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Large-Angle Scattering by Optical Potentials*f
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The qualitative behavior of large-angle scattering by a rotationally invariant optical potential is investi-
gated using the WKB approximation. It is shown that the strong s dependence exhibited by elastic proton. -
proton scattering requires an energy-dependent potential. The source of the inaccuracy of the eikonal
approximation„at large angles, is found by comparing eikonal phase shifts with those given by the WKB
approximation.

I. IÃTRODUCTIOÃ

T high energy, near-forward elastic proton-proton
~

~

~

scattering shows the characteristics of diffraction
by a smooth absorber: Ref(0)/Im f(0) and o,i/0;„are
both much less than 1, and do/dQ(s, t) is a strongly de-
creasing function of

~
1 ~. The optical model proposed by

Serber' incorporates these properties in a natural way
and provides a qualitative explanation of the t depen-
dence of large-angle proton-proton scattering. The s
dependence of da jdQ(s, t) remains somewhat mysterious.

If the observed large-angle cross section is reproduced
with a symmetric version of the amplitude:

A s"i'(—t)""=A (2k) "+"(sin-', 0)", (1.1)

we find (see Sec. VII)

p= —5.75
p

zv= —2.25.

In other words, at large angles the s dependence is
actually more signihcant than the t dependence. But if
Serber's model is solved by the eikonal approximation
(using an energy-independent potential), i automati-
cally becomes 0.5, which seems to imply that to repro-
duce (1.1), Serber's potential must be made a function
of s, so that, in effect, the s dependence of large-angle
scattering is assigned to some unknown dynamic
mechanism.

Recently, however, it has been shown that the eikonal
approximation is extremely inaccurate at large angles.
For a particular potential studied by Avison, ' the
eikonal differential cross section is small by as much as a
factor of 1000. It is conceivable, therefore, that some
energy-independent potential, if solved accurately,
might produce a cross section which does exhibit the
energy dependence required.

Serber's optical model interprets the t dependence of
the differential cross section as the result of a spatial
distribution of absorber; perhaps the s dependence of
the differential cross section may also be interpreted in
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this way, rather than as a result of the energy depen-
dence of thc absorber itself.

In order to explore this possibility, we will reconsider
Serber's optical model using a number of techniques
based on the WEB approximation. Unfortunately, it is
quite dificult to produce a rigorous bound on the accu-
racy of these procedures, and therefore they vill be
tested by comparison with Avison's numbers and by
comparison with each other. In the process we will And
the source of inaccuracy of the eikonal approximation at
large angle.

The Anal result of all this will be that Serber's
equation cannot account for (1.1) using any "reasonably
smooth" potential of the form

PiqP (nr)/r, 0,0,0]
unless q and e themselves depend on s. In a subsequent
paper, however, we mill show that optical potentials of
a different sort ("Lorentz contracted") do provide an
explanation of (1.1). In addition, once the range and
amplitude of the contracted potentials are chosen to
reproduce the line do./dQ(k, 90'), a pair of ripples
automatically appears, in agreement with the observa-
tions of Allaby et al '' (ki 1..1 GeV/c, 1.9 GeV/c).

II. SERBER MODEL

Serber's optical model is governed by the c.m.
equation

(P'+m' —LZ+iq V(r)'jl @=0 (2.1)

which describes the scattering of a single IGein-Gordon
particle by a spherically symmetric absorber, introduced
as the time component of a four-vector to ensure

lim Oi„(E))0.

Since large-angle proton-proton scattering occurs at a
much greater rate than similar two-body reactions not
involving protons, or involving only one proton, it
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seems reasonable to suppose the proton has a hard core
of some sort. Serber therefore chooses U singular at the
origin:

V(») =e "—/»

We will restrict ourselves to Eq. (2.1) for spherically
symmetric potentials which go as 1/» near the origin and
are of finite range. The coupling constant q is assumed
real, and V(») is assumed real when» is on the real axis.
If we write

Four different techniques will be considered.
(1) The WKB approximation without any simpli-

fying assumptions.
(2) An asymptotic form of the WKB approximation,

correct when k is large (fixed //)

(3) A crude form of (1) correct when 2/ is small.
sj. (4) An asymptotic form of (3).

Approximations (1) and (2) will be developed for all
potentials of form (2.2), and (3) and (4) will only be
considered for the choices P(») = e—', e "'.

V(») =P( )/», (2.2)

P(0) can be nominally set equal to 1. We will also
assume P(») has neither cuts nor poles which influence
the scattering.

III. WEB APPROXIMATION

IV. ASYMPTOTIC FORM

By use of the Watson-Sommerfeld transform, we will
be able to show that when k is large, we need consider
only a simplified version of (3.2). The scattering ampli-
tude may be written

1 P/ 1/2( cosO)—
/(//) = — (1-"'"-"*)—

2k cosa'

From the partial-wave equation

we extract the WEB phase shift'

12 ()+1)2 1/2

81= lim (E+i»/V) ' »/22 —— — d»
g Moo r2r0

[E+i2/ V(rp) ]2—//22 —(1+2')2/r22 =0,

82 l(l+1)
+(E+i»/V)' 2/2' — — P&(») =0, (3.1)

ar2 The con.tour C circles each positive real pole of 1/cosirA
once in the clockwise direction and does not include
singularities carried by the phase shift. If we assume
6z &~2 to be an analytic function of A in a strip which
includes the real A. axis and P(») to be bounded in a
strip which includes the real r axis, we can then deform
C as shown in Fig. 1. But as k + pp, rp(t) —+»p(l) =h/k;

/2
p (ill)2 1/2 thus, if we allow n to grow as /2pgk, for large k the

~
k — d» horizontal contours will still be in the region in which

P(») is bounded. It is reasonable to assume that 8/1 1/2 is
also bounded in this region, and therefore using the
relation

k' (i+ 21) 2/—»p2 =0-

The function»p(l) is considered in Appendix A. Its
analytic properties are studied in detail for the case
P(») =e ". If 1/V(»p) is small, we exPect »p»p. The
analytic character of 8& is carried largely by rp(l), since
Bi will be analytic at any point 1' at which VLrp(l)] is
finite and rp(l) is analytic.

Re

Pp 1/2( —cos8) (ge—8ImA

cos7l A.

we see that the contribution of the horizontal contours
will go to zero as e ' 0 ~. If the vertical contour con-
tributes a power law in k, the horizontal contours can be
ignored. As k becomes large, however, A/k —+0 uni-
formly on the vertical contour; therefore, we need only
determine the behavior of 8q 1/2 in the limit A/k —+ 0.

We define the variable A, =l+2 and decompose 8 into
three parts:

& =4+4+ &2,

1
— P(») 2 A2- 1/2

8y=- E+ig —m2 ——
2 D r r'

A2 "' (ii/E/k)P(»)—k2 ——
(»2 A2/k2) 1/2

Pro. 1. Contour C.

5 R. E.Langer, Phys. Rev. 51, 669 (1937).

22/E " P(») e-
~2= dr,

k (»' —A2/k2) '/'

igE " e—" igE83=- dr = Eo
(»2 A2/k2) 1/2
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large values of E. The substitution r= y/E gives

/////////////////////////////P

//////////////////////////////////////a Re

FiG. 2. Contour D.

and then decomposes b~ again:

~1 ~4+ ~5

(InE/k) LP(y/E) 1—]
dy,

(y2 g2) I/2

which must approach 0 as E 502 since P(0) =:1.
84 is given exactly by the formula

1
54=—

2

i 2 p2- 1/2

E ——1S2——

k' ——
/(

A2) '/' ir/E/k —dr,
k2) (r2 /12/k2) I/2

84 = -'Ir [A—(h.'+ I/')'"7+ (ii/E/k) (1+ink)
Ii ([(h.'-//- —2/'-) "+2/E/k] In[ (h'-//- 2/') "y.I/E/k]

[(+2+~2)1/2 ~E/k] in[(/12+ ~2)1/2 ~E/k])

The preceding results combined yield the following
expression for the WEB phase shift:

E
8 = ir/ —(1—25+1n2k)+-I2r[A —(A'+I/') '/']

k

Z
2 p2- 1/2

E+ ——r/52 ——
r r'

(22/E/k) [P(r) —1]
dr.

(r2 g2/k2) I/2

oo

82(0) = ir/—
p

P'(r) lnr dr y—

D is the contour shown in Fig. 2.
The square roots are given positive real part above

the cuts, which extend from the two branch points
'to +&+.

The limit of g2 as h/k —+ 0 is finite. The limit of the
first derivative of 82 with respect to A/k is also finite:

iqE 2252

2k k2 &

(4 2+2/2) I/2+2/E/k&—-12i(A2+ 2/2) "' ln (4.3)
(32+2/2) '/' r/E. /k&—

This formula includes all terms which do not approach
zero as k approaches infinity and h/k approaches 0.

The phase shift has branch points at A=-~iq and
h.= &2/20/k so that the contour of Fig. 1 should actually
be the path shown in Fig. 3. This modification does not
make expression (4.3) any the less useful, however,
since as k —+~, 2/2/2/k ~ 0, and the entire contour enters
the region in which (4.3) applies. In fact, as k ~~ the
contribution of the cut approaches zero faster (by one
power of k) than does the total amplitude.

82'(0) =0.

Therefore, by Taylor's theorem, for every e&0, there
exists a neighborhood Ã of 0, such that

)82(A) —82(0)) (5(A(/(k) if A/kC&. (4.2)

Using the expansion of E'2(x) near x=0, we have

E A
8,+2, —1q—1n—+e),

k 2k

Im

////////////J / JJJI////A JI Re

P'(r) lnr dr.

85, on the other hand, can be neglected entirely for FrG. 3. Modihed contour C.
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The validity of (4.3) depends only on the smoothness
of the function P(r) The ~alue of /o at which the
scattering amplitude given by (4.3) reproduces the
%KB approximation to within a few percent will be
controlled by quantities of the form

o/}/P (/}/) (0)//), /}/

where E is a positive integer.
The scattering amplitude given by (4.3) depends on

only two free parameters, q and n. It will therefore be
possible to determine all the information we need by
evaluating the Watson-Sommerfeld integral numeri-

cally. It remains worthwhile, however, to consider a less
accurate form of the %KB approximation, which leads
to closed expressions for the phase shift and scattering
amplitude. Along the way we will obtain a clearer
picture of why the eikonal approximation fails at large
angles.

V. POWER SERIES

Expression (3.2) can be expanded to produce a power
series in q.

8 ()))= ))/}(') (l+-')+-'))'/)(2) (&+-')+.

The first two coefficients are

not included in the eikonal phase shift, and for a po-
tential singular at the origin, this term contributes a
singularity at A. =O which has a drastic effect on the
large-angle scattering amplitude.

When A is close to 0, (5.2) leads to the formula

F2{5){ g(A/f/) @+ice (s/k-

m' —
1

g= exp 2)/ y+2f —1+——y (5 3)
$2 22oE/ki

where x=2r/E/k, s=-', 7rrP, y=2)/'/r/o/k', and y is Euler's
constant.

It is worth noting that the pole which appears in the
phase shift given by (5.2) and (5.3) does not appear in
the exact WEB phase shift, nor in (4.3). Its source may
be found, however, by expanding (4.3) as a power
series. The term

-,'m.
t h.—(A.'+ ))') '/o]

,'s rP/A—+—"
The pole at +=0 in (5.2) represents the weak-coupling
limit of the effect of the branch points at A=Wig.
These branch points must also be present in the exact
solution since the radial equation corresponding to (2.1),

E rV(r)
8("(A) =-,'i- dr,

k s (r' —h.'/k') "'
r P'2

()(')(A) = ——— — dr
2 k g (r' —A'/k') '/'

d' f(l+1)+})'e—'"
+k'—

r2

if solved by a power series

+2z&) U)=0,

dr. (5.1)
2k' s (r' —h. '/k')"'

E A
6&') =i—Eo-

k
(5.2)

oo 2Z'
Ko(u) dl — Eo —

~
.

'

2A/k u ~i

Contour E is shown in Fig. 4. If V is a Yukawa potential
(energy un}t =n), we find

Vl=r/' Q C„r",
v=0

leads to the indicial equations

/(/ —1)=t(f+1)+n',
/ k~L=(l+l)'+n'j"',

with branch points at A=)+ oi = ~f))
We now make the approximate substitution

(
l) I/2

cos(qh —~s) ) P/(cos8)q=—2 sin-,'/) (5.4)
~qai

The linear term ))8(" is just the phase shift given by the (see Appendix B), replace the angular momentum sum
eik.onal approximation. The quadratic term, however, is by an integral, and rotate contours across the complex

plane. ' The scattering amplitude becomes

ig ~ ~ ( + 'y) /2+3/4

f/ +'~f+'(2~ ) '/'i

CYJJIIJJJ/IIIJJJJIJJ/JJJIJJJJJJJJIJIIJIJJI4

y L2g (a+i}I+1)w ~/2E' . (2(@q)I/9)

~ie—(x+ay+1) w~/2+ {3} . (2(sq) 1/2)j (5 5)

FIG. 4. Cor1tour E.
This is discussed by R. Serber, Proc. Natl. Acad. Sci. U. S.

S4, |92 (&%5).
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2(sq)"'= 2il(s sin-,'fj)'",

if either g or sin-,'ISI is small, the Bessel functions can be
convcnlcntly expanded Rs power scrlcs. Thc lcRdlng
term of the series for H(2}, added to the 6rst term given
by E, duplicates Serber's asymptotic form for the
eikonal approximation Lactually there is a small differ-
ence caused by (5.4)j. For weak coupling or small
angles, we expect the eikonal approximation to be fairly
accurate, as in fact is the case. At large angles for strong
coUpllng, however, hlghcI' tcrIns 1n thc powcI' scI'1cs of
the Bessel functions contribute and the eikonal ap-
proximation becomes inaccurate. These terms arc the
result of the vP coefFicient of (5.1) which produces the
essential singularity in the partial-wave amplitude
of (5.3).

%c note that if q&1, the term H&2} dominates the
large-angle amplitude. If 8 is Axed,

(5.6)

But at fixed k, if q& 1, then 8 ln
I
H &"

I /8 Inq is small and
therefore

(5.7)I f1 "1/~"'""

Kc have the approximate relationship

t &»Ifl ~»lfl
+5 ~

k Bink o 8lnq
(5.8)

„Im

These equations will turn out to be rather useful.

VI. COMPARISONS

As mentioned eager, Serber's proton-proton potential

V=o o"/r, g=1.0, n= 0 2646 Ge. V. ,

hRs bccn solved cxRctly by Avlsonq wh, osc I'csUlts disa-
gree with the eikonal diIIferential cross section, at large
angle, by as much as a factor of 1000.

Using the %atson-Sommerfeld contours shown in
Fig. 5, both the WKB amplitude (3.2) and its asymp-
totic form (4.3) reproduce Avison's scattering amplitude

TAME I. Scattering aInplitudes for Server s
Vukavra potential. ki„b= 1j. GeV/c.

30
50
70
90

110
130

(0.62+1.85i) X iO-»

(3.00+0,66i) X10 &

(16.0 -1.6i} X1O-»
(9.7 —1.8i) Xio-»
(8,6 —0.7oi) X10-»
(8.00 —1.2i) X10-»

(0.551+1.41i) Xio-~
(2.21+0.548i) Xio 3

(9.oo —o.os5i) x io-»
(4.63 —0.291i) X10-»
(2.88 —0.23i) X io-»
(2.08 —0.186i) X10»

Asymptotic
%'KB

(2,03-1.22i) X10-3
(7.66 —3.56i) X10-»

(3.92 —1.57i}Xio»
(2.45 -0.89i) X10-»
(1.77 —0.62i) X10-»

quite reliably. In obtaining the large-angle scattering
corresponding to (3.2) we use the Watson-Sornmerfeld
transform rather than a partial-wave summation, since
at large angles a partial-wave sum involves a great deal
of cancellation and is therefore quite sensitive to small
errors in the phase-shift integral.

The amplitudes given by the |A'KB approximation,
a d ts asympt t'c f m, comp ed 'th A

' 's
result in Table I (ki„b=11 GeV/c) and Table II
(hi,b= 30 GeV/c). The disagreement between the WKB
amplitude and Pvison's is less than a factor of 4, which,
for R qUR11tRtlvc stUdy of thc soI't 1ntcnded hc1 c, ls Inol e
than Sufhcient. Even this error occurs only at backward
angles and is therefore masked by the forward amplitude
when the symmetrizcd cross section is determined. . It is
worth noting that the energy dependence at 6xed angle
of both the WEB approximation and its asymptotic
form reproduces Avison's result to within, a small
fRCt01:

do/dQ (11 GeV/c, 90')
=13.2,

do/dQ (30 GeV/c, 90') z;,,
der/dQ (11 GeV/c, 90 )

=18.6,
do/dQ (30 GeV/c, 90') wzn

do/dQ (11 GeV/c, 90 )

do/dQ (30GeV/c, 90 ) g,r . wxn

Figure 6 compares the three differential cross sections
at 11 GeV/c. Figure 7, which corresponds to 30 GeV/c,
shows only two Hncs since at this energy the complete
gfKB approximation is indistinguishable from its
asymptotic form. It is clear that the %KB approxima-
tion reproduces the angular dependence of the difTer-
ential cross section quite rebably.

KZuZaari eXrrZru Vruaarr y

Tmx,z H. Scattering amplitude for Serber's
Yukavira potential. kl,b=30 GeVjc.

I"Io. S. Watson-SommerMd contour.

8
(deg}

30
50
70
go

110
130

Avisom

(2.3+1.si) Xio-s
(6.2+0.6i} Xio-»
(4.4+O.oi) X10-'
(2.6-o.si) xio-»
(2.2+0.08i) X10»
(2.1 -O.oi) X10»

{2.065+1.72i}X10 s

(5.23 +0.60i}X10-»
(2.04 +O.osi) Xio-»
(1.07 +0.02i) X10 4

(6.75 +0.09i) X10-5
(4.91 +0.05i}Xio-~

Asympt;otic
&KB

(4.98 -1,04i) Xio»
(1.95 —0.32i) Xio»
(1.02 —0.15i) Xio»
(6.50 —O.ssi}X10 &

(4.76 —0.62i) X10-&
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VH. CONCLUSION

%e will now apply these methods to the problem of
proton-proton scattering. ~ It should certainly be pos-
sible to f1t the scattering amplitude given by (4.3) to the
energy dependence of 90' scattering; the normalization
of the amplitude corresponding to (4.3) can be con-
trolled by choosing the quantity I, and the energy slope
fixed by choice of ti (since most of the energy depen-
dence of the phase shift is carried by the term pro-
portional to tilnk). In fact, the 90' scattering' is
reproduced quite accurately on the internal 8&hi,b
&31 GeV/c by the constants

q= 3.687, e= —0.3853, {7.1)

I (Geva
)

FxG. 6. Differential cross section as a function of —I; k~&b=11
GeV/c. The solid line is Avison's result, the dashed line is the
scattering curve given by the %KB approximation& and the
dotted line is the asymptotic form of the WEB approximation.

TwaLE HI. Scattering amplitudes given. by (5.5) and (5.2) for
various Yukawa potentials. 8=180'; kI,b=30 GeV/c.

1.0
2.0
3.5

0, (GeV) f—(5.5) (10 "cm) f—(5.2) (10 '8 cm)

0.10 0.570—0.568i 0.696—0.657i
0.23 0.168+0.237i 0.105+0.261i
0.33 —0.016+0.168i —0.052+0.147i

If q and o, are raised, we might expect the asymptotic
form to become less accurate. However, even for the
choice q= i.5 and +=0.467 GeV the scattering ampli-
tude given by (4.3) is within 15%of that given by (3.2)
at both kI,b=11 GeV/c and kt,b=30 GCV/c, for scat-
tering angles greater than 50'.

Expression (5.2) reproduces Avison's results just as
dependably as does the %KB approximation. If q is
much larger than 1, however, (5.2) becomes inaccurate
since powers of q greater than 2 become signi6cant. For
the choice I)=3.687 and I=—0.3853 (a Yukawa po-
tential with 0,=0.382 GeV assigns this value to I if the
units of k are GCV/c), (5.2) gives differential cross
sections larger than those of (4.3) by a factor of 10. A

partial-wave sul11Dlation is coxlvenlcnt fol calculating
the scattering amplitude corresponding to (5.2) since

the necessary Sessel functions can be rapidly evaluated
to gleat pleclslon.

Expression (5.5), the asymptotic form of the scat-
tering given by (5.2), agrees with (5.2) itself fairly well.
Table III compares the two amplitudes for various
values of r) Rnd ct at k I,b =30 GeV/c, 0= 180'.For 0=90',
the agreement is only slightly worse.

If k Is 111CRSul'ed II1 GCV/C. T11C RIlglllal' Slope gIVC11 by
these parameters, however, is much greater than that
observed. At 60', for example, the cross section pre-
dicted by (7.1) is greater than observation by a factor of
10. And if either g or I is altered to reproduce the cor-
rect angular dependence, the energy dependence be-
comes incorrect, since c) InLdo(k, 90')/dQj/c) Ink is a
monotonic function of ti and do (k, 90')/dQ is a mono-
tonic function of N.

%e must conclude that no "reasonably smooth"
potential of the form

sriP (nr)/r

can account for the observed scattering unless g and 0.
are themselves functions of s. By "reasonably smooth"
we mean a potential for which the quantities

nxP(Iv) {0
are small enough that the asymptotic form is reliable in
the region 8&kt,b&30 GCV/c.

By comparing {5.6) and (5.7) with the experimental
data, wc can get some understanding of why energy-
independent potentials fail. If the observed data arc
Qtted to a symmctrized difFerential cross section calcu-
lated froQ1 Qlc GQlplitudc

2 (2k) "+"(sin-,'0)~,

(7 2)

The choice I+ro= —8 requires ri=3.5 )Eq. (5.6)], but
w= —2.25 implies I)= 1.0 PEq. (5.7)j. In other words
{7.2) violates (5.8).

If tlM scR't'tcl IIlg gtvc11 by cxpl'cssIOII (5.1) Is COIIIpRI cd
with experiment, our conclusion remains the same. The

7 Qfe construct a spin-averaged di6'erentiai cross section for
elastic p-p scattering by the formula da/dQ(I) =!f(g) ('+

~
f(s S) [~—ReLf (8)f (a —S)—g, which is symmetric under the

exchange 8 ~ m —8, as must be the case since the two protons are
identical. For a more detailed discussion, see Ref. 2.

The experimental values referred to are taken from Refs. 3,
4, and the following: J. V. AGaby, G. Cocconi, A. N. Diddens,
A. Klovning, G. Matthiae, E.J. Sacharidis, and A. M. 9'etherell,
Phys. Letters 258, 156 (1967); G. Cocconi, V. T. Cocconi, A. D.
Krisch, J. Orear, R. Rubinstein, D. B. Scarl, and B. T. Ulrich,
Phys. Rev. )38, 8165 (1965).
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I'"IG. 7. Difkrential cross section as a
function of —t; ki,b=30 GeV/c. The solid
line is Avison's result, and the dashed line
is the curve given by the %KB approxirna-
tion. At 30 CeV/c, the %KB approximation
and its asymptotic form are indistinguishable.

tlat

CU

E

Ci

D

0

k
&

= 30 GGV/c
Iab

10 l5

&(Gev
)

I

20 25

Vi= e '/r V2 ——e- '"/r

cross section corresponding to (5.1) for ejther of the and this solution is given by x"=limir„„x, where

potentials gN F (~N D—~o sJs (A5)

invariably shows less energy slope than ezperinmntally
observed whenever the observed angular slope is cor-
rectly reproduced.

APPENIHX A.

The function r(A) defined by the equation

[F+iriP (r)/r]& —rrI2= A2/r2

can be evaluated by performing the iteration

(A1)

~2~2 I/2

r"= —'~ P(r" ')+ —— —LP(r" ')j'
k2 k4 (A2)

r'=A./k,

if ii is sujficiently small and P(r) js well behaved (we
assume also that P is an entire functjon of r), sjnce
according to the conti actloIl IIlapplng 6xed-polIlt
theorem, ' the equation

x= F(x) (A3)

has a unique solution in any region Q such that

~, ~~Q-IF()-Fb) l«-l*-yl, o«-«1 (A4)
'An interesting discussion of various fixed-point theorems is

given by R. L. Warnock, Argonne National Laboratory High-
Energy Physics Division report, 1968 (unpublished).
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for any point s&Q.
The scattering problem studied by Berber is

P(r) =e ', a=0.2646 GeV, g= 1.0. (A6)

If energy is measured in units of n at ki,b= 11 GeV/c,
then

k=S.33, x=9.05, i~=3.55, P(.)=. . (A'I)—
Using this collection of information, it can be shown

that a region Qi, A/k+Qi, , exists, fulfilling condition

(A4) and so forcing the convergence of iteration (A2) if

A is contained in the territory

[Agcl lAl &0.74, ReA&0}
U(h, &ClA=iu, NQ R) . (AS)

The square root must be evaluated according to the
convention

(A&/km+ *)'i'
= (A/k) (1+k's/h. ')"' Re(1+k'*/A')"'& 0 (A9)

unless A. is very dose to the imaginary axis, in which
case either choice of the sign of the square root, adhered
to consistently, will yield a convergent series.

The function r (A) is differentiable and hence analytic
if

8—([Bryan&P(r) j~—m'r'j go at r =r(A), , (A10)
8'f

which is true at all points in region (AS). We can also

prove that r(A.) can be continued to almost every point
of the positive half-plane by considering the function

F(r,A) =A'-[E+igP(r)g'+m'r',
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which yields the relation

ZLr(A), A]= 0.
If (A10) is fulfilled, we have

8—F(r,A) &0 at r =r(A);
Bf

(A12)

(A13)

APPENDIX B

The approximation

$ QO—g A(l)Pi(cos8)(2l+1)-ik
2$ l=p

X A(kp ,')J—p(—( tp)—)"'pdp (81)

A= ~m/k. (A14)

IS. Bockner and W. T. Martin, Several Complex Variables
(Princeton U. P., Princeton, N. J., 1948), p. 39.

and so, by a well-known theorem, "we have the result
that if r(A) exists at A.o and if (A10) is fulfilled at this
point, then r(A) exists and is analytic in an open region
of Ap. Thus all points on the frontier of the maximum
region to which r(A) can be extended violate (A10).
Equation (A10) must definitely be violated at least
once, since if A. is carried along a closed loop through the
shaded region of (AS) beginning and ending at 0, the
function r(A) does not return to its original value, and
so there must be at least one branch point somewhere in
the shaded region. By using the fixed-point theorem on
(A10) it can be shown, however, that there is exactly
one such point r" violating (A10) and therefore ut most
one A at which r(A) cannot be defined. But of course for
this value of A we already have a r(A), namely, r; thus
r(A) is defined over the entire region ReA)0 and is
analytic at all points in this region except A..

To erst order in g, we have

has been studied in some detail. ' If A (kp ——,) is analytic
in p at p= 0, and the lead term in this power series has an
exponent less than 5, the error caused by (81), for
large t, is less than a factor of 2. If the leading exponent
is 1, at large t, (81) will introduce no errors at all.

The additional error caused by

Jo(qA) (2/irrtA)'~' cos(qA —
4im) (82)

is a factor of v2 if the leading exponent is 1, 1.06 if the
leading exponent is 3, and correspondingly less if this
exponent is greater than 3.

Since the partial-wave amplitude given by (5.2) has
an essential singularity at p =0, the significant exponent
here, in effect, is negative. At 180', the Watson-
Sommerfeld version of the asymptotic amplitude given

by (5.3) can be converted to a rapidly convergent series
of Bessel functions, the value of which differs from the
quantity found by combining approximations (81) and

(82) by less than a factor of 2, even when it is as large
as 4.


