominated by
a Regge pole ("Pomeranchukon" P) in the l channel
with the quantum numbers of the vacuum. However,
there are difhculties with this and it now appears likely
that diffraction scattering is dominated by a branch cut
in the J plane. ' There are several ways whereby a
branch point and a pole can be experimentally distin-
guished. One, suggested by Gribov, ' utilizes the fact
that a pole has good parity but a branch point is un-

likely to have good parity. Another uses the well-

known fact that a simple pole must have factorizable
residues, whereas for a branch cut the factorization
does not hold. ' It is this test that we consider here.

Freund' has shown that factorization holds for the
production of the N resonance with isospin 2 where
"P" can be exchanged. The longitudinal phase-
space analysis' shows that, whenever allowed, single

'S. Mandelstam, Xuovo Cimento 30, 1127 (1963); 30, 1148
(1963).

'V. N. Gribov Yadern. Pig. 5, 197 (1967) LSoviet J. Nncl.
Phys. 5, 138 (196 )g.

'M. Geli-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Ya. Pomeranchuk, ibid. 8, 343 (1962).' P. G. O. Freund, Phys. Rev. Letters 21, 18 (1968).' A. Bialas et al , Nuci. Phys. Bl1, 4.79 (1969).

Pomeranchukon exchange dominates the three-body
reactions at high energy. We deduce the explicit deriva-
tion of the factorization test in case of three-particle
Anal states, which, of course, includes the production of
resonances. The case discussed by Freund is a special
case of our result. Here we do not have any difhculty
about the "background" which one has to subtract
from experimental results in order to find the resonances.

Our factorization test is expressed in terms of a double
differential cross section (at fixed momentum transfer
and invariant mass of the two-particle subsystem in the
final state) of the inelastic reactions. In applying it to
the reactions 7t-N ~ 7twN and NN —+ NN~, we find that
experimental data at the same value of momentum
transfer for the two reactions are not available. We
have, therefore, averaged them over a range of momen-
tum transfer 0.01( ~t~ (0.2 (BeV/c)'. It is obvious
that Pomeranchukon exchange in the two reactions
discussed requires that the (sr') subsystem in the final
state have I=—,'. The I=—,'contributions in our data
have been estimated by making use of the results of
Boggild el aLs who have shown that at the 19-GeV/c
proton-proton interaction there is a predominance of
70'%%u~ of the (srÃ) system in the isospin state I=-,' and

similarly in sr+p interactions (by the longitudinal
phase-space considerations) there is a dominance of

' H. Boggild et el. , Phys. Letters 30K, 369 (1969).


