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The parton model for the inelastic lepton-nucleon scattering is generalized to include a realistic momen-
tum distribution of the partons. In this formalism each parton is given a component of momentum which is
orthogonal in a four-vector sense to the nucleon momentum. An approximation scheme is developed to
take into account the effect of this orthogonal (transverse) momentum distribution of the partons. It is
found to generate an additional scale-invariant contribution to the structure function vW2 (v,Q') as well as a
non-scale-invariant contribution, as is expected. The scale-invariance-breaking term is found to be a power
series in Qs/vs and vanishes as r or Qs goes to infinity for a fixed ~ =2&v/Qs. The eiject of the transverse
momentum distribution is explicitly displayed and discussed for a few momentum distribution functions.
The data on inelastic e-P scattering are then analyzed for any significant deviations from scale invariance,
and it is concluded that there is evidence for such deviations. On the assumption that the systematic errors
in the data are small, we make some fits which display the dependence on Q . Finally, an attempt is made
to fit the data with the formalism developed in the initial part of the paper. For this purpose use is made
of a model for the partons, proposed previously by the authors to explain the data in the approximation
that scale invariance is satisfied. Some comments are made on the properties of partons which are necessary
to fit the data and on the present status of scale-invariance breaking.

I. INTRODUCTION

HE parton concept' has recently been' ' of great
utility in the description of high-energy inelastic

lepton-nucleon processes. The original formulations of
this model, however, involve a simplifying assumption
to test the usefulness of the main concepts. It was
assumed, for example, that the four-momentum of each
parton is proportional to that of the proton, and it is
this assumption which leads to the result of scale
invariance. 4 The purpose of this paper is to study the
effects of a realistic momentum distribution of the
partons, since such a distribution will give rise to some
breaking of scale invariance, which seems to be observed
in the inelastic e-p scattering da, ta.

In a previous paper' we showed that a parton model
can be constructed to explain the inelastic e-p scattering
data in the approximation that scale invariance is
satisfied. The formalism that we shall develop here will

be quite independent of that work, but for the purpose
of comparing our formalism with the data we shall use it
as a first approximation.

The plan of this paper is as follows. In Sec. II we
develop a formalism which introduces a component of
the four-momentum of each parton orthogonal to the
four-momentum of the proton. We then introduce an
approximation procedure which is simple to deal with in
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computations. The scale-invariance-breaking term in
this formalism is explicitly displayed, and discussed.
Section III is devoted to the discussion of various
specific models for the transverse momentum distribu-
tion of the partons. (By "transverse momentum" we
mean that part of the four-momentum of the parton
which is orthogonal to the four-momentum of the
proton. ) In Sec. IV the data, on inelastic e-p scattering
are analyzed for any significant deviations from scale
invariance. Then we use our formalism to test the
various hypotheses concerning the transverse mo-
mentum distribution of the partons.

EotatZ'oe md E&semutics. In I'ig. 1 we show the
kinematic configuration. We de6ne

o=E q/M,
'Qs cfs

co = 1/X= 231v/Q'.

The inelastic di6erential cross section is given in terms
of the structure functions H/"2 and I/I/'~ by

dQdA' 4Z' sin'( —', 0)

&&LWs cos'( —,'i))+2Wr sin'-( —', 0)j, (1.1)

where E and E' are the initial and final electron energies
in the laboratory frame, and 0 is the lab angle through
which the electron is scattered.

The structure functions W& and t/t/'~ are functions only
of v and Q'.

The basic idea of the parton model is that at large
c.m. energies of the e-p system the proton may be
thought of as being composed of fundamental non-

interacting structureless constituents, called pa, rtons,

2040



EFFECT OF A TRANSVERSE MOMENTUM DISTRIBUTION ~ ~ ~ 204i

from which electrons scatter elastically and incoherently.
We write the four-momentum of the ith parton as

L HADRON

STATE

p '= x'P—+k ' (2.1)

where E is the four. -momentum of the proton and 4'k;
=0. In the formulation of the parton model as given by
Bjorken and Paschos, ' the momentum k; is set equal to
zero. In our treatment we shall assume that k; is small
but nonzero. We shall specify more precisely what we
mean by "small" later in this section.

The requirement that the momentum of the proton be
given by the sum of the four-momenta of the partons
then requires that FIG. 1. Kinematics of inelastic electron nucleon scattering.

A. Infinite-Momentum Frame

We shall indicate here how our formalism can be
related to an infinite-momentum-limit formulation. Let
the boost which takes place in the xt plane, and relates
the rest frame of the proton to the infinite-momentum
frame, be (= (2.3)

where n' —P'=1, and P= ~P~/M, where ~P~ is the
magnitude of the three-momentum of the proton along
the x direction in the infinite-momentum frame. It is
usual, and convenient in most formalisms, for q to have
no x component in the infinite-momentum frame. This
means that the xt plane in the rest frame of the proton
must be chosen differently for each

~

P ~, so that in this
frame

The parton models which neglect k' also make the
assumption that the x' are positive (so that partons
have positive energy) with the consequence that (2.2)
restricts x'~& 1. This restriction defines a certain phase
space for the x', and this phase space seems to be very
useful in the interpretation of the inelastic e-p scattering
data. ' We shall therefore preserve this feature in our
treatment, and from now on require that 0~& x'~& 1.

We shall do most of our computations in the rest
frame of the proton, in which x'iV is the total energy of
the ith parton, and k'= (O,k'), so that It' is the three-
momentum of the parton. However, the formalism is
covariant and the result will therefore be independent of
frame.

If a parton has four-momentum P=xp+k, and this is
written in the rest frame of the proton as

P= (xM,k„,k),),
it becomes in the infinite-momentum frame

P= (xMn+k))p, xMp+k))n, k),) .

As
~

I'~ ~~, n ~ P, so that

P ~ (n(xM+k„), n(xM+k„), kg),
that is,

P —& (x+k),/M)P+ (0,0,k)) .

(2.6)

(2.7)

(2.8)

(2 9)

B. Development of Formalism

Following the method of Sjorken and Paschos, ' we
find that the contribution to the structure furiction TV2

from a single parton of momentum given by Eq. (2.1)
and charge Q; is

W, '=-Q;2(x'/) )5(x; Q'/2M p+k' q/—P q) . (2.10)

If we now let f&(x,k) be the probability density for a
parton in an E-parton state to have momentum xP+k,
then the structure function will be given by

We see then that the quantity x used in the treatments
of Bjorken and Paschos' and Drell et u/. ' is not strictly
analogous to the x used here, but that the correspon-
dence is really to x+k„/M. This leads us to expect that
an additional contribution to the scale-invariant limit
of vB'& will arise from the transverse momentum dis-

tribution. Our detailed calculations, later in this section,
will confirm that this is true.

V= (~ ~pin q~)—
P= (M,O,O),

whereas in the infinite-momentum frame

q= (v/n, 0,q),),
P= (Mn, Mp, O).

(2.4)
Q' k. q

Xb(1' k)Ãf 1x,k)1(x +. (2.11)—
2Mv I' q

In this equation P(Ã) is the probability of a proton's
being in an E-parton state, (P Q')))). is the average value
of the sum of the squared charges in an cV-parton
con6guration, and the normalization of fN (x,k) is given
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small amount of breaking of scale invariance, and Eq.
(2.21) is the condition for this to be true.

We also see that the breaking of scale invariance
comes from the factor (1+Q'/v')'/', which in the ex-
periments of Bloom ef al. ' varies between 1.0 and 1.1.
To the extent that this variation may be regarded as
negligible, Eq. (2.15) depends only on X. This shows
that the breaking of scale invariance is expected to be
small for these experiments, as is indeed observed.

by

(2.12)dx d'k 8(k.P)cVf~(x,k) =1.

Equation (2.11) is manifestly covariant, but is more
conveniently evaluated in the rest frame of the proton,
in which case it becomes

Q' kq
vt'I'2(v, Q')=2&(/~')(EQ')~ d'lr +

N 2%v I'
q C. Approximation Scheme

Q' &'0 In all the cases we shall deal with, F(x,k2) has a+ k
' ( ' ) singularity at x=0, but not at any other value of x.23fp I 'g

In the limit that f~ (x, l/r) is a () function in lr, one obtains
the original scale-invariant result. We note also that
since spins are implicitly summed over, f~(x,k) can
depend only on k through k', and further defining

k(1+Q2/vs)r/2(MX=Q'/2v, (2.22)

we may make a Taylor expansion of (2.15) about X, and
carry out the integration, obtaining

P(x ks) =P I'(X)(PQ')~xf~(x, i/r),

we can derive that

vP'2=2m k' sintII d8dk

-(1+Q2/V2) i/2- ek

(2.14) v gj
m even (222+1)!

dk k "+ski (m) (X,k'), (2.23)

(Q2+v2) 1/2

gF I k cos9 —k' 2.15
Afar

where X=Q2/23I v.

We see here the existence of a scale-invariant con-
tribution from the transverse momentum distribution,
as follows. First, notice that

1+Q2/.2=1+4msx2/Q2 (2.M)

so that as Q' —+~ at fixed X, we get a scale-invariant
limit for (2.14) of

Ji'"'(x,k') = F(x,k').
Bs

(2.24)

Q' 22r
kr, = F (X)+(1+— d kt~+k( k')X(2'.25)

v' 3''
where F (x) is given by

Ke see that there is a scale-invariant contribution from
every term of (2.23), as expected. For a simple analysis
of the data, we keep only the 6rst two terms, so that the
formula reduces to

vkV2~ 2m k' sino dkdo F X
k cos9

, k' . 2.17

P(x) =Q PP/)(QQ )~xf~(x), (2.26)

Since this is the limit in which scale invariance is
expected to hold, the deviation from this scale-invariant
limit will be small when

fs/(x) = d'k f/)/(x, k) (2.27)

III. PARTON MOMENTUM DISTRIBUTIONS

i.e.,

This can be reduced to

k P (1+Q'/v') "'—1j«MX,

k«-, Q L( +Q) —i.
(2.18) In order to analyze the data, one must have a specific

model for the partons, including one for their transverse
(2 19) momentum distribution. To investigate possible models,

we first write

v/k+Q2/4ks)) 1, (2.20) f2' (x,k') = f~ (x)ys/(x, k'), (3.1)

which can be interpreted as either k«v or

k«-,e(Q), (2.21)

since v and Q' are both positive in the kinematic region
being considered. We wish to obtain a theory with only a

where fs/(x) is the probability density for a parton to
have longitudinal momentum xI', and P/)r(x, k2) is the
probability density for a parton with longitudinal mo-
mentum gP to have transverse momentum k. (We

k E. D. Bloom e/ (k/. , Phys. Rev. Letters 23, 930 (1969}.
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A. Phase Space

I.et us 6rst study the effect of a pure phase space for
the transverse momentum distribution. This means that
&sr(x,k') is assumed to be independent of k'. Here we
shall require that the momentum of each parton be
timelike, although it is not entirely clear that this is
necessary. Thus we set

g~ (x,k') = (3/4s-Msxs) 8(Msx' —k') . (3.3)

expect only a dependence on k' since this represents a
spherically symmetric distribution in the rest frame of
the proton. ) Following the initial work of Bjorken and
Paschos, ' we assume that we can take

fear(x) = (1V—1)(1—x)~ ' (3.2)

which can be derived by assuming a constant joint
distribution in the x; for the E partons. A further reason
for taking (3.2) is, as we have shown in a previous
paper, ' that in the approximation that scale invariance
is true, such a distribution can fit the inelastic e-p
scattering data rather well.

For @&(x,k') we do not have any particular knowledge
except that it is expected to fall off rapidly for large
values of k'. As an initial simpli6cation we assume that
p~ is the same for all X, since this allows us to factorize
it outside the E summation, and thus make calculations
tractable. We shall explore the following three simple
distributions for &sr(x, ks).

we shall have

Ps (x,k') =exp( —k'/2a') 0(M'x' —k')

and

dk k' exp( —k'/2a') (3.7)

1 Q' d'
v Ws F(X)+—— 1+—

6M' v' dX'

X F(X) dk k4 exp( —k'/2o')

dk k' exp( —k'/2a') . (3.8)

C. Velocity Distribution

Here we consider a Gaussian distribution of the form

PN(x k') = L(27r)"'a'x'7 ' exp( —k'/2o-'x') . (3.9)

We call this a velocity distribution since it is a simple
three-dimensional Gaussian in the velocity k/3Ex of the
partons. In this case, if 0- is very much smaller than 3f,
there is a very small probability of 6nding a parton with
spacelike four-momentum, and we may safely ignore
such a possibility. We now find that

( Qs) s ds
vWs —F(X)+—

~
1+—

~

— LXsF(X)7. (3 10)
v'/M' dX'

One then obtains from Eq. (2.24)

IV. ANALYSIS OF INELASTIC
e-P SCATTERING DATA

This section has two aims, the 6rst of which is to
study the available data on inelastic e-p scattering for
signi6cant deviations from scale invariance. The second
is to see to what extent we can interpret the data
in terms of our models for transverse momentum
distributions.

The expression for F(X) is now identical to the original
scale-invariant result for vWs(v, Qs) predicted by the
parton model in the absence of a transverse momentum
distribution. Notice that for the timelike partons the 0
function occurs inside the double derivative in
Eq. (2.25).

B. Momentum Distribution

Notice that Eq. (3.4) is of the same form as Eq. (3.10),
Q' d' with o =M/Q5..s,&.,O)=~(x)y —,', (&y — [x'r(x)]. p4)

dX'

We shall next consider a Gaussian function for the
transverse momentum distribution given by

y~(x k') = L(27r)"'as7 ' exp( —k'/20') (3 5)

In this case we shall make no restriction on the range of

~

k ~, which means that spacelike partons can occur with
significant probability if x is sufficiently small. The
equation for the structure function is then given by

A. Deviations from Scale Invariance

In order to choose some physically significant
parametrization we note that our theory predicts that,
to a first approximation, the structure function vt/V2 is
given by an equation of the form

vWs ——a(ra)+ (Q'/v') b(o ) . (4.1)

Thus, we have plotted, ' in Fig. 2, vw/'2 as a function of
6 Here we have used the detailed data for 6' measurements

reported in M. Breidenbach, thesis, MIT, 1970 (unpublished).
/See also E. D. Bloom e1 al , Phys. Rev. Letters 23,. 930 (1969l.g
To analyze these data, we assumed that R, the ratio of longitudinal
to transverse photoabsorption cross section, is zero, since all
recent measurements show that this ratio is certainly very small
(see, e.g. , R. E. Taylor, Ref. 8). We have also analyzed the data
with &=0.5 and found that the data are not suKciently changed
to affect our conclusions.

This expression for vW, differs from Eq. (3.4) mainly by
the absence of X' before F(X).

If we want to restrict the partons to be timelike, then

Q2) 2 dss' (,Q') P(X)+,'(1+—
~

— I'(X=), (3.6)-'
v'/M' dX'
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Q'/vs for a few fixed values of a&. For the largest values
of Q'/vs there is a definite decrease of vWs and, within
errors, the data are roughly consistent with a linear
relationship of the form given by Eq. (4.1).By drawing
(by eye) a straight line through each set of points, we
have derived values of a(co) and b(co), which are plotted
in Fig. 3. The slope b(~) appears to increase approxi-
mately quadratically at large co. One should note,

however, that
Q2/p2 4~2/Q2~2 (4.2)

and so as u increases, this factor cancels the increase
in b((o)

In order to put this analysis on a sounder basis, we
have made a least-squares 6t to the data, of the form

pW, =F(X)+2+BX+(C+DX)/Q', (4.3)
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Fro. 3. Plots of a(cu) and b(~) from the linear its of Fig. 2 (points with error bars)
and from the 6t to the data given by Eq. (4.6) (solid line).

where F(X) is taken to be ours previous good fit to vW& data vary systematically as the energy changes and thus
in the scale-invariant approximation, and is given by reveal a dependence on Q .

By the use of Eq. (4.2), we can reduce Eq. (4.3) to the
F(X)=28L(1 X) X(b'+2)(lnX+1 X)j~ (44) form (4.1). p(a&) and b(&u) are then given by

with 5=0.042 and bb'= 1—4b. (The physical significance
of b and b is explained in Ref. 2.) In this computation
we have used the data published in Ref. 5, and assumed
that R is zero. For the 56 points quoted in this reference
we obtain a ht with a X' of 104.2 and coefficients given

by
2 =0.0174~0.0006,

8= —0.0861~0.0008,

C=—0.0268~0.0002 GeV',

D=0.0517~0.0027 GeV'.

(4.5)

A 6t to zR 2 with only scale-invariant functions of the
form F(X)+A+BX+CX'+DXsgives X'= 184.4, which
is significantly higher than that given by Eq. (4.3). In
Fig. 4 we have plotted the fit given by Eq. (4.5) and the
data of Breidenbach' for four diRerent incoming ener-

gies of the electron. For comparison, the scale-invariant
fit given by Eq. (4.4) is also plotted on each of these
plots. From these plots one can easily notice how the

and
a(&u) =F (X)+A+BX

b (co) = (C+D/cv) cv'/4M'.
(4.6)

r M. Nauenberg, Phys. Letters 24, 625 (1970).

We have plotted a(~) and b(~) as given by this fit in

Fig. 3. The reader will see that the main features of our
previous analysis by graphs are reproduced in this
analysis, although the stringent condition of a four-
parameter 6t forces there to be some disagreement.
Notice also that our graphical analysis was done with
the detailed 6' data of Ref. 6, while the fit was done
with the data of Ref. 5, which has some 10' and some 6'
data. The substantial agreement between the two
analyses is therefore particularly significant.

Thus we conclude that the data as published do give a
significant Q' dependence, particularly the data for 7

and 10 GeV, and we agree with Nauenberg' that there
is a substantial non-scale-invariant term in vW~. It has
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Fro. 4. Plots of the fit given by Eq. {4.5} {solid line} and the data of Breidenbach (Ref. 6) for different energies of the incoming electron.
(Some of the points are obtained by averaging over a number of adjacent points. ) For comparison, the scale-invariant fit given by (4..4)
is also plotted (dashed Hne) on each of these plots.

TAsr, E I. Fits with different distributions.

Distribution

Scale invariant
Momentum dist.
Velocity dist.

M'+48 ~(GeV)

0.0377&0.004 0.9235 &0.0078 0 351
0.0561~0.004 0.9053&0.0076 0.394&0.001 341
0.000 &0.004 1.000 &0.0082 0.200 &0.001 228

R. K. Taylor, in Proceedings of the International Conference
on Expectations for Particle Reactions at the New Accelerators,
Wisconsin, 1970 {unpublished).

been pointed out by Taylors that systematic errors,
which may amount to as much as 10%, could be re-
sponsible for the Q' dependence observed. We would
like to point out that to produce the Q' dependence
observed over the ful1. range of energies measured, it
would be necessary for both systematic and random
errors to conspire maximally in order to produce an
apparent Q' dependence as large as that observed. It is
clear that a reduction of the systematic error is of
paramount importance in ascertaining the status of any
breaking of scale invariance.

B. Fits with Transverse Momentum Distributions

Q'e have attempted Gts with a momentum distribu-
tion and a velocity distribution by using the form of
P(X) given in Eq. (4.4). The formulas are specified in
Sec. III. Ke have three physically meaningful parame-
ters 0, 5', and o- with which to fit the data. The results of
the fits are shown in Table I, where we have also shown
a, fit in which o. is set equal to zero. (The parameters for
this fit are slightly different from those in our previous
paper' since we a,re not using quite the same data. ) We
note that none of these is a very good 6t.

It should be remembered that our formalism gives a
scale-invariant contribution from the transverse mo-

mentum distribution about ten times as large as the
term breaking scale invariance, so that the values of the
parameter 0. in our fits are determined more by this part
than by the breaking of scale invariance.

It may be worthwhile to point out that with the
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velocity distribution our best 6t' is with 8=0, which
corresponds to a theory (see Ref. 2) with all neutral
partons, except for the first four, the sum of the squares
of ~hose charges is one. This could be given by three
quarks and a neutral parton (a "gluon") or a singly
charged parton and three neutral partons. The mo-
mentum distribution, however, agrees with our earlier
result' that the mean square charge distribution of the
partons in the cloud is small but nonzero. We also
observe that although the charge distribution of the
parton cloud, 8, may vary with the transverse mo-
mentum distribution, the relation Q = 1—48, which was
conjectured before' on physical grounds, is obeyed to a
good approximation.

An analysis of the functions a(a&) and b(~), as defined
in Sec. IVA, shows that both of the transverse mo-
mentum distributions produce far too little breaking of
scale invariance. For the velocity distribution b(~) goes
to zero at higher a, and is positive, while for the mo-
mentum distribution b(~) is small and negative, and
increases linearly at high ~. There may be four reasons
for this behavior: First, there may be contributions
from higher-order terms in our expansion, which would
predict a nonlinear dependence of i W2 on Q'/v'. In that
case the above predictions of the erst-order formalism
will, naturally, not work. (The data are consistent with
certain nonlinear dependences on Q'/i', so this possi-
bility is permissible. ) Second, assuming that such
higher-order terms do not occur, we may have the
wrong sort of transverse momentum distribution. We
note that to produce the observed form of scale-
invariance breaking in this formalism, we would need a
transverse momentum distribution with a larger mean
square transverse momentum at smaller x. Third,
there is the possibility that the initial form of F(&o)
chosen is of the wrong form, and that a fit with many
more parameters is needed to obtain a realistic theory.

' A better fit can be obtained by allowing negative 8 and 8', but
this then makes (QQ')~ negative. So we have chosen fits with
non-negative 8 and 6'.

Fourth, when systematic errors are corrected, scale
invariance may not be broken as much as it appears to
be now, and in this case one of these distributions may
produce the correct Q' dependence. Confirmation of any
of these possibilities must await a more precise de-
termination of systematic errors and the collection of
more data at larger values of w.

V. CONCLUSION

In this paper we have developed a formalism in which
the partons do not have simply a fraction of the mo-
mentum of the proton, but have in addition some
transverse momenta. We believe that the concept of the
transverse momentum of partons must be meaningful in
any theory which has a parton limit, although there
may be no one-to-one correspondence between other
theories and ours. We have seen that the transverse
momentum distribution gives a considerable scale-
invariant contribution to the structure function vt/t/'2 as
well as a term which breaks scale invariance. The scale-
invariance-breaking term is found to be a power series in
Q'/v' and vanishes as v or Q' goes t,o infinity for a
Axed co.

By interpreting the data as having negligible system-
atic errors, we have found that there is a measurable
amount of scale-invariance breaking, much more, in
fact, than the two transverse momentum distributions
we have considered seem to be able to predict. This is
observed particularly at large co. It seems certain that
some transverse momentum distributions can be ar-
ranged to produce such an effect. However, we think
that the particular transverse momentum distributions
we have chosen are quite reasonable and perhaps some-

thing more fundamental may be taking place at large cu.
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