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A formulation is presented for the derivation of a Schrédinger-equation potential from a field-theoretical
model. The relativistic two-body equation of Bethe and Salpeter is reduced using a generalization of the
Blankenbecler-Sugar method. The resulting equation is shown to be identical with the nonrelativistic Lipp-
mann-Schwinger equation upon a unitarity-preserving identification of the amplitudes. An equivalent
potential is thereby defined and expressed as a solution of an integral equation. The second- and fourth-order
potentials are calculated, and their energy dependence and nonlocality are studied. An approximation
scheme is developed for expanding the configuration-space potentials in the powers of the momentum
operator. Terms up to and including the first power are retained, giving rise to a potential composed of
central, spin-orbit, tensor, and spin-spin parts. The contributions of the meson resonances 7, p, and w are
included to second order. The complete potential is numerically calculated using masses and coupling
parameters taken from meson experiments; no parameter of the potential is searched upon. The resulting
potential is remarkably similar to that of Hamada and Johnston (outside half a pion Compton wavelength),
particularly for the parts that are relatively well determined by nucleon-nucleon scattering data. Further ex-
tensions of the program, including the treatment of the nucleon resonances and pair suppression, are dis-
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cussed, and an outline of such extensions is given.

I. INTRODUCTION

HE prime concern of this paper is an unambiguous
formulation and a calculation of the two-pion
exchange potential (TPEP) of the nucleon-nucleon in-
teraction.! The one-boson exchange potentials (OBEP)
are derived and calculated by the same formalism. A
realistic result is expected a priori for the internucleon
distance 72>0.5.2 No free parameters are involved; all
masses and most coupling strengths are taken from
mesonic measurements, and the remaining coupling
strengths from higher-symmetry postulates. The po-
tential is reduced to a local form, with tensor and spin-
orbit components. In this form it agrees remarkably
well with phenomenological potentials for the above-
stated internucleon distances.

We turn briefly to the question of the use of potentials
and the need for such a formulation. The concept of a
potential describing the interaction between nucleons
has played an important role in nuclear physics. In the
early days of nuclear theory, this was inspired primarily
by the success of electromagnetic potentials in describ-
ing atomic phenomena. In the light of the present-day
knowledge of elementary particles, however, the con-
cept of a potential as such is clearly inadequate for
many purposes. Nonetheless, the use of potentials,
albeit in modified, more sophisticated forms, continues
to the present. This circumstance is mainly due to the
lack of a workable relativistic field theory of nuclear
interactions either at short distances or, most impor-
tantly, in the presence of more than two nucleons. On
the other hand, there are theoretical indications such as
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those of this paper supporting the assumption that a
potential representation may still be a valid one within
appropriate restrictions.

One of the objectives in attempting to represent the
nucleon-nucleon interaction by a potential is the appli-
cation of the latter to the problem of nuclear structure.
Such an extension must, of course, be justified. At any
rate, the potentials or similar objects used in the theory
of nuclear structure (with the exception of the deuteron,
triton, and nuclear-matter problems) have not until
recently been realistic forms. In the present work, we
shall be exclusively concerned with the two-nucleon
system.

The use of potentials, phenomenological, theoretical,
and mixtures thereof, has undergone many changes
and improvements since the original Yukawa hypo-
thesis.®* Here we will briefly review some of the im-
portant developments bearing on our work. One of the
useful guidelines in the progress of nuclear potentials
has been the so-called Taketani program, originally
proposed by Taketani, Nakamura, and Sasaki in 1951.3:4
This program divides the range of interaction into
classical (»21.5), dynamical (0.7£7%1.5), and core
(r<0.7) regions. In the classical region the long-range
part of the potential, namely, the one-pion exchange
potential (OPEP), is expected to dominate. In the dy-
namical region the TPEP and (as it is nowadays
recognized) the meson and baryon resonance effects
enter the picture. Finally, in the core region a multitude
of complex phenomena contribute to the potential,
rendering it extremely nonlocal in that region. Accord-
ingly, in the core region one seeks to represent the inter-

3 For a review of the history and a guide to the very extensive
literature on the subject, we mention: Progr. Theoret. Phys.
(Kyoto) Suppl. 3 (1956); M. J. Moravcsik and H. P. Noyes,
Ann. Nucl. Sci. 11, 95 (1961); Progr. Theoret. Phys. (Kyoto)
Suppl. 39 (1967). : :

4 M. Taketani, S. Nakamura, and M. Sasaki, Progr. Theoret,
Phys. (Kyoto) 6, 581 (1951).
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action by a means other than the theoretically derived
potentials. Phenomenological hard and soft cores and
separable potentials, as well as boundary-condition
models, are examples of such representations.

The Taketani program described above is a useful
one in that it permits an approximate separation of the
potential into parts that require different treatments.
Thus the long-range part of the potential is based on
the simple mechanism of the exchange of one pion. The
dynamical (or intermediate) range stands in marked
contrast to this, as evidenced by the many derivations
of TPEP that have produced a variety of potentials,
many of which differ importantly, and none of which is
very convincing.

The one-pion exchange potential was established ex-
perimentally as the long-range part in the fifties and
early sixties.® The evidence came largely from the
analysis of the high-angular-momentum scattering
states. The success of OPEP (which, incidentally, is the
the only well-established meson-theoretic potential)
prompted many attempts to devise a similar potential
for the intermediate range.%” Already a few derivations
of TPEP had appeared in the literature, of which the
best known are the so-called TMO?® and BW? potentials.
However, these derivations were beset by a number of
difficulties and ambiguities, and on the whole they con-
tributed little in the way of producing a potential that
successfully compares with experiments.

The recognition of the importance of heavy-boson
exchange® led to the next important stage in the develop-
ment of nuclear potentials: the introduction of pure
one-boson-exchange (OBE) models.l® This model is
essentially based on the hypothesis that the nucleon-
nucleon force is meson mediated, and that the exchanged
systems may be adequately represented by the meson
resonances observed experimentally. It is thus hoped
that the uncorrelated (many-pion) contributions of the
exchanged systems may be neglected, or, as it is some-
times argued in the case of the two-pion continuum,
they may be approximated by equivalent resonances.
The model has been partially successful in accounting
for experimental data (although unobserved “equi-
valent” resonances are required), and attempts are
being made at extending it.!! One of our main conclu-
sions is that the TPEP continuum contribution cannot

5 G. Breit, M. H. Hull, Jr., K. Lassila, and H. M. Ruppel,
Phys. Rev. Letters 5, 274 (1960); P. Cziffra, M. H. MacGregor,
M. J. Moravcsik, and H. P. Stapp, Phys. Rev. 114, 880 (1959).

6 G. Breit, Phys. Rev. 120, 287 (1960); J. J. Sakurai, Ann.
Phys. (N. Y)) 11, 1 (1960).

7 G. Breit, K. I. Lassila, H. M. Ruppel, and M. H. Hull, Jr,,
Phys. Rev. Letters 6, 138 (1961).

8 M. Taketani, S. Machida, and S. Ohnuma, Progr. Theoret.
Phys. (Kyoto) 7, 45 (1952), hereafter referred to as TMO.

9K, A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953), hereafter referred to as BW.

1 N, Hoshizaki et al., Progr. Theoret. Phys. (Kyoto) 27, 1199
(1962); S. Sawada e al., 1bid. 28, 991 (1962).

1 R. A, Bryan and B. L. Scott, Phys. Rev. 135, B434 (1964);
177, 1)435 (1969); T. Ueda and A. E. S. Green, zbid. 174, 1304
(1968).
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be ignored,” except at very long range, where only
OPEP is of importance.

Some of the notions referred to in the above form the
basis of the present work. Our fundamental concept is
the Yukawa hypothesis of a boson-mediated nuclear
force together with the relationship between the mass
of the exchanged system and the range of the inter-
action. Thus we assume that the nucleon-nucleon inter-
action is caused by the exchange of mesons, and that the
inclusion of a suitable part of the meson mass spectrum
is sufficient for describing the interaction outside a
certain internucleon separation. In the absence of a
dynamical theory of meson interactions, we shall be
forced to utilize the existing experimental information
for a segment of the boson mass spectrum. Thus we
shall rely on the multimeson resonances to represent
the effect of the exchange of high-mass boson systems,
as it is expected that the contributions of the uncor-
related multimeson exchanges (i.e., those not resonating
as a single meson), aside from TPEP, are unimportant.
Some justification of this expectation is given in Sec.
VIII. Radiative corrections are of uncertain importance
and have some formal ambiguity; they are discussed in
Sec. VII.

The contents of this paper are divided into nine
sections and two appendices. Section II presents the
general basis and approach of this work. That basis is
used in Sec. IIT in the definition of a potential from a
field-theoretical model. Section IV examines the passage
to the configuration representation and presents an
approximation scheme for obtaining a Schrédinger po-
tential from the results of Sec. III. The TPEP is calcu-
lated in Secs. IV B and IV C and Appendix A. Section
V is devoted to the calculation of one-boson exchange
potentials. The nucleon-nucleon potential and various
numerical results are presented and discussed in Sec. VI.
In Sec. VII further extensions of this work are con-
sidered. Section VIII contains a discussion of remaining
limitations. Conclusions are presented in Sec. IX. The
details of the numerical computations are described in
Appendix B. ’

II. IMPLICATIONS OF POTENTIAL CONCEPT

In this section the general properties and limitations
of the potential representation will be examined, and
the basis for our definition of the potential will be pre-
sented. Generally speaking, the nonrelativistic po-
tential representation is complicated in the relativistic
region, where by the latter is meant the region in which
the dynamical process very significantly depends on the
existence of the negative-energy states characteristic of
relativistic kinematics. (Here we are discussing only
the basic structure of the relativistic mode of particle
propagation and not the other related complications
such as particle production.) The essential difficulty is
the difference in the analytic structure of the kinematics,
namely, of the Green’s functions or propagators. The
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simple case of the reduction of the free Dirac equation
to a Pauli-Schrédinger representation and the resulting
square-root operator illustrates the point. We therefore
anticipate that the potential representation of a field-
theoretical .S matrix, or even that of the simpler case
of a Bethe-Salpeter equation, will be a complicated one
in certain kinematical regions, if it exists there at all.
However, because of the reasons mentioned in the
Introduction, and encouraged by the fact that potential
representation reproduces the assumed analytic prop-
erties of the field-theoretical .S matrix (the assumed
properties having completely been proven only for
potential scattering), one hopes to devise a potential
representation that is manageable and useful outside of
the extreme relativistic region referred to above.

The question of jthe domain of validity of a potential
representation has been discussed extensively in the
literature.®12-15 This question has two related aspects.
The first is the adequacy of the approximation procedure
used to obtain information from a field-theoretical
model. (This, of course, is additional to the question
of the validity of the model itself.) The second aspect is
the validity of the approximation procedure used in
reducing the above information to a potential. In this
section, we will be mainly concerned with the first
aspect.

There exist several methods for deriving a potential
from a field-theoretical model.*®* Among these, the
method of Charap, Fubini, and Tausner!® (CFT) is
closest to ours. The essential notion in this approach is
the definition of a potential, which, when used in a
Schrodinger equation, generates the field-theoretical
scattering amplitude to some order of approximation.
This, of course, is an old and oft-used concept for the
derivation of potentials. In exploiting this idea, we shall
have to resort to covariant perturbation theory. Our
justification for the use of perturbation theory with a
strong coupling is threefold. First, as we shall actually
reduce, with an accuracy to be discussed, a Bethe-
Salpeter equation which represents a summation of the
“laddered” Feynman graphs, we probably achieve
better convergence than the straightforward perturba-
tion expansion in the coupling constant. The low-mass
(two-nucleon) intermediate state between steps of the
ladder tends to make the contribution of these diagrams
larger than others of the same order. Exact solutions
of OBEP and TPEP nuclear potentials differ substan-
tially from Born approximations to them, confirming
that at least some of the iterations are important. In
any case some unitarization must be made, and ladder-
ing in a Schrédinger equation relates the unitarization

2 H. Feshbach and E. L. Lomon, Ann. Phys. (N. Y.) 29, 19
(1964).

18 A, Klein, Progr. Theoret. Phys. (Kyoto) 20, 257 (1958).

14 N. Hoshizaki and S. Machida, Progr. Theoret. Phys. (Kyoto)
27, 288 (1962).

15 J. M. Charap and S. P. Fubini, Nuovo Cimento 14, 540
(1959); 15, 73 (1960); J. M. Charap and M. J. Tausner, ¢bid. 18,
316 (1960).
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to definite dynamical processes. Second, the relation-
ship between the mass of the exchanged mesons and the
range of the potential for Yukawa-type couplings in-
dicates that the dynamical and classical regions are
mainly (but certainly not entirely) dominated by the
irreducible diagrams of the second and fourth orders.
Third, dispersion theory indicates that the main effects
of higher-order interactions and corrections will be
accounted for by the inclusion of the experimentally
known meson and baryon resonances, which bring
singularities of the amplitude close to the physical
region. Concerning the other methods referred to
above,®® we remark that the noncovariant schemes
based on the number of quanta exchanged include, in
practice, the set (or a subset deleting a so-called ladder
diagram) of time-ordered graphs corresponding to the
ones mentioned above. Moreover, these methods are
practically useful only in the static limit, which limit
we shall be at pains to avoid. Finally, the method of
reducing the Bethe-Salpeter equation to an “equal-
times” form, as employed in the past, also suffers from
a noncovariant and somewhat arbitrary elimination of
the “negative-energy components” of the Bethe-Sal-
peter wave function.!6

Our principal motivation in relying on the Bethe-
Salpeter equation (or, effectively, the covariant per-
turbation theory) is the desire to eliminate the approxi-
mation known as the static limit. This approximation,
which is presumed to effect the passage to the double
limit of nonrelativistic nucleons and vanishing meson-
to-nucleon mass ratio, in practice introduces serious
errors and distortions, as previously noted.!4:15.17 This
circumstance arises primarily in treating the fourth-
order graphs, as well as the iteration of the second-order
graph, where an integration over intermediate momenta
is involved. Clearly, such an integration is over the
entire momentum range, and therefore the static con-
ditions are violated for a sizable part of this range.
Moreover, the contribution from this part (i.e., the
high-momentum part) to the iteration of OPEP is quite
important for the spatial range where TPEP is supposed
to dominate (~1F), a fact which makes the applica-
tion of the static limit inappropriate. The method of
CFT largely surmounts this difficulty by avoiding the
static approximation. However, CFT found it necessary
to use the approximation of nonrelativistic external
momenta. Such an approximation, adequate though it
may be for a configuration-space potential in a certain
range, is not justified for the one-pion-exchange kernel
(OPEK).®® The reason is that TPEP involves the
iteration of OPEK (where now the external legs of
OPEK become internal legs) over all momenta, and
therefore a nonrelativistic approximation to OPEK

16 R. Arowitt and S. Gasiorowicz, Phys. Rev. 94, 1057 (1954).

1S, N. Gupta, Phys. Rev. 117, 1146 (1960).

18 The designation ‘“kernel” is applied to the operator that plays
the role of a potential in the Bethe-Salpeter equation. The similar

operator for the Schrédinger equation is called a potential as
usual.
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amounts to a partial static approximation. That such
an approximation is invalid is amply demonstrated by a
divergence in the iterated term of CFT for pseudoscalar
coupling. The. prescription of CFT for removing this
divergence, namely, the subtraction of a potential of
zero range and infinite strength, is clearly inadequate,
as the zero-range character of the subtracted term is a
result of their approximation. Indeed, the anomalously
large isosinglet central potential of Cottingham and
Vinh Mau,'® who used the CFT method for the calcu-
lation of TPEP, can be traced to this same subtraction.
The sensitivity of the iteration procedure to the choice
of OPEK can also be seen within the context of the
earlier static calculations. As clearly recognized by
Klein,'® the TMO-BW discrepancy can be attributed
to a corresponding difference in the choice of OPEK’s.
It should be noted that the divergence mentioned above
does not explicitly occur in the earlier static calcula-
tions based on the .S matrix.?® The reason is that an
over-all application of the static limit in the latter
calculations renders the iterated term identical with
a part of the fourth-order ladder diagram, and it thus
eliminates the need for an explicit iteration of OPEK.

In view of the above considerations, we insist that the
definition of our potential from the field-theoretical
model be independent of whatever approximations we
may choose to exploit in reducing it to a usable form.
In particular, our definition will involve the iteration of
an unapproximated OPEK, and it will thereby avoid
the divergence encountered in CFT. We shall formulate
our method in the language of the Bethe-Salpeter equa-
tion, although it may also be described within the for-
mulation of CFT.

III. DEFINITION OF POTENTIAL

This section defines a potential function for the non-
relativistic Schrodinger equation that is designed to
represent the Bethe-Salpeter equation of a field-theo-
retical model to some order of approximation. The
Bethe-Salpeter equation®! for the (elastic) scattering of
two distinguishable nucleons in the center-of-momen-
tum system from a state of relative four-momentum p
to one of p’ is

M(p',p| W) =R(p,p| W)+ / d*k

XF(p' k| W)GE| W)k, p| W), (3.1)
where 91T is the invariant amplitude, W= (1,0,0,0),
half the total four-momentum, & is the interaction
kernel consisting (in principle) of all irreducible dia-

i V\;' N. Cottingham and R. Vinh Mau, Phys. Rev. 130, 735
(1963).

2 A. Klein and B. H. McCormick, Phys. Rev. 104, 1747 (1956).

2 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
J. Schwinger, Proc. Natl. Acad. Sci. (U. S.) 37, 452 (1951); 37,
455 (1951).
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grams, and G is the two-particle (free) Green’s function

7 1 (1
G| W)= m[__m_w___w_. :l
2rl oyt (Wk),—m+-ie

T), (3.2)

where m is the nucleon mass. The superscripts (1) and
(2) refer to the two nucleons, and the spinh and isospin
indices have been suppressed.?? From our point of view,
the essential difference between (3.1) and a Lippmann-
Schwinger equation is the difference between G and
the corresponding nonrelativistisc propagator g. Our
goal, therefore, is to construct another equation for 91
that involves g for the Green’s function. Following
Blankenbecler and Sugar? and others,?* we write G as a
sum of two terms:

1
al
YHW —Fk)y—m—tie

where g is to be an appropriate nonrelativistic propa-
gator corresponding to G. As mentioned before, the
outstanding characteristic of G as a relativistic propa-
gator is its ability to produce negative-energy states;
stated in other words, it can produce two-particle cuts
in the unphysical region. It is therefore natural to
define g as a function that possesses the cut structure of
G only in the physical region. This, of course, is the
prescription of Blankenbecler and Sugar, which we
modify slightly and extend to the spin-3 case. We re-
quire that g, considered as a function of q2=W2—m?,
have the singularity structure of G when both legs of
the latter are on the mass shell:

(3.3)

(kW) /w 2 (W' +k)2
= L / 2
8 e ( )P—m?)

Xo((W' —k)> =m?) oy (W' +k) ut-m ]
XLy (W' —k)ut-m]®,

where q'2=WW'2—m? The integration is easily carried
out, and the result is

LY E(K) —y - k+m ] D[y E(k)+v - k+m]®
4E(k)[q*—k2+i€]

Xo(k),

where we have used the notations E(k)= (m?4k?)1/2

and k= (k%k). The function g has several important

properties. It contains the basic Schrodinger propagator

with the correct imaginary part. The additional factors,
including E(k) in the denominator, are necessary for a

(3.4)

g(k| W)=

(3.5)

2 Qur relativistic notation conforms to that of J. D. Bjorken
and S. Drell, Relativistic Quantum Fields (McGraw-Hill, New
York, 1965), unless otherwise stated.

% R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).

# A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento 29,
380 (1963).
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correct reduction to a Lippmann-Schwinger form. Thus
the positive-energy projection operators will serve to
reduce the original equation to one that contains only
“‘positive-energy’” components, while the § function
accomplishes the reduction to a three-dimensional form.
The appearance of the factor E(k) is connected with
unitarity as we shall see below. Finally, the function
g, as pointed out in Ref. 23, is not unique, since one
can add to it a part that vanishes at E(k)=1¥. Indeed,
as pointed out by Saenger,? (and recognized also by
Schwartz and Zemach?® in the configuration representa-
tion), the limit of G for nonrelativistic energies (i.e.,
q/m — 0) is precisely the expression given by (3.5) with
E(k) everywhere replaced by W.?” Our choice of g,
therefore, is indicated by the requirement of a correct
reduction to a Lippmann-Schwinger form.

Having defined g, we follow Ref. 23 in writing a new
equation for 91T. Reverting to a symbolic operator nota-
tion, we write

Mm=U+Ugt, (3.6)

where U is an effective interaction kernel whose con-
nection with & is easily ascertained by comparing (3.1)
with (3.6):

U=X+X(G—¢)U. 3.7

Equation (3.7) may be interpreted to mean that U is
evolved from X by means of the propagator G—g.
Since the two-particle cut (with threshold at W=m)
is canceled out in the propagator G—g, it is expected
that U will have a weak energy dependence near thresh-
old. This is indeed the case, as will be shown in Secs.
IV A and IV B. Precisely this cancellation occurs within
the “adiabatic” approximation of CFT for the fourth-
order potential, and it is made the basis of their defini-
tion of an energy-independent potential.

g Returning to our derivation, we rewrite Eq. (3.6) in
detailed form:

(Y0 | W) =T (', p| W)+ f 0% U(p' | T7)

VB — Yy )] (8
AE(K)[q2—k2Hie]
XUk ). (3.8)

Next we restrict our consideration to the elements of
91t connecting positive-energy spinors, and also change
the basis of representation from Dirac spinors to Pauli
spinors. To this end, we observe that

YE(k)—~y-k+m

2 |ulk,s)a(ks)| = —————, (3.9)
8 2m

where u(k,s) denotes a positive-energy spinor of mo-

2 R. Saenger, J. Math. Phys. 8, 2366 (1967).

26 C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966).

27 Actually, these authors treat the case of two scalar particles.
The verification for the present case follows straightforwardly.
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mentum k and spin s, %#(k,s) denotes the adjoint spinor,
and the content of the equation is the familiar expres-
sion for the positive-energy spinor projection operator.
We now define 91 by

M= (@O (p',s1)a®(—p',s2) [IM(p’, /°=0; p, p°=0| W)
X lu(l)(p;sl)u(z)(—p7 Sz)), (310)

and similarly for U. The subscripts and superscripts
(1) and (2) refer to the two nucleons as before. Using
Egs. (3.9) and (3.10), we may write

ST(p',p| W)= 0’0 | W)+ f 0k O’ k| W)

1 m
(k| W),
q2/m—Kk?*/m+ie E(k)

(3.11)

where we have suppressed the spin indices. (We shall
continue suppressing spin and isospin indices until we
need to exhibit them explicitly.) Note that the matrix
multiplication implied in the product UIN ranges over
positive-energy indices only. In other words, 91 and U
are now 4X 4 matrices, and may therefore be considered
as acting on the product space of two Pauli spinors. The
explicit Pauli-Schrodinger representation will be de-
veloped in Sec. IV B.

Our final task is to comprehend the factor m/E(k).
Having treated the kinematics of the equation carefully
up to this juncture, we turn to unitarity for the inter-
pretation of this factor. Our basic observation is that
Eq. (3.11), which is in a near Lippmann-Schwinger
form, is an equation for 9N, the invariant scattering
amplitude in field theory. On the other hand, the invari-
ant amplitude 9 and the corresponding Lippmann-
Schwinger amplitude T are not the same objects in that
the physical observables (e.g., scattering cross section)
are obtained from them by means of different phase-
space factors. Indeed, on the energy shell, taking ac-
count of the appropriate phase-space factors, one arrives
at the correspondence (note that T is not the field-

theoretical 7" matrix)
| T|2= (m?/W?)|ST]|2. (3.12)

Off the energy shell we generalize (3.12) in the following
manner:

m 1/2 m 1/2
T(p’,plW)=[ :l fm(p’,pIW)[-E—@:, . (3.13)

E(@")

Inserting (3.13) in (3.11), we find that T does indeed
satisfy a Lippmann-Schwinger equation:

T('p| W)=V (';p| W)+ / i

— (3.14)
q%/m—K/m+ie
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where the potential V is defined by

Ez,)]mﬁ(p',pIW{gp—)]m. (3.13)

It should be noted that the reduction achieved
in (3.14) depends crucially upon the way (3.12) was
generalized to (3.13). An alternative route for arriving
at Eq. (3.13) is provided by the (elastic) unitarity con-
dition satisfied by 97. That condition is

gt (p',p | W) =M@ p| W)

v@elm) -]

=2ri / Ak ST (p' k| W) 5(2E (k) — 2W)ST(k,p | 7).
(3.16)

Recalling that W?2=q>+m?, we rewrite the § function
as follows:
E(k) (k* ¢
SQE(K) —2W) = ——a(— — -—),
m \m m

and use this in (3.16) to get
(01— @01 ) = i [ e ' )

E(k) /k? 2
X —(——)-6(— - El—)SJTl(k,pI w). (3.17)
m \m m

It is now easily verified that the identification of Eq.
(3.13) reduces (3.17) to the nonrelativistic unitarity
condition for T. One can easily see that the consistency
achieved here is owing to the identical two-particle cut
structures of G and g in the physical region.

The potential U that appears in Eq. (3.14) is ulti-
mately obtained from Eq. (3.7). The various orders of
the kernel U can be easily written using the latter
equation:

U=,

UW=ROLKD(G—g) KD, (3.18)

and so on. The superscripts refer to the order of the
terms in the perturbation expansion.

The potential we have defined above is both nonlocal
(in the configuration representation) and energy
dependent (the meaning of these terms will be made
precise in Sec. IV), and hence unsuitable for use with
the many-body Schrodinger equation. In Sec. IV, we
shall introduce an expansion in the powers of the mo-
mentum operator that will extract the useful informa-
tion contained in the potential. Meanwhile, in this
section we have achieved our primary goal of defining
a potential operator with which the Schrodinger equa-
tion generates an amplitude identical to that of the
field-theoretical Bethe-Salpeter equation.

We conclude this section by showing that the method
of CFT, when so modified as to conform to our require-
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ment of an unapproximated OPEK and the identifica-
tion of Eq. (3.13), yields a potential that is identical on
the energy shell with the one defined above. The CFT
method is ambiguous off the energy shell; however,
according to CFT, we define a potential that gives rise
to a scattering matrix that agrees in each order of the
perturbation expansion with the corresponding field-
theoretical one. [This correspondence, made precise in
Eq. (3.13), is actually ambiguous within the adiabatic
approximation of CFT, since factors of E/m are set
equal to unity in the latter.] Up to fourth order, we
have from the Lippmann-Schwinger equation

TO=V®

TWO=VWOLY® V@
E—H+ie
=V®O4T® —-T®  (3.19)

q%/m—Ho+ie

where q is the c.m. 3-momentum of a particle. (Here, to
achieve a compact notation, we demonstrate this for
scalar particles.) If we now connect the nonrelativistic
amplitude T with the field-theoretical one 91 according
to (3.13), we will have

EZ)I)]W(p’]gTz(z)‘p>I:E7:5]1/2,

@/Wm‘”:[EZ,)]W@'|s~m4>1p>[£ﬂ”

- [ e L) v

(x| L
S| gu®|p)| —— | .
q2/m—k2/m+iem lp>[E(p)j|

@ 1veln)-|

(3.20)

We now observe that

m 1

EK) @2/m—K*/m—+ie

aside from unimportant constants, is g. Equations (3.20)
can now be rearranged in the following form:

[EZ’5T/2<I)I |[ve 1p>[5%]_1/2= ®'|5®][p),

[’I%IW(P'W“)IW[% "

=<p' IEYTK(‘“—STI(”gSTZ(” [p>

(3.21)

The amplitudes L ® and 9@ must now be identified.
Clearly, J1t® is the one-pion exchange amplitude, and
@ is the sum of the crossed and fourth-order ladder
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diagrams. Thus, in terms of the irreducible kernel X, we
have

MR =12 ,
m(4)=5c(4)+ KOGR®

Inserting these expressions in Egs. (3.21), we get

[%T,z@,wm’p{%]_m:(p,m%),

[EZ,)]_W@Wv<4>|p>[-E—’(”5]_m

={'|KRO+RD(G—g)K?|p).

(3.22)

These expressions are identical with Egs. (3.15) and
(3.18).

IV. TWO-PION EXCHANGE POTENTIAL

A. Configuration-Space Potential

The content of this section is the derivation of TPEP
and its transformation, by means of an approximation,
to a useful form. By TPEP, of course, we mean the
fourth-order potential originating in U® of Egs. (3.18).
Explicitly,

Ve (p’:sll7s2l 5 p,81,32l W)
m 1/2
=|:E(—p'3:| <ﬂ(1)(p,731’)72(2)(—p’: 82’)1
XUD@', p*=0,p, p"=0|W)

m 1/2
|4 (p,s)u®(—p, s2>>[5(5} @)

We shall begin by recording the connection between
the momentum- and configuration-space representa-
tions. Denoting the potential in configuration space by
the same symbol ¥V, and suppressing spin indices, we
have

V(r’,r)=(21r)—3/dp’dp eV (p,p|W)ere., (4.2)

In this section the dependence on W may occasionally
be suppressed. The mode of operation for the operator
V on the Schrodinger state vector ¢ is given by

@ |VIg)= [ dr(e | V| £)el ) = / dr V(0. (43)

With the definitions

p’—p=4, p+p=Q, (4.4)

2005

we can rewrite (4.2) as follows:

r—r
V(r’,r)=(41r)—3/deA exp(iQ- 5 )
rl

+
Xexp(—iA'r—E*)V(%(Q—%A),%(Q—A)lW)- (4.5)

In the event that the dependence of V on p and p’ is
through the combination p’—p, we get the familiar
connection,

V(r’,r)=6(r’—r)/dA exp(—iA-1)V(A|W)

=5(x—1)V({'|W), (4.6)

V)=V |WHE).

Since the potential which is not diagonal in the con-
figuration representation is usually referred to as non-
local, we shall also apply the term “nonlocality” to
a dependency on Q in the momentum representation.
We now examine the configuration representation of
a potential which has a linear dependence on Q, e.g.,
Q-f(A). According to (4.5), we have

Vol 7)= b dQda exp(iQ r—_r-)
8(2m)? 2
r+r’
Xexp(—iA~T)f(A)~Q
r+r
= %r? dQdA exp(—iA-T)f(A)

(—2i%) exp(iQ-r—_zr—')

r+r’
=f(T>' (=269)8(r—r'),
where

f(r) =/dA exp(—iA-1)f(A).

Using (4.3), we get
rI

+
|\ Vig)y= /dr w(r)f<r—2——) (—=2iV,)8(r—1")
=/dr B(r—r')(ZiVT)-[g{z(r)f(—l‘i——rj)]
2
=£(r") - (V)Y (r")+Y(r) (V) -£(r')
=—[P-f(r')+{ (") - PRy(r"),

where P= —{V is the momentum operator in the con-
figuration representation. We may symbolically repre-

(4.7)
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sent this connection as follows:
Conf. rep.

f(a) — £(r)
—Q £(A) — P-f(r)+£(r)-P

Mom. rep.

Note that a dependence on Q in momentum space is
equivalent to a configuration-space potential linear in
the momentum operator P. The latter is sometimes re-
ferred to as an energy-dependent potential. According
to our definition above, however, a dependency of the
potential on P is a nonlocality, and we reserve the desig-
nation “energy dependence” specifically for the ap-
pearance of the center-of-mass energy IV in the poten-
tial. [Note that W2—m?=q?, p?, and p'? are all different
in V(p/,p| W). They are, of course, identical on the en-
ergy shell.] To complete the connection between the
momentum and configuration representations, we con-
sider the expansion of a nonlocal potential V(r’,r) in
terms of the momentum operator, and show the equiva-
lence of this expansion with that of V(Q,A) about
Q=0. Consider

@|VIy)= f drdr’ $*()V (D)

= f i2dZ $*(Z+32)V(Z+3z, Z—12)

XY(Z—3z). (4.8)

Expanding ¢* and ¢ about z=0, we get
(¢W1¢>=[dldz V(Z+3z, Z—32)[*(Z)0Y(2)

+i(2)z- Vo (Z) —3¢*(Z)z- VY(Z)+- - -].

Integration by parts on z leads to

@|VIy)= f (242 S D)V (2442, T—32)

—3iV(Z+32,Z—32)2- P—3iP

ZV(Z+3z, Z—3z)+- - W(Z), (4.9)
where
P=—1iVgy.
The operator V can thus be written as follows:
V(') =8(x—1') / dz[[V(r+3z, r—3z)
—3iV(r+3z, r—32)z- P—3iP
ZV(r+iz, r—3z)+---]. (4.10)

AND E. L.
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On the other hand, from Eq. (4.5) we have

/dz V(r+iz, r—%z)=/dA exp(—iA-r)V(A,Q=0),

/dz (—132)V(r+3z, r—32)
- [a cxp(-ianLvar(aQToms

and so on. It is thus seen that the expansion of a non-
local potential in terms of the momentum operator is
equivalent to an expansion in momentum space about
Q=0. These connections between momentum and con-
figuration representations are of course old material,
and are recorded here for later reference.

It is evident from the above considerations that, to
obtain a useful potential, one must expand it in the
powers of the momentum operator and retain a suitable
number of terms. It is therefore important to examine
the nature of this expansion. The behavior of the poten-
tial in momentum space has been studied by Hoshizaki
and Machida* in detail. These authors use a formalism
different from ours for defining their potential. How-
ever, the general characteristics of the potential, in-
cluding nonlocality, are substantially the same as ours.
They confirm the well-known result!® that, whereas the
expansion in u/m (pion-to-nucleon mass ratio) is in-
appropriate, the expansion with respect to Q/m is valid
for not too large Q, i.e., | Q| <8u. Asis well known, the
dependence of the potential on Q is through Q/m, and
to the order O(Q/m), all nonlocalities except for a spin-
orbit term vanish. As regards the configuration-space
potential, the essential point is that expansions in Q
or A are asymptotic, and they break down for suffi-
ciently small distances. To illustrate this point, we shall
consider a typical term in the potential to the order

0(Q/m):

dA exp(—iA-r) 1
0= | .
(me+5anE A

Clearly, for #>>1/2u, the expansion of the square root
about A%/4m?=0 is a very good approximation. How-
ever, this expansion leads to an asymptotic series in 7
(Watson’s lemma), with the consequence that, for any
fixed 7, the series diverges and there is an optimal point
for cutting off the series. It is also evident that for small
7, i.e., 7 1/m, the approximation is quite poor for any
number of terms. This is of course connected with the
familiar fact that a particle may not be localized beyond
its Compton wavelength. On the analytic side, the cause
of the difficulty is of course the branch singularities of
the square root at fA24m?=0 and «, which in"turn
originates in relativistic kinematics.

Overlooking the operator nature of Q for the mo-
ment, one can say, as in the above example, that expan-
sions in Q/m and A/m are reliable for #>>1/2u and
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definitely unreliable for < 1/m. The operator nature of
Q, however, plays a crucial role here, since it is the
expectation value of this operator in a process that must
be regarded as its magnitude in assessing the validity
of the Q/m expansion. Hence the validity of such an
expansion must be decided in the context of the
Schrodinger equation in which it will be used. Let us
therefore consider a nonlocal potential ¥ that depends
on (Q/m)?, and can thus be expanded as follows:

V=Vo4-00Q%/m>- - -, (4.11a)

where V° and ¢° are independent of Q/m, and higher-
order terms are regarded as unimportant. We are going
to assume the validity of the expansion in (4.11a), and
examine the consequences of such an assumption. In
configuration space, the nonlocal component will be
of the order of (20°/m?)P? and the Schrodinger equa-
tion will read

290
(Pz—qz-l*mVo—i— —P2- . )‘P =0.
m

The validity of (4.11a) implies that the contribution of
the nonlocal component is a small fraction of the total
potential and therefore can be estimated as a perturba-
tion. Thus the total potential in the Schrédinger equa-
tion is found to be

20 0 @2
V=V°(1—’;"‘+__‘+"')' (4.11b)

Im  VOim?

Assuming q? to be sufficiently small for the moment
(i.e., for low energies), we see that the validity of the

1

f@'p|W)=

2007

Q?/m? expansion assumed in (4.11a) requires that 99,
which is of the order of V?, be a small fraction of the
reduced mass of the system. This is an intuitively ob-
vious result; recoil effects can be regarded as small only
when the potential energy is small relative to the
(reduced) mass of the system. We therefore conclude
that the expansion in the powers of P? can be valid
only for internucleon distances for which the potential
is a small fraction of the nucleon mass.

Clearly, for sufficiently small internucleon distances,
the potential will exceed 3, and the above expansion
[(4.11a) and (4.11b)] will break down. This result again
demonstrates the impossibility of a simple potential
representation of a field-theoretical model at small
distances. To find out the nature of the transition region
where the Q/m expansion is expected to break down, we
note that the fourth-order potential is a superposition
of Yukawa potentials with a mass spectrum starting at
2u. Thus the second term in (4.11b), being a product of
two such potentials, has a mass spectrum starting at
4u. This indicates a sharp rise over a distance of about
1/4u, implying that the transition between the (simple)
potential representation and extremely nonlocal regions
is rather abrupt. Anticipating later results, we observe
that our potential strengths (and indeed those of phe-
nomenological ones as well) are well below 3m outside
of r=1/2u, and they begin to become comparable to
im at about this distance. Thus a transition at about
r=1/2u is indicated.

It is appropriate at this point to record a typical
term in the potential, and discuss the dependence on W.
Consider

ada

where we have employed a mixed notation using p’, p,
and A=p’—p. As claimed before, it is seen that in the
limit Q/m — 0 (Q=p'+p), all Q dependences vanish.
In this limit, and indeed for |p|, |p’|<m, one can
verify by inspection that the threshold of singularities
for A? occurs at =0, =%, and A?=—4u% To study
the role of W, we first observe that on the energy shell,
the factor W2—p? is equal to m? eliminating W de-
pendence. Off the energy shell, however, if one were to
pass to the limit Q/m — 0, and consider the potential
as dependent on I, for sufficiently large IV, the thresh-
old for A? would reach zero, where the potential would
degenerate into an inverse-power function. The condi-
tion for the vanishing of the denominator in the limit

Q/m=01is

A*(B—p*—aB— (o’ —a) /D +p*(1—a)+am®

+W2a2—a)=0, (4.13)

from which we get the condition for a A?2=0 singu-

1 -8
_ dB/ ’
LE®)E®P) ]! 2/0 o AXB—pY)+a(28A -p+m)+ (W2 —p?)(e*—a)+u*(1—a)

(4.12)

larity:
w(1l—a)+am?

a—a?
We now seek the minimum value of W2 for which this
equation is satisfied, subject to the constraint 0<a<1.
The end points will not do, so we set

aW?*/da=0, (m*—u?)(a—a?)—(1—2a)
X[(1—a)u*+am?]=0,
which yields the solution
a=p/(m+n), W=ptm.

Thus the minimum value of W for which the potential
dengerates is m—pu, half a pion mass above the inelastic
threshold. At such high energies, the present approxima-
tion is in doubt, and therefore this is not a very dis-
turbing fact. However, numerical calculations on sample
cases showed that there is a strong dependence on W
even for low energies. The reason is that any value of
W larger than m allows the threshold for —A? singu-
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larity to drop below 4u? and it thus fundamentally
alters the spectral composition of the potential. More-
over, this alteration persists for large », making it all
the more unsatisfactory. On the other hand, for suffi-
ciently large 7, the potential energy is negligible com-
pared to the kinetic energy, and the energy-shell con-
dition is-satisfied, i.e., p?=p’2=W?2—m? and as noted
before, the W dependence must vanish, a fact that con-
tradicts the behavior actually observed in the sample
case above. The difficulty lies in taking the Q/m— 0
limit first, and then considering the W dependence.
More explicitly, for large 7, where the energy-shell con-
dition is satisfied, an expansion in Q?/m? is equivalent
to that in (IW2—m?)/m? (and in fact p?/m? and p'2/m?),
so that effecting one without the other leads to errone-
ous results. Thus, if one insists on retaining terms to the
order Q2?/m?, one must also retain the dependence on
W2—m?) /m>.

We now summarize the important conclusions of the
foregoing paragraphs. The nonlocality of the potential
in configuration space is of an exponential character,
and it is mainly confined to the core region, where it is
quite strong. The expansion of the potential in the
powers of the momentum operator is an asymptotic
one, and it is definitely unreliable in the core region.
The breakdown region for this expansion is around
r=1/2u, and the transition is rather sharp (on the scale
of wavelengths of typical energies of elastic nucleon-
nucleon scattering). On the other hand, the proper
long-range behavior of the potential demands that the
quantities Q2/m? and (W?2—m?)/m? be treated in a like
manner as far as expansions are concerned, since these
two quantities must cancel each other for large dis-
tances. Consequently, the inclusion of terms of the
order of P? and higher requires (a) an expansion of the
momentum-space potential about Q/m=0, and the
retention of terms that are small for distances where
they are reliable, and (b) a simultaneous inclusion of
terms of the order of (IW2—m?)/m? and higher, hence
an energy-dependent potential. Therefore the cost of
including P? terms is not only their unreliability at
about #=1/2u and shorter distances, but also the loss
of a useful property of a potential, namely, its energy
independence. The advantage, on the other hand, is
a gain in accuracy outside the core radius, where that
gain is of the order of the ratio of the potential strength
to the reduced mass of the nucleon-nucleon system.

Accordingly, we choose to retain terms up to and
including Q/m, thus obtaining central, spin-orbit,
tensor, and spin-spin potentials. We further remove
all W dependence in each of these potentials by con-
sistently neglecting terms of the order of (W2—m?)/m?,

(Gn)*

4t

3@ =

i
(B3+2:M.x®)— /d“k
2
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p%¥/m? and p’?/m? relative to 1. One would expect these
approximations to break down for energies and/or dis-
tances where the typical energies (kinetic or potential)
of the scattering process become comparable to the
nucleon mass. Accordingly, below the pion-production
threshold, and for distances 7> 1/2u (anticipating later
results), we expect these approximations to hold.

B. Integral Representations

In Sec. IV A we defined our approximation scheme to
be applied to the energy-dependent and nonlocal po-
tential formally defined in Sec. III. Here we shall
formulate the appropriate amplitudes, apply the ap-
proximations, and obtain integral representations for
the parts comprising the two-pion exchange potential.
Before delving into the mass of formulas, it is appropri-
ate to establish our notation for the various components
of the potential. All potentials will be designated by the
letter V followed by two letters specifying the ex-
changed boson, a number (either 0 or 1) designating the
total isotopic spin, and a second symbol (4, 0, or —)
specifying the third component of the total isotopic
spin in the case of OPEP and TPEP. The specification
of the third component of the total isotopic spin for
OPEP and TPEP anticipates the incorporation of the
pion mass differences into our potentials. In addition,
every potential is indexed from 1 to 4 corresponding to
the central, spin-orbit, tensor, and spin-spin parts,
respectively. The two letters specifying the exchanged
bosons are PI (pion), PP (two pions), ET (eta),
RH (rho), and OM (omega). Thus, for example,
V(PP1+(2)) denotes the spin-orbit part of TPEP in
the isotriplet state corresponding to proton-proton
scattering. Analogously, V(RHO(3)) denotes the tensor
part of the p exchange potential in the isosinglet state.
For the present, we shall ignore the pion mass differ-
ences and use only the charged pion mass u=1. Occa-
sionally, we shall find it expedient to use new symbols
for groups of potentials.

We begin by calculating U®. From Egs. (3.18), we
have

UW=RDLROGRD — DR,

The first two terms correspond to the familiar fourth-
order crossed and ladder diagrams, respectively, and
the last term is the iteration of the exact OPEK. We
will formulate these kernels and the resulting potentials
for the case of two distinguishable nucleons, each as-
signed an isotopic spin z. As is well known, the neces-
sary antisymmetrization can be effected when comput-
ing Schrédinger amplitudes. Using the familiar Feyn-
man rules for pseudoscalar coupling, we obtain

Ly (W+p—k)—=m]PLy- (W—p' —k)—m]®

X ,
LW +p—k)2—m+ie (W —p' — k) —m i€ ]k — ot ie ] (b= p+')*— e ic]
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(Go)* 7
KOGK® = (3—2rW.g)— / dk
4t 2
o [y (Wp+k) —m] DLy - (W —p—k) —m]® w14)
[k2—p2iel[ (k+p—p')2—p2+ie]L(W — p—k) 2 —m*+ie][(W+p+k) —mi+ie]
4 —n k= Tke—
K®gs® = (Gx) (325 .1(2))%/’(11{ [y E(R) — - K—m ] Oy E(K) 4~y k—m ]2 .
t [(k—p’)2+u? W2 — E2(k)+ie] E(k)[ (k—p)*+u]

The symbols W, p, p’, and E(k) have the same meaning as before. The rationalized pion-nucleon coupling constant
has been denoted by G,. Our first task is to demonstrate the cancellation between X PGK® and X®gK® that
removes the strong energy dependence present in both. To accomplish this, we must recast the integrals of (4.14)
into more suitable forms. This is done in Appendix A, using mostly the familiar Feynman techniques. There, we
consider the quantities § and 9 defined by

(Ga)*
KD gH®| jo_pr_g= (3—2:W.@)g,
47t
(Ga)*
5@(2)6:;@(2)] po_p10=0= Z;Q——Z—: (6] '1(2))5 . (4‘.15)
According to Egs. (A2) and (AS), we have
1 1-8 7#(1)7 (2) 1 1-8 i
g=—a}:1rf dﬁ[ ¢t - —%vr/ dﬁ/ drf ds
o Jo RAW?(¢*—¢)+¢m*+p*(1—) o Jo 0
y —EW Oy Oy W —y-[B(0"—p)+p(1 =) ]—m} O{y' Wy [B0"—p)+p(1—)]—m} @ (4.16)

[R+W2(g2—0)+im+u*(1—0) —ie]?
,YO (1)70 2)

o0 1 1-8 o0 +o0 1 1—-8 o0
g=—1W dZ/ d,B/ dg“/ d¢ +%W/ de dﬁ/ d(/ d§
S Y Ay A o [RHWRH(—pc@4md T V) 0
><—?“’-Y(”W2£"+{'r-[(l—s“)p-l-ﬁ(p’—l))]*l-m}“){—7'[(1—§)p+ﬁ(P'—p)]+m}‘”+W2'y°‘”7°‘”

(Z24-m)[RA-W2E4- (1 =) (2 2H-m?) ]?
1 1-8 00
——%w/dﬂ/ d;/ d
L] 0 0

X —EWn Dy O {y W —x-[B@'—p)+P(1 =) ]—m} O {y*" W+ -[B(p'—p)+p(1 =) ]—m} @
[R+AW2(g2—¢)+im>+p2(1—{) —ie]?
R=8(p—p")*+ip*—[B( —p)—ip)
=(1—-B—¢)(BA*p?)-Bip’2.

. (@17

We now proceed to examine the analytic structure of
the integrals as a function of . Let the distinct de-
nominators appearing in (4.16) and (4.17) be denoted
by D;, ¢ denoting the order in which they are written.
Thus we have

Di=R+W2(2 =)+ im*+u2(1—=5),
Do=R+W2E—-{)+im*+p?(1-5),
Ds=R+W2E4-¢ (224 m?)+u2(1—5).

Starting with the threshold behavior, we observe that
only D, can vanish for W=m, at {=0, {=1, 8=0.

(4.18)

Therefore the usual energy cut starting at W=m is
contained in the second and third integrals, respectively,
of (4.16) and (4.17). However, when these two terms
are combined in X®(G—g)X ¥, the range of integra-
tion for £ is restricted to [{, ]. With £ restricted to
this range, D; cannot vanish at W=, i.e., the energy
cut has canceled out, at least in the neighborhood of the
threshold. This is, of course, the cancellation first
pointed out and emphasized by CFT within their adia-
batic approximation. Here we have demonstrated it
without making any approximation. As discussed in
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Sec. ITI, the cancellation is a direct consequence of the
identical cut structures of G and g in the physical
region. Moreover, we observe that after the cancella-
tion, the lowest threshold occurs for D; at R=0,
¢=u/(ut+m), W=m~+u (cf. Sec. IV A). The energy cut
has thus moved to the two-pion production threshold.
Finally, we must examine the behavior of the integrals
originating in X®. With the notation

(G

47t

RO = (4.19)

B3+2:M.xM) g,

it turns out that £ involves precisely the denominator

’Y)\ (1),},)\ (2)
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1 1-8
5—9=—%1r/ dﬁ/ cdc
0 0 B1—B—0) A 2m?+(1—{)p?
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D, occurring in J. The above analysis therefore holds
for £ as well. The procedure carried out for 9 and g in
Appendix A can be duplicated for £, and the steps are
therefore omitted here.

We are now in a position to apply the approximations
set forth in Sec. IV A. This will entail an expansion in
Q/m, neglecting terms of the order of Q2?/m?, and the
limits (W2—m?)/m?, p%/m? p’?/m?— 0. These ap-
proximations will be applied in two steps. First, we
shall apply them to the integrals leaving the y matrices
unevaluated. Next, we shall proceed to reduce these
matrices according to the same approximations. Carry-
ing out the first step, we obtain

— By D@

1 1-8
+%7r/ dﬂ/ dr/”ds
0 0 ¢ [BA—B—)AHEm++(1—{)u]?

oo 1 -8 © YO D0
—i-—%m/- dZ/ dﬁ/ dg‘/ dg
—o 0 0 0 [B(1—B—0) A2+ (Z2H-m?) (1 —§)u?]?

(4.20)

+oo 1 -8 © W @22 0 — e} D -y P} B2y O DA 0@
__%m/ dZ/ dﬁ/ d(/ " LORAL'S { p} P p} YOy
) 0 1} 0

b

(Z2+mt)[B(1L =B =) A gt (22 m)+(1—Ou T

'Y)‘ (1)»),)‘(2)

1 1-8
£=i1r/ d,B/ d¢
0 0 B(1—B—) A2H-2m2 (1 —)u?

70(1)70(2)

1 1-8
- / a8 / cids .
»Cle Y U arrem (=0T

The third and fourth integrals in § —g can be further reduced. Let their sum be 8. Then changing variables ac-

cording to

Z=lcosop,

and carrying out the angular integration over ¢, we get

f=—1Isinep,
m

Y(l)'Y(Z)

1 1-8 ) (l2+m2>1/2 —|
S=1r / a8 f dEE(V0) / tdt[ i
0 0 0 m

s ——par e temi 1 —o)

(’'m—¢y-p) V(Y 'mtSy-p) @

1 1-8 0 1
i / a8 f (Vo) / i
) o ()2 (B —B—g) ATt (10w

70(1)70(2)

1 1-B 0
—f—%'lr/ dﬁ/ (\/g‘)dg‘/ tdll:l— " —l .
o Jo g (Fm?) 2 TB(1—— 1) A+ e+ (1— 02T

Another change of variable (124m?)2= (m/+/{)§ and some rearrangement yield

,YO(I),.YO (2)

) - dg- 1 1-8 0
oot ; @« 1 d 1 d
*"/0 o / \/fﬁ(l—ﬂ—f)A2+§m2+(1—§)u2+47r/0 6/0 e

1 1-B 0
o] s
0 0 vE

-Y(l) . -Y(?)
:
B(1—B—) A Emi (1—{)u?
AT D) O ey )Pty
T [B(1—B—0)AMEmr+(1—{)u T

(4.21)




2 FIELD-THEORETICAL NUCLEON-NUCLEON POTENTIAL

2011

Finally, considering all the integrals, we make the change B=28(1—¢)'—1, rescale £ and rearrange them in the

following formulas:

1 1 ! 1
g—9=—lr / f dedB $y Oy X~ dm? / f dedB ¢y m—p ) Dy mtiy-p) @V
0 ] 0 0

1 1 L] 1 1 0
~ir / / aag s / dg Oy Ot / / drdg 2 / dgy Oy @z
0 0 1 0 0 1

1 1 0
+11r7n"2//(l§dﬁs““”2/ dg7 (v 'm—¢y-p) V(Y omtiy - p) P Fmiy Dy B 27, (4.22)
0 0

1

1 1 1 1
amtr [ [ dgaseoy e =gyt [ [ dgdppa—gyompopox-,
0 0 0 0

where the bar in 8 has been dropped and

[X,v,W,z]
=1a(1-p) (1 =)+ w+m* (1 =5
X268, 58] (4.23)

The second step in the reduction procedure involves
computing §—9 and £ as functions of (si'sy; 51,52)
according to (4.1), and rewriting them as matrix opera-
tors in the Pauli-Schrédinger representation. This is
achieved by writing

E(@)+m? X,
”(p’s)—[ﬁf } [{o-p/[E(p)—I—m]}Xs

where X, is the Pauli spinor of spin s, and reducing the
matrix elements of the y matrices to those of Pauli
operators between the X’s. We shall explicitly do this
for a typical case, and record the result for the rest.
Consider, for example, y°Wy?®. We may consider the
two matrices separately, as they operate on a product
space. Then

], (4.24)

{{E@)+m] E®@)+m]}'*

2m

a(p',s")y"u(p,s) =

o-p P
X(Xs’li+ |Xs>'
E(@')+m E(p)+m

Therefore the passage from the Dirac to the Pauli-
Schrodinger representation is in this instance given by
the replacement

E@®")+m E@)+m

2m 2m

SVICRVIICH NN

cW.p'e®.p
x(1+ )
[E@")+m]LE@)+m]

c®.p'e®.p
x(1+ )-
LE@")+mILE®@)+m]

According to our approximation procedure, E(p)
= E(p) =m when occuring symmetrically. Then

p-p'+iec®- (p’XP))

4m?

A0y 0@) 5 <1+

p-p’ +ic® - (p'Xp
(e i)

4m?

Again, we neglect p-p’/m? relative to 1 in the central
part of this expression, and retain

(¢ +0) - (o' Xp)
14—

4m? ’
where we have dropped the term quadratic in p"Xp/m?,
since the latter expression is already of first order in
Q/m. An analogous procedure may be carried out for
the rest of the operators. We record the results in the
following formulas®®:

Qso Qso
IOI® 51— 00 5
2m2 2
(4.25)
W@ Qrp " Qss  Qso
ey
12m®  6m? m2
IR IONT SN IR )
where
Qso=3i(cV+o®)-(p'Xp),
Qr=A%WD.¢g»—=3¢M-Ac@ A, (4.26)

Qgs= AZeD.g®,
The last three operators in Egs. (4.26) correspond to
the spin-orbit, tensor, and spin-spin operators in con-
figuration space,' as we shall presently verify. We first
observe that p’Xp=3AXQ. So we have

Qs0=}3eD+o®)] (AXQ)=4i2-(AXQ),

where the last equation defines . We have already
seen in (4.7) that a potential of the form Q-f(A) trans-
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forms into —[P-f(r)+£(r)-P] in the configuration
representation. Thus remembering that A f(A) trans-
forms into 1V f(r), we see that Qgof(A) will transform
into

H—PXLV/(O)+[V/®)IXP}-X.

As f(r) will always be a function of 7 only, we may write

Vin=1f()/r,

where the prime denotes differentiation with respect to
the argument. Since —PXr=1rXDP, and [rXP,f'(r)/r]
=0, we finally get
I J'@)
Qs0f(A) > —(rXP)-X =
7

4

Qso,

where now Qg0 denotes the spin-orbit operator in the
configuration representation. An analogous analysis
yields the following connections:

J(8) = j(r),

!

f(A)Qso —jﬁﬂso,
14

f(a)Qr— { 1) — ﬂﬂ]gl (4.27)

¥
2
F(8)Res— —[f"<r>+ ;f'(r)}szss,

where the configuration-space operators are defined as
usual:

Qso=X%-(rXP),
Qr=3¢W.76® .7 —g).g®

Qss=0 D@,

(4.28)

We have now assembled all the information needed
to give explicit integral representations for the parts
occurring in TPEP. We shall designate the integrals
occurring in (4.22) (in the order they are written) by
X4, Ya, Wa, Za, Zp, X5, and X¢. In transforming to
the configuration representation, each of these integrals
may give rise to different types of potentials. We shall
express this by indexing the above symbols according to
the notation established at the beginning of this section.
Thus, for example,

Xa=X4(1)+X4(2)s0.-

We shall explicitly work out the transformation to con-
figuration space for X4, and record the result for the
rest, since they are obtained in an entirely analogous
fashion. We have

1 1
m:—%«/ / & dB e X1+ m—Rs0),
0 0

AND E. L.

LOMON 2

and in configuration space, using the auxiliary functions

D=(1-§)(1—6Y)",

E(a)= 2DV p2+am?(1—¢)~1]1/z, (4.29)

we have

) 1 el
XA=_%W/ dA exp(——iA-r)/ / d¢ap
. 0 Jo

X{X‘1(1+%m—29 $0)

a 1 1 0
= —71’(1—{—%’”’[‘29301"1—) / / / dg“dﬁ
o 0 J0O J—w»

dA exp(—iA- 1)
ATHLEEH

9 1 pl
= —21r3<1+%m_2ﬂsor—1——> / / d¢dB ¢Dr!
dr 0o Jo

XGXP[ ...7E(§‘2)] ’

1 1
Xi()= —2131’“1/ / d¢dp D expl —rE(?)],
o Jo

X 4(2) =3 f / d¢dB ¢ DI1+rE(E?)]
Xexp[ —7E(?)].

To record the configuration-space potentials, we make
the further auxiliary definitions

g1l E(e) v ]=27%""¢D exp[ — E(a)r],

gL E(a),r]= —5(mr)[E(@)r+1]g[ E(),r],

gL E(e),r]= —§(2mr)"{[E(a) Jr*+3E(a)r+3}  (4.30)
XgiLE(),r],

gl E(a) 1= 1ym [ E(e) e[ E(),r].

The integral representations follow.

Xa()=— f / dedB g [EG?)r), j=1,2

Va(i)=— / / dedB gLEE) ]
X3 1=2(—1)¢], j=1,2

1 1 00
Wa(j)=2 / / / d¢ddt gLEEE) 7],
0 0 1 ]'=2, 3’4:

1 1 0
Za()=—2 / / / dedsdt gL Ee) e,
0 0 1 ]=2’ 3,4:
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Zs(j) =2 / f f d¢dBdt gL E(E)r]

XEX1-(G-1)¢],
Xp(1)=—X4(1),X5(2)=—-3X4(1),

j=1,2

1 1
XB(f)=2f / dcdB gLE(?),r], j=3,4
0 0

Xc(1)=—8x’m? / / acdp e*(1—=¢)!
XDLEEH T expl —E()r],
X¢(2) =4 / / dedB 31— D

Xexp[ —E(*)r]. (431)

We conclude this section by recording spectral repre-
sentations for the integrals occurring above. The tech-
nique for obtaining these can be found in Ref. 15, where
some of the integrals listed below may also be found.

Not all the integrals listed in (4.31) need to be recorded.

The following set contains all the basically different
representations. Let

1 1
[=in f / dcdB sy,
0 0

h1=—§'X_l,

h2=——§‘/ atw-t,
1

== 2m(1 =),

hy=(£)~1271, (432

ha= ()1 / a2,
1

=2 —o [ sz,
1
and

I;(») =%7r”2/e“m TidA.

With the above definitions, and explicitly setting u=1,
we have

L) =r / 0t pi(t) exp(—riif?),
4

pi(t) = —fmt= 2w Lo—|u| (*+2) @],
pa(t) = —3wm = (02+2) (G —m|u| ®) — O],

2013
03(t) =3rm— 12412 u| (v24+2)D—8v
—2(v2+2)*(1+m*)~1],
pult)=mi1 / " R,
0

po(l) = —boul)+hm i Vint Y

|2
X / 46 R1(0,)Ro(8,)R(6,0) ,
0
w2
po(t) =dam?? / 49 Ry(0,)R(0,)R1(0,0).  (4.33)
0

The new symbols occurring above are defined as follows:

vi=f{—4, u2=4m’—t, O=cot~'my,
cos™ [ §(v24-2)(1-+m*=?)~17], w220
d=4 —% Ind(14+m*?)

FIn[ (224-2)+o(—w VY], %<0
R1(6,t) =[(cosh)>—R_+R, (sinh)?}-1/2,
R (6,t) = (sin)?[ (cosh)?—R_T1,
R3(0,¢) = (cos) >+ R (sinh)?,
3iRz= —m?+1F[(m*—1)2H-m% V2.
C. Definition of TPEP

In Sec. IV B, we essentially completed the definition
of TPEP. Considering the mass of the pions as degener-
ate for the moment, we have

(Gn)*

4

V(PP)=

[(3=2:®-2®)(g—9)
+(B+2e W2 ®) 2],

with §—d and £ defined by (4.22) and (4.31). We now
proceed to take account of the mass differences between
the pions. This will be done by considering all the con-
tributions of the exact charge-independent coupling as
before, separating the diagrams according to the mass
of the pion (or pions) exchanged, and using the correct
pion masses for each diagram. The appropriate (rela-

(4.34)

_tive) coupling constants for the charge-independent

theory are 1, V2, and —1 for pnp, nwp, and nrii ver-
tices, respectively. As usual, 7" and T are the total
isotopic spin and the third component thereof. Note
that the potential now depends on | T's| as well as on 7'
(charge symmetry), whereas in the degenerate-mass
limit it depends only on 7" (charge independence).

The case of OPEP will be treated first.? The ap-
propriate graphs in this case are shown in Figs. 1(a)-
1(c). Note that because of charge symmetry the #-»# and

2 M. H. Hull ef al., Phys. Rev. 122, 1606 (1961); G. Breit,

M. H) Hull, Jr., X. E. Lassila, and K. D. Pyatt, sbid. 120, 2227
(1960).
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Fic. 1. Charge dependence of OPEP and TPEP. Graphs (a)-(c)
are the three OPEP cases, graphs (d)—-(h) represent the uncrossed
TPEP diagrams, and graphs (i)-(m) represent the crossed TPEP
diagrams. The isospin coefficients are given at each vertex.

p-p potentials are identical. The numbers next to the
vertices represent the (relative) coupling constants. Let
C(0)(C(1)) denote the contribution of the graph with
a neutral (charged) pion exchange and with vertices of
unit relative coupling constant. The contribution to
each state 7', T; is obtained by multiplying C(0) or
C(1) by the coupling-constant weights indicated in each
figure and then adding or subtracting them according
to the symmetry of the isotopic wave function [add
(subtract) for the symmetrical T=1 (antisymmetrical
T=0) combination |. Using the above rules, we obtain

C(0) for the pp (or nn) case,
—C(0)+2C(1) for the T=1 np case,
—C(0)—2C(1) for the ’=0np case.

According to the notation established in Sec. IV B,
we may write?
V(PI14-)=C(0),
V(PI10)= —C(0)42C(1),
V(PI0)= —C(0)—2C(1).
Next, we consider the two-pion ladder graphs? of Figs.
1(d)-1(h). The notation is as before with C — 4 and an
added number [as in 4(00)] specifying the charge of
the second meson. The various potentials are deduced
from the graphs. They are
V(PP1+)=A4(00),
V(PP10)= A(00)+44(11)—24(01)—24(10),
V(PP0) = 4 (00)+44 (11)424 (01)+24 (10).
2 D. L. Lin, Nucl. Phys. 60, 192 (1969).

(4.35)

(4.36)

AND E. L.
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Finally, we consider the crossed graphs of Figs. 1(i)-

1(m). The corresponding potentials are [with notation
B(if)]

V(PP1+4)=B(00)+4B(11),

V(PP10)= B(00)+4B(01),

V(PP0)=B(00) —4B(01).

The above potentials reduce to the appropriate charge-
independent combinations when the mass differences
are ignored.

We are now faced with the task of calculating fourth-
order graphs with two distinct pion masses. Fortun-
ately, it turns out that the graphs involving two pion
masses u1 and ps are quite insensitive to the parameter
€= (u2®—u12)/ (u2?+u12)~~0.04. Indeed, as we shall see
below, the first nonvanishing contribution in an expan-
sion about €2=0 is of the order of €. Consider, for
example, Egs. (4.20) for §—4d. Had one used two differ-
ent masses for the pion lines, the part of the denominator
D that depends on these masses would have been
(1—B—{)u1+Bus? instead of (1—{)u? [cf. Eq. (A1) of
Appendix A7]. If the variables { and 8 are then changed
according to

(4.37)

E:g‘: B:B/(l—g')_%7
the 8 dependence of all the denominators will be of the
form
=AY (1=0)+ (1= (142869,
where
B=5(ut ), €= (uP—m?)/ (u’+p’) .

The range of integration for 8 is [—%, 17, and since the
only odd dependence on § is in the term 28¢?, we see that
in an expansion about 28e2=0, the first nonvanishing
term is proportional to 48%*< et Thus, neglecting the
very small correction of the order of €*, we recover the
original denominator with u? replaced by a2 The same
treatment applies to £ in an identical manner. Equiva-
lently, the contributions involving two distinct pion
masses may be evaluated using a single “average mass.”

We now proceed to give the complete definition of
TPEP. Let the charged and neutral pion masses be
m.+ (=1 in our units) and m.,s, respectively, and
define

Mz = {3 (m24)*+ (ma0)* J}112.
Also, using the integrals of (4.31), let

(Gn)*
A=~ S TXa@+ TV a@)+Wa(@)

o +Za@)+2n)], (438)
B(@) =~ DX+ Xew)].

Note that some of the terms in the expressions for 4
and B may be missing. For example, X4(3) has not
been defined; such terms are to be set equal to zero.
The letters 4 and B shall be augmented by the symbol
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1, 0, or M, specifying, respectively, which of the masses
M+, Ma9, O M, 1s substituted for the pion mass u. For
example, 4 (1) (@) is the quantity 4 in Eq. (4.38) with
u=m,+ Using this notation and Egs. (4.36) and (4.37),
we finally have

V(PP1+(a))=[4(0)+B(0)+4B(1) (),
V(PP10(a))=[A4(0)+44(1)—4A(M)
' +B(0)+4B(M)](e),
V(PPO(e))=[A4(0)+44(1)+44(M)
+ B(0)—4B(M)](w).
This completes the definition of the TPEP.

(4.39)

V. ONE-BOSON EXCHANGE POTENTIALS

The task of this section is the derivation of the
lowest-order potentials (V®) for the exchange of vari-
ous bosons. Specifically, we shall consider scalar bosons
with scalar coupling, pseudoscalar bosons with pseudo-
scalar coupling, and vector bosons with both vector
and tensor couplings. Moreover, each of these bosons
may be considered as isoscalar or isovector particles.
The isovector potentials are obtained from isoscalar
ones by adjoining the usual £® -t factor. It therefore
suffices to consider neutral bosons only in the course of
calculations.

We begin by recording the interaction Hamiltonians
for the various bosons. We shall refer to scalar, pseudo-
scalar, and vector bosons by means of the symbols S,
P, and V. The interaction Hamiltonians are

Hs=(4m)\*Gsp oy,
Hp=i(4m)' G pdvPey,
Hy= (47")”2‘L|:GV'YM€0M+ (FV/Zm)‘TW(<Pu,P’— ¢P,ﬂ>:|¢ ’

where

(5.1)

o= (1/20)[v*v"],

and where ¢ stands for the boson fields. Note that the
tensor coupling constant in Hy has been normalized by
the nucleon mass m. The next step is the calculation of
%@ corresponding to the above interactions. This
calculation has been performed by several authors.®30
However, since the notation is not standard, and for
completeness, we shall reproduce some of the inter-
mediate results. Using the appropriate propagators for
the scalar and vector particles, we arrive at the follow-
ing expressions for &®:

. <G82>I(1)I(2)
KRs®=——
2m?

w?

D

GP2>,YS(1),Y5(2)
2

Kp® = (__
27? w
% N. Hoshizaki, I. Lin, and S. Machida, Progr. Theoret. Phys.
(Kyoto) 26, 680 (1961).

2015

1
Koy ® = ;;I:GVQ‘YM”W(”
™

vEy

.YV(l),Yv(Z)kM(»yu(l) —k (2))
m

Fy? 1
+~—2(kw"“)v”‘”%(”lew<2>—k#k,.)]—;, (5.2)

m [

where k* is the momentum transfer p'#—p#, w?=A?
+mp?, and A is the spatial part of k* as before. The
symbol # is used for the mass of a boson.

In converting the above amplitudes into potentials,
we follow the procedures of Sec. IV, with one important
exception: Our sole approximation here will consist in
expanding the amplitudes in powers of Q/m and retain-
ing terms to first order. The lack of energy dependence
in OBEP enables us to avoid the additional approxima-
tions. Moreover, as we shall see later, the relatively
large masses of the resonances to be considered make it
imperative to avoid an expansion in A2%/m? which
quantity is eventually transformed into —mp?/m?
Anticipating later results, we note that avoiding an
expansion in A2%/m? causes a negligible change in OPEP
on account of the small pion-to-nucleon mass ratio.
Thus we are consistent in keeping these terms for OPEP
(having dropped them for TPEP) and treating all
OBEP contributions uniformly. The terms higher than
Q/m are dropped for the same reasons as in Sec. IV
A. Indeed, the larger boson masses here make the
transition region sharper than that for TPEP. At any
rate, keeping terms higher than Q/m would not be con-
sistent with the procedure of Sec. IV.

The prescription for evaluating the y matrices and
passing to the Pauli-Schrédinger representation has
been explained in Sec. IV. Here, only the approxima-
tion stated above is applied in the passage to the Pauli-
Schridinger representation. The resulting potentials
in momentum space are

Gs?D 1
Vs(l) =" )
2r? m w?
Gs24(D—m) 1
Vs(2)= — ———
2w mA?  w?
G2 1 1
V()= —,
22 12mD w?

Ve(d)=—V»(3),

1 m A? At \1
Vv(1)= —(sz— —FVGV——-FFVZ—"——)
2rr? D mD Am*D

)
w?
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1 —4m 1 4
PR P G
w2 AD  wmD  A?
8 4
Gty — ~—)
mD  m?
—4 A2 4 1
e
mD  m2D  m?*/ Jw?
—1 1 1
Vv(s) = —“(G1/+2Fv) e ;
22 2mD «?
—1 1 1
Vv(4)= —(Gv+2Fy)t——,
2 6mD w?

D=(m>+5A2)12, (5.3)
The configuration-space potentials are obtained from
the above by Fourier transformation as before. To
illustrate the method, we shall carry out the transfor-
mation for ¥ p(3). Dropping inessential factors, we have

dA exp(iA-T1) 1
Vp(3)=/
(mZ-I—%AZ)”“’ mBZ+A2
4wt dA A exp(iAr) 1
2 ) (m2FEADY? g2
4 /°° ydy exp(—yr)
om (k=) 22— )

2n? exp(—mpr)

7

¥y (mz__,%m32)l/2

1—a?

Glr | ms,n) = 2m)" f e

E2_a2 (22_1)1I2

AND E. L. LOMON 2
2w { ( )
=l exp(—mpr
=gt

2

™

® ydy eXP(—yr)rW—%mﬁ

J Il

The last step in the above calculation involves a contour
integration around the branch cut caused by the
square-root factor. The usual derivations of OBEP,
such as that of Bryan and Scott,!* employ an expansion
of the square-root factor about A2/4m?=0. As a result,
the branch cut is eliminated, and only the first term in
the above result is retained with the square-root term
expanded in mp2/4m?. In the case of small mp/m, as for
the pion, the integral along the branch cut very slightly
alters the spin-spin potential, while the expansion in
mp?/4m? has an inappreciable effect. For mp=m, as for
the p and w mesons, it is the expansion in mg%/4m? that
modifies the result somewhat. We shall give a quantita-
tive discussion of these observations when we present
numerical results (Sec. VI).

In the following, we will record the four potentials
corresponding to the m, 5, p, and w mesons. (See the
notation in Sec. IV B.) The masses of these particles
are denoted by .+ and m,o for the charged and neutral
pions, and #.,, m,, and m, for the next three, respec-
tively. The corresponding coupling constants are de-
noted by G., G, (G,F,), and (G,,F,), respectively.
Before recording the potentials, we make the following
auxiliary definitions:

y2~7nb’2 L %y2__,m2

m

n

exp(—2mrf),

a=m3/2m,
2 2 n —_
(| ) = (2m)*(mp)™ exp( me)’
2mr
2 2 n —MmpT 8 G , 1
Tolmpy= S0 e Sr Gllme D) (5.4)
(AmP—mp?)liz 4m?—mp? r
Je(r|mpyn) =(—)"12] (v | mp,mn),
1 1
Jso(r|mpm)= (—-)"/2‘“[—](7 | mp, n+1)+ —2](1'| mB,n):l ,
r 7
1 1
Hoolman) = (=714 (o, w+-1)— G s |, (5:5)
7 7

3 3
Tan(r|ma,m)= (—)"’{J(rl M, w-2)+ =T (r| ms, nt-1)+ —Jr| mnﬂ
7 4

3 3
Hoy(r|mpn) = (*)"/E[H(’]mm n+2)+ ;H(’lms, nt+1)+—H(r | mB,n)]'
7
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The definition of the potentials follows.
(7) Pion: We first define the quantities C by

2

G2 1
CAQB))= ——Jrn(r|m+0),
272 12m

™

2

G2 1
C0Q))=——Jrxn(r|mmn0),
272 12m

2

G2 1
CA@)=———Jc(r|m.2),
2w 12m

2

G2 1
COE)=————Jc(r|mm2).
2w 12m

In terms of these quantities and using the rules of Sec.

1
V(RH1(1))= — [G,,szm 1 0) —
27?2 m

2017

IV C, we have
V(PI1+(a))=C(0(«),
V(PI10(e)) = —C(O0(e))+2C(1(a)),
V(PI0(a)) = —C(0(a)) —2C(1(@)) .
(i1) n meson:

2

G2 1
V(ET1(3))= — —Jrn(r|my0),

2w2 12m

2

G2 1
V(ET1(4)) =~ — 1—2—10(7 [710,2)

2w 12m
V(ET0(a))=V(ET1(a)).

(4it) p meson:

G.F, P,
]c(i"mp,Z)—l" ——JC(rl mm4)} s
4m? ’

1 1
V(RH1(2))=— {Gﬁli —dmJso(r|my, —2)+ —Tso(r|m,,0)+4mHs (r| m,, —2)}
m

2mw?

8 4 —4 1 4
+Gpr|:_JSO("l m,,,O) - —Hso(f’l’m,,,O)‘J—F,,Zl:——Jso(r! mﬂ)0)+ _]50(7'} mp;z)—l" _HSO("I mp;o):l} )
m m m m? m

11— (G,+2rF,)*
V(RHI(S)) = *[’—("—-‘—)“]TN(rl mmo)] ’

2m?

1 [ (Go+2F,)?
m

12m

V(RH1(4))= — ]C("lmmz):l ’
2m?

V(RHO(c)) = —3V(RH1(a)).

(1v) w meson: The w meson potentials V(OM(x)) are
obtained from V(RH1(«)) by the replacements m, —
M, G, — Go, F,— F, and the equation

V(OMO(a)) = V(OM1(a)).
VI. NUCLEON-NUCLEON POTENTIAL

The nucleon-nucleon potential is defined as the sum
of OBEP and TPEP. The parts that comprise OBEP
are the pion, 7, p, and w meson exchanges. The integrals

TasLE I. Coupling constants and masses used in the potentials.

Particle Mass (MeV) Coupling constant
Nucleon m=938.9
Pion (neutral) m.2=135.0 G2=144
Pion (charged) ma+=139.6 G2=144
1 meson My =549.0 G2=1.0
p meson m,=765.0 G2=0.53, F,/G,=1.83
w meson Me="782.8 2=6.36, F,/Go=—0.06

appearing in the definition of these potentials have been
calculated numerically. (See Appendix B for details of
these calculations.) The parameters used in the poten-
tial are shown in Table I. The masses have been taken
from the Rosenfeld tables.?! The nucleon mass repre-
sents an average of proton and neutron masses. The
7 coupling constant is not well determined experimen-
tally, so one usually appeals to SU(3) for its estimation.3?
Such estimations place the 75 coupling constant
(squared) somewhere between 0.5 and 2, depending on
the F/D ratio used. Our choice of the 5 coupling con-
stant represents a compromise between the two bounds.
At any rate, the  contribution is confined to the tensor
and spin-spin parts, and it is very small. The p coupling
constants are relatively well determined by experi-
ments. Our choice of the vector coupling constant is
based on the recent data on the leptonic decay and

3 A, H. Rosenfeld ef al., Rev. Mod. Phys. 40, 77 (1968).
82 E) L. Lomon and H. Feshbach, Ann. Phys. (N. Y.) 48, 94
(1968).



2018 M. H. PARTOVI AND E. L. LOMON 2
! 1 0.25—
000 20 40
I j
025 0.00 .20 160
-0.50 -0.25—
-0.75 -0.50[
.00 - 3-075f
—~ S Y 1 A — Hamada - Johnston
N"i -L25 -1.00 =
< ---=- Hamada-Johnston
-1.50 -251- T=0<
-L75 -L50- TENSOR POTENTIALS
- -1.75-
2:00 'Sg  PorenTiAL .
F16. 4. Complete tensor potential.
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2,50 L respectively. On the other hand, the calculation of Oakes

F16. 2. Complete singlet-S potential.

photoproduction of p.33:3% The coupling constant ob-
tained in this way is in good agreement with other
determinations.?®%6 The w and ¢ coupling constants are
not well known. The SU(3) prediction (with ¢-w mix-
ing) for the relative (squared) coupling constants of the
vector mesons is 1:4.5:9, corresponding to p, ¢, and w,

0.75—
0.50 -
0.25 —

0.00 |
.20

V{pc?)
o
n
o
T

Hamada - Johnston

-0.50 - y

-0.75 -

3S, POTENTIAL

-1.25 b
I'16. 3. Complete triplet-S potential.

% Note that our G,2=0.53 corresponds to Sakurai’s 2.12
(Ref. 36).

38, C. C. Ting, in Proceedings of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1968 (CERN,
Geneva, 1968).

35S, C. C. Ting, DESY Internal Report No. '31-68/1, 1968
(unpublished).

36 J, J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

and Sakurai®” predicts roughly 1:7:14 for these ratios.
The results of Ref. 34 based on the leptonic decays of
these mesons are in rough accord with the SU(3) pre-
diction. However, the latter prediction definitely dis-
agrees with the suppressed photoproduction of ¢ mesons,
while the Oakes-Sakurai prediction reduces the dis-
agreement. Because of the above uncertainties and the
higher mass of the ¢ meson (m4/m,=1.3), we have not
included the ¢ in our potential. Instead, our choice of
the w-p coupling-constant ratio (namely,512)fis a com-

0.25

0.00 !

140 160

-0.25
-0.50 —
-0.75 |~

«
§ -100 -
>

----- Hamada -Johnston

-1.25 -
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-L.75

!
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i
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i
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|
-2.00 |~ ‘
.‘
1

)

B

(5]
T

I're. 5. Complete spin-orbit potential.

37 17{ J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967).
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l.OOr 0.251~
CENTRAL AND SPIN - SPIN POTENTIALS r (—h—)
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0501 \ -0.25|-
\
\
\
0.25— \ -0.50
by N
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F1G. 6. Complete central and spin-spin potentials.

promise between the experimental indications and
theoretical predictions, taken about 1 standard devia-
tion on the large side of the experimental value of Ref.
34 to account for the combined contributions of the ¢
and w mesons. At any rate, the inclusion of both ¢ and
» with coupling constants predicted by SU(3) would
decrease the small difference between our potential and
a phenomenological potential. Our OBEP also does
not include scalar mesons. The customary inclusion of
fictitious scalar mesons in OBE models is meant to
simulate the effect of TPEP. Recently, however, there
has been some experimental evidence for a two-pion
isoscalar, S-wave resonance.’® Its mass seems to be
about 730 MeV, with a rather broad width, much
higher than the 500 MeV required in fitting data with
a pure OBE potential. The contribution of such a

()

0.00 :
-025F

-0.50—

_-0.75
S

T
—
n
—

~

/ —— Complete Potential
b

2 ) —— TPEP
>-1.00

~

-L25

-1L50

!
]
1
I
!
!
I
” * CENTRAL POTENTIALS
I

T=1

1,750
Fic. 7. Complete central potentials versus TPEP.

38 M. Feldman ef al., Phys. Rev. Letters 22, 316 (1969); G. A.
Smith and R. J. Manning, Phys. Rev. 171, 1399 (1968) ; E. Mala-
mud and P. E. Schlein, Phys. Rev. Letters 19, 1056 (1967).

F16. 8. Complete spin-orbit potentials versus TPEP,

resonance to the potential is probably similar to the
high-mass part of the two-pion continuum on account
of its broad width. At any rate, should such a resonance
definitely exist, care must be exercised in accounting for
it so as to avoid double counting with TPEP.

The numerical results® are displayed in Figs. 2-23.
All quantities are expressed in natural units with the
mass of the charged pion as the unit of mass. When an
isotriplet component of the potential is illustrated in
a graph, it is actually the T3=1 component corre-
sponding to the proton-proton (or neutron-neutron)
state. Recall that because of pion mass splitting, OPEP
and TPEP are only charge-symmetric. The remaining
potentials are charge-independent.

Figures 2-6 display the nucleon-nucleon potential
and compare it with the phenomenological potential of

0.25—
(b) P
0.00 ] 1 1 L__ 1 ]
20 40 /6C == 100 120 160
25 s 7
-0, T:o/’/
l
050 T=1
_.-0.75+
"“i —— Complete Potential
< ‘—— TPEP
> .00
-1.25
TENSOR POTENTIALS
-1.50
T=0
-1.75 L

Frc. 9. Complete tensor potentials versus TPEP.

3 We can supply numerical tables of the potential on request.
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F1c. 12. Tensor and spin-spin potentials of pion and p meson.

Hamada and Johnston.®® Figures 2 and 3 show the
appropriate combinations of the central and spin-spin
potentials for the two .S states. These potentials are

4T, Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).

V(pe?)

LOMON
L0 TPEP T =0 CeNTRAL POTENTIAL
.25 [~
.00 {—

075

0.50 —

v(pe?)

0.25 -

0.00 L L

140 160

-0.25 -

-0.50 L

Fi1c. 13. Isosinglet central TPEP versus (modified) TMO and BW.
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Fic. 14. Isotriplet central TPEP versus (modified) TMO and BW.
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determined rather uniquely from the experimental data
for »20.5, as a comparison with the Yale potential#!
and others would show. Figure 4 compares the tensor
potentials. The agreement with phenomenological po-
tentials (moderately well determined by the data) is
again very good. In Fig. 5 the isotriplet spin-orbit po-
tential is shown to be in moderate agreement with that
of Hamada and Johnston, while the isosinglet spin-
orbit potential is in disagreement. However, the spin-
orbit potentials are not so well determined phenomeno-
logically, especially in the isosinglet case, where it first
appears in D waves. As shown in Ref. 32, the region
r<0.5 can completely determine the phenomenological
spin-orbit effects. Figure 6 shows the central and spin-
spin potentials separately.

The above comparison is not intended to establish the
validity of our potential on the basis of agreement with

1.00 —

TPEP T =1 Tensor POTENTIAL

0.75 -

1
160~

1 1 1 | 1 1 {
0.00 . 4 100 120 140

-0.25 —

-0.50

I
ellne
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F16. 16. Isotriplet tensor TPEP versus TMO and BW.
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Fic. 17. Isosinglet spin-spin TPEP versus TMO and BW.
4 K. E. Lassila ef al., Phys. Rev. 126, 881 (1962).
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a phenomenological one. Indeed, the Hamada-Johnston
potential includes quadratic spin-orbit terms (designed
principally for the purpose of fitting D waves?? )which
have no counterpart here. Furthermore, by exploiting
the uncertainties in the coupling parameters used in
the potential, one can no doubt achieve a closer agree-
ment. Our intention is rather to show that the potential
presented here is reasonably close to one that is deter-
mined by experiments with some degree of uniqueness.*?
The rather close agreement achieved here is no doubt
partially accidental in view of the uncertainties in the
¢ and w coupling constants. Moreover, the corrections
due to nucleon resonances and pair-suppression effects
to be discussed in Sec. VII (which have not been in-
cluded here) will certainly alter the quantitative aspects
of the potential somewhat.

Figures 7-10 compare TPEP with the complete
potential. Note that the difference is made up of OPEP
and resonance exchanges. This comparison is intended
to show the extent to which the two-pion continuum
contributes to the potential. It is seen that TPEP is
a major contribution except for the tensor potentials
that are largely determined by OPEP. An important
fact to notice here is that TPEP definitely does not
resemble an isoscalar exchange (as it is sometimes as-
serted) in central and spin-orbit potentials, although it
does so for tensor and spin-spin parts. This fact explains
the necessity of employing an isovector (in addition to
an isoscalar) scalar meson in OBE models. The size of
TPEP contributions, on the other hand, explains the
unreasonably large p and w meson coupling constants
demanded by these models.!!

Figures 11 and 12 show the relative contributions of
OBEP. Figure 11 shows the isosinglet contributions of
p and w. Note that w contributes importantly to the
central potentials. As mentioned before, the inclusion
of both ¢ and » with coupling constants predicted by
SU(3) would cut down the attraction in the S-wave
potentials, bringing the latter even closer to the phe-
nomenological ones. It is interesting to observe that the
TPEP contribution to the spin-orbit potential is larger
in magnitude than that of p in both isospin states.
Figure 12 shows the major contributions of OBEP to
the isosinglet tensor and spin-spin parts. The tensor
part is, of course, dominated by OPEP, and the spin-
spin part is largely dominated by p. The » and w con-
tributions are small in these parts and are not shown.

Figures 13-20 compare our TPEP with those of
TMO? and BW.? Although the latter potentials (as
originally given by their authors) do not include pair
contributions, in Figs. 13 and 14 we have added these
contributions®? for a more direct comparison. (Note

4 The fact that these terms fail completely for higher-angular-
momentum waves (see Refs. 40 and 41) is an indication of the
poor convergence of the series, as noted in Sec. III.

41t must be recognized in this connection that the pheno-
menological potentials are somewhat dependent on their assumed
form, particularly in the core region.
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that the pair terms, as calculated by these authors,
only contribute to the central potentials.) Figures 19
and 20 show the (original) BW central potentials with-
out the pair terms. Generally speaking, our TPEP is
quite different from the other two. Somewhat surpris-
ingly, pair suppression in the BW central potentials
improves the agreement. However, we believe that the
static approximation, particularly for the one-pair
terms, is sufficiently disastrous to produce unexpected
results. Incidentally, the sign of the BW alteration to
TMO is always substantiated by our TPEP, as expected
theoretically.*

Figures 21-23 show the effect of the expansion in
A%/4m? for OBEP. (Recall that we do not make this
expansion for OBEP.) In terms of the functions J and
H of Sec. V, this expansion is usually carried out for
J, the lowest-order approximation of which is H. Figure
21 compares the p spin-spin potential with the lowest
approximation thereof. Since the two are proportional
to J and H, respectively, this plot also shows the effect
of setting A%/4m?=0 in J. As explained in Sec. V, in
the case of the resonances, the bulk of the difference
comes from the expansion in mg?/4m? in the configura-
tion representation. The next plot shows the effect of
the expansion of OPEP. Only the spin-spin part of
OPEP is modified to an appreciable extent. This modifi-
cation is seen to be quite small, however.

As a means of comparing our OBEP with the usual
ones, we considered the Bryan-Scott IITM potential for
p exchange, dropped their P?/m? terms, and used our
values of the coupling constants. Except for the spin-
orbit potential, the differences are small and charac-
terized by Fig. 21, which shows the effect of the A%/4m?
expansion. The spin-orbit terms, however, differ sub-
stantially, as seen in Fig. 23. This difference can be
traced to a term that is proportional to the square of
the tensor coupling constant, and which is absent in
the Bryan-Scott potential.

VII. FURTHER DEVELOPMENTS

The nucleon-nucleon potential defined in Sec. VI
includes single-boson exchanges and the two-pion con-
tinuum as derived from our formalism. In this section,
we shall discuss further extensions of the program to
include other potentially significant effects. These
effects arise from higher-order irreducible Feynman
graphs in which only two mesons aie exchanged between
nucleons, i.e., each extra meson is emitted and absorbed
by the same nucleon line. Such ‘extra mesons added to
the basic OPEK graph only give rise to renormalization
effects. Their effect is completely absorbed by the use
of physical masses and coupling constants, and our
OPEK completely includes such meson radiative
corrections.

Many radiative corrections to TPEK graphs are

#“N. Fukuda, K. Sawada, and M. Taketani, Progr. Theoret.
Phys. (Kyoto) 12, 156 (1954).

2023

(a) (b)

F16. 24. Simplest meson radiative corrections not
absorbed by renormalizations.

similarly absorbed into renormalized constants; but
not those (such as the simplest cases illustrated in Fig.
24) which link the vertices of both exchanged mesons.
These have the same range as TPEP and, because of the
large value of G, cannot all be expected to produce
negligible amplitudes. However, we may hope that the
largest of such effects are also apparent in pion-nucleon
scattering, which contains the same radiative correc-
tions. When such pion-nucleon scattering effects are
noted, one may then inquire into their proper continua-
tion to the class of diagrams represented by Fig. 24.

There are two features of pion-nucleon scattering
which imply important pion radiative corrections. One
is the existence of nucleon resonances (isobars). The
low-mass (J=3%, I=%) A resonance, in an intermediate
state as shown in Fig. 25, is particularly close to the
physical region of low-energy nucleon-nucleon scatter-
ing. A method for including this correction is discussed
in Sec. VII A.

The other observed feature of pion-nucleon scatter-
ing demanding important radiative corrections is the
value of the scattering lengths; they are much smaller
than the second-order amplitude and have a different
isotopic dependence. The possible implications of this
for the nucleon-nucleon interaction are discussed in Sec.
VII B.

Although neither calculation has yet been made,
it is indicated that these are small, though probably
significant, corrections. If so, it will indicate that re-
maining radiative corrections, which do not appear as

(c) (d)

F16. 25. Nucleon isobars in intermediate states.
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important effects in pion-nucleon reactions, are negli-

gible for nucleon-nucleon forces.

A. Isobars in Intermediate States

Since the discovery of the N* resonances in pion-
nucleon scattering, the necessity of accounting for them
(and especially of the low-mass A resonance) in the
nucleon-nucleon interaction has been recognized. Sev-
eral attempts have been made in this direction,!?:45=47
some relying on the analytic continuation of the pion-
nucleon amplitude to the unphysical region appropriate
for nucleon-nucleon interactions, and some treating the
resonances as Rarita-Schwinger particles as in the dia-
grams of Fig. 24. Actually, the one-dimensional disper-
sion relations of Cini and Fubini*® show that the particle
treatment is a well-defined approximation to the dis-
persion-relations method. Often the P-wave partial
amplitude is projected out and adjusted so as to reflect
the effect of the resonance. In the following, we shall
discuss a preliminary treatment of the nucleon reso-
nances in the spirit of our formalism. Explicitly, the
resonances will be considered as particles coupled to
the nucleons via the pion field as in the graphs of Fig.
26.

The iteration by the Schrédinger equation of the
potential determined by these one-pion-exchange graphs
gives rise to the contributions of graphs (a) and (c) of
Fig. 25, in the approximation of a nonrelativistic propa-
gator. The corrections due to the relativistic propagator
and the graphs (b) and (d) of Fig. 25 can then be ob-
tained from the analog of U® in Eq. (3.18). However,
the on-shell contribution of (3.18) is given by the off-
diagonal potential.

To obtain the dominant effect of N* intermediate
states the interaction will thus be represented in a
coupled-channel formalism. The outstanding advantage
of such a procedure is the correct threshold behavior for
resonance production, which contributes significant
energy dependence below threshold. On the other hand,
if one goes to the trouble of directly calculating the con-
tributions of graphs (a) and (c) of Fig. 25, one avoids a
coupled-channel calculation at the expense of losing the
threshold effect in the usual adiabatic approximation.

(a) (b)
F16. 26. One-pion-exchange isobar production diagrams.

4% M. Konuma, A. Miyazawa, and S. Otsuki, Progr. Theoret.
Phys. (Kyoto) 19, 17 (1958).

4 A. Klein and B. H. McCormick, Progr. Theoret. Phys.
(Kyoto) 20, 870 (1958).

47 H. Sugawara and F. von Hippel, Phys. Rev. 172, 1764 (1968).

4 M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960).

AND E. L. LOMON 2

For convenience, we consider the case of two neutral
scalar fields V and N* representing the nucleon (mass
m) and the resonance (mass m*), coupled via a third
neutral scalar field 7 representing the pion (mass u).
The generalization to the realistic case should be
straightforward. The Bethe-Salpeter wave function for
the two-baryon states may be represented by a four-
component object as follows:

(m,m)
(m,m*)
(m*m)
(m*;m*)
All particles have been treated as distinguishable, and
every component is specified by an ordered pair of
particles identified with their masses. Note that the
inclusion of (m,m*) and (m*,m) as two distinct states
is merely an algebraic device at this stage. We now
define the Bethe-Salpeter wave function ¥(x1,%,) in the
usual way:
'N(xl)N(x:z)
W (1,20) = (vac| T | N (x1) N *(x2)
N*(x1) N (x2)
1\7*(901)1\7*(002)

where |in) and |vac) are the incoming and vacuum
states, 7 is Wick’s chronological operator, and all
quantities are expressed in the Heisenberg representa-
tion. The resulting Bethe-Salpeter equation in the ladder
approximation is

iD(xl,xg)\I/(xl,xg) = )\Ap(ul xl—xg)iF\I/(xl,xg) , (72)

where A is a numerical constant, Ar is the Feynman
propagator for the meson, and

Ctm?) (Cletm?)
Clitm?) (Jo+m*%) )
Chitm*3) (CJat-m?)
Clitm™*3) ((Jat-m*?)

fi? fifie fifie fio?
F=|fifie fife fi2?  fiofe
fifiz f122 fife fiefe
U122 fiafe  frafe fo?

The coupling constants for the No N, NeN* and N*r NV *
vertices have been denoted by fi, fi2, and fs, respec-
tively. The incoming state |in) is specified by a total
four-momentum P=(217,0,0,0) in the center-of-mass
system. For definiteness, and with no loss of generality,
we let the incoming state be one of two nucleons. The
center-of-mass motion can be eliminated in (7.1) by
using Lorentz invariance:

W (x1,22) = exp[ — 1P+ $(w1+x2) X (x1—x2), (7.3)

whereupon (6.2) may be written in the integral form

(7.1)

|in),

S)(xl,xz) =

X(2) = Xa(a) N f dikd'y exp[ik- (v—3)]

XD k,W)FAr(u]y)X(y), (7.4)
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where the baryon propagator is given by

[(W+E)2—me+ie ][(W —k)2—m?+ie]
Dk W)=

2023

LV k)2 —m2+ie [L(W — k) —m*i€]

[V +k)2—m*2 i JL(W —k) —m2+ie]

We now observe that with X as defined in (7.3), the
corresponding free incoming wave function X, has
a (relative) time dependence in the second and third
components, that is, in the components involving two
unequal masses. On the other hand, the corresponding
Schrodinger representation must be free of (relative)
time dependence, and, moreover, the two representa-
tions must agree as to the expression of free incoming
and outgoing waves. Thus the appropriate wave func-
tion to consider is (the off-diagonal components of the

LW k) 2 —m*e e [L (W — k)2 —m*2+-ie ]

matrix vanish)

1
exp[x®(m?—m*?) /AW ]

()= exp[ia®(m*2—m?) /AW ]

X(x)

=0="x(x), (7.5)

the corresponding free waves for which are time-
independent. The equation satisfied by ¢ is

Y () =o(x) +N / d¥kddy exp[ik- (x—y)1G(k| W) O(y)FO~1(y") A r(u| ¥ (s) (7.6)
where
LW +k)2—m24ie) [L(W —Ek)2—m2+ie] )
m2__m*2 2 mz _,m*z 2
[<W+ “ar +k) - +"][(W* T ‘k> - +“]
G Uk| W)= (.7

Note that the quantities W and (m?—m™*?)/4W, for-
mally written as four-momenta, have only a time com-
ponent. The Green’s function G is now in a proper form
for reduction by means of the modified Blankenbecler-
Sugar?® prescription of Sec. IT. According to that
prescription,

2T dqi""
gii(kIW)=*‘/““—”T_‘f5([ 108(C 1), ((7.8)
Q4 —q.* e

)

where the square brackets indexed by 7 are those ap-
pearing in the ¢th row of G~ The quantities q2 and q'2
are defined differently for each channel as the notation

implies. For the channel 7 involving the masses m;®"
and m;®, they are defined by

(mi D24 g) 2 (my @222 =2, (7.9)

and similarly for q’2. The meaning of (7.9) is obvious.
The expression for g is

gii(k|W) =

1
(mi(l)z_*_kz) 1/2+ (,mi(2)2+k2)1/2

5(k°)
Xt (1.10)
2(q*—k?*+ie)

o 2 M2 — g2 2
|:(W+ - +k> —m*2+ie][<w— SE— —k) ——m2+ie:|
aw aw

L(WH-k)2—m*2-ie [ (W —k)2—m*2+-ie] )

Note that the appearance of the nonrelativistic de-
nominator in (7.10) is owing to our modification of the
Blankenbecler-Sugar prescription in writing the dis-
persion integral in terms of q’2 rather than W’2. This
modification does not alter the result in the equal-mass
case.

If now g is inserted in (7.6) in place of G, the resulting
equation gives the lowest-order potential. Reverting to
the differential form, we have

(V3 4-a)i(x)
dkd*y exp[ik- (x—y)]
=\" Ar(uly)
(m V2RV (g, D2 K2) 12

 X[OGNFO) i), (7.11)
where a summation over j is implied. The square-root
factors in the denominator are connected with relativis-
tic phase-space factors as explained in Sec. II. For the
purpose of this discussion, it suffices to neglect these

factors and consider ¢ as a Schrédinger wave function;
hence

(V2 4-q2)i(x)

/‘ dk exp(ix-k)
=\
(0,'—-9,')2—— (k2+[.¢2)+7:€

Fi(x), (7.12)
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where
0;= (0,(m2—m*2) /AW |, (m*2—m?)/4W ,0).

Note that some of the off-diagonal elements of the
potential
dk exp(ix-k)

Vii(x) =3:ij/
(0:—0;)2— (K*+p?) +ie

(7.13)

may be complex (for all scattering energies) if the e in
the Feynman propagator is formally retained. I'urther-
more, when the second and third channels are appropri-
ately combined to get the physical NN* channel, a
complex diagonal element appears in the potential.
The source of the difficulty lies in the continuation of
the potential off the energy shell. As far as the on-
energy-shell consequences (e.g., scattering amplitude)
are concerned, the real part of the potential will do in
this lowest-order approximation. Indeed, the treatment
of similar denominators in Ref. 30 on the basis of the
Fukuda-Sawada-Taketani** (FST) method is equiva-
lent to taking the real part of (7.13). Be that as it may,
we feel that a definite choice of off-shell continuation
could perhaps be found on firmer grounds. At any rate,
a complex potential is not out of the question.?* Note,
incidentally, that the complex components have an
oscillatory behavior decreasing as »~'. This circum-
stance is not troublesome as the wave functions multi-
plying these potentials are strongly damped for large
7. The damping below the production threshold in-
creases as the elastic nucleon-nucleon threshold is ap-
proached. The effect of isobar intermediate states is
therefore expected to be comparatively small at lower
energies (X100 MeV c.m. kinetic energy). The phe-
nomenological potentials are largely determined by the
lower-energy range, and an effective alteration of them
at higher energies may improve their fit to the data.

B. Pion-Nucleon S States and Nucleon-Anti-
nucleon Pair Suppression

The main contribution to .S-state pion-nucleon scat-
tering of the second-order Feynman graph arises from
the time-ordered component of Fig. 27(a), which has
an antinucleon in the intermediate state. For this reason
the small experimental scattering length is often attri-
buted to a pair-suppression or pair-damping effect.

We now consider the possible effect of such pair sup-
pression on nucleon-nucleon graphs containing one or
two nucleon-antinucleon pairs as illustrated in Figs.
27(b) and 27(c). Within the field-theoretical framework,
the arguments for pair damping in these cases are based
on selective treatments of radiative corrections.*®
In addition, there is the argument based on the anomal-
ously small pion-nucleon S-wave scattering lengths.

49 K. Brueckner, M. Gell-Mann, and M. Goldberger, Phys.
Rev. 90, 476 (1953); A. Klein, ibid. 95, 1061 (1954).
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(b) (c)

T16. 27. Nucleon-antinucleon pair diagrams for pion-nucleon
and nucleon-nucleon scattering.

Finally, the phenomenological pion-nucleon Lagrangians
based on soft-pion physics predict a cancellation at
pion-nucleon scattering threshold of the pair terms by
counterterms arising from the exchange of an isoscalar,
scalar boson.

It is clear that the above arguments based upon the
pion-nucleon interaction involve continuation to the
physical region of nucleon-nucleon scattering or hard-
pion momenta. Also, the treatment relying on selected
radiative corrections to field-theoretical diagrams can
at best be considered as an indication for pair damping.

To include any such effect, one can resort to either
the old-fashioned method of suppressing the pair terms
or the inclusion of a scalar boson as a first step. The
latter method is the easier one and does not require any
new formalism.

The only physical candidate for such a scalar boson?®
has a high mass (730 MeV) and a large width (~200
MeV).A high-mass-scalar exchange gives a compara-
tively small contribution to OBEP. The coupling con-
stant would be adjusted to cancel the second-order pion-
nucleon scattering lengths, and is not expected to be
anomalously large. In addition, when the large width is
taken into account, the contribution is expected to
resemble that high-mass part of the continuum con-
tribution which it replaces.

The pair-suppression method can also be incorporated
into our program by the following simple precsription.
Consider the expression for the Feynman propagator Sp:

Sp(x) = (vac| T (x)¥(0))] vac). (7.14)
One can consider Sr as a superposition of “particle”
and ““antiparticle’” propagators by retaining, respec-
tively, the positive- or negative-frequency parts of the
field operators in (7.14). In symbols,

Sp=Sp+Sp),
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and, explicitly,

vptm o1 |‘7°E(p)—7'p+m

pr—mitic 2B@L p—E(p)-ie
—y°E()—v-p+m

- . (115

Using Sr™ (Sr™) in place of Sp for a nucleon line
corresponds to projecting out the pair (no-pair) con-
tribution of that line. Alternatively, one may introduce
pair damping by replacing Sy with SFp+ANSFO,
where \ is a damping parameter.

It has been noted?®? that there is a large cancellation
between full-strength one-pair and two-pair terms
within the static approximation. This greatly reduces
the effect obtained on varying A between 1 and 0.

VIII. OMITTED CONTRIBUTIONS AND
EXPANSION LIMITATIONS

In this section we shall discuss various points per-
taining to the validity of results obtained with our
formalism. As stated in Sec. II, limitations arise from
two different aspects: (i) the difficulty of calculating
high-order irreducible Feynman amplitudes and (ii)
approximations made in expanding the potential into
a convenient form for many-body calculations.

The basis of our calculation is covariant perturba-
tion theory in the form of selected irreducible Feynman
graphs. These graphs form the kernel of the Bethe-
Salpeter equation whose amplitude represents the sum
of ladder iterations of those graphs. We have demon-
strated that a potential can be produced in detail which
reproduces the Bethe-Salpeter amplitudes to a good
approximation. The validity of the result then depends
on the adequacy of the selection of Feynman graphs.

The main justifications for the use of covariant per-
turbation theory as input in the nucleon-nucleon prob-
lem are the mass-range relationship and the possibility
of accounting for some of the principal corrections such
as rescattering and pion-pion interactions by appealing
to other experimental and theoretical information.
Thus, for example, one-dimensional dispersion relations
indicate that to a good approximation, pion-nucleon
resonances appearing in intermediate states may be
treated as particles. Similarly, phenomenological
Lagrangians based on current algebra and soft-pion
physics may provide information on higher-order vertex
corrections.

Our inclusion of the meson resonances in the nucleon-
nucleon potential is in the spirit of the OBE hypothesis.
Tt is designed to account for the pion-pion interaction
by including the correlated multimeson exchanges.
With respect to the problem of double counting, of the
resonances included only the p meson is a two-pion
exchange; however, the high mass of this resonance
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safely separates it from the two-pion continuum. As
mentioned before, the (possible) isoscalar, scalar two-
pion resonance (o or €’) may have some overlap with
the two-pion continuum. The addition of this resonance
may therefore necessitate some subtraction from TPEP.

Thus OBEP and TPEP corrected for the above
higher-order processes (perhaps along the lines indi-
cated in Sec. VII) may be expected to dominate for
internucleon distance where three-meson continuum
effects are unimportant. The remaining question is
whether three-meson continuum effects are significant
for r>0.5 u .

Calculations of the meson-theoretic potentials have
rarely gone beyond the fourth order because of the
great computational work involved. The very few works
that exist?®5! are quite limited in their objectives and
results. A very rough estimate of the three-pion con-
tinuum may be obtained by assuming a scaling of the
strength of the two-pion contribution. Using this to-
gether with the characteristic range of a three-pion
exchange, one arrives at the result that the three-pion
continuum is unimportant outside half a pion Compton
wavelength (#>0.5). The results of Ref. 50, on the other
hand, indicate a non-negligible three-pion contribution
near »=0.5 in some parts. However, this treatment is
a selective one, and it relies on doubtful approximations
that render its results unreliable. A careful examination
of the three-pion continuum is in order.

Assuming an adequate selection of graphs for use in
constructing the Bethe-Salpeter kernel, we now turn
to the potential representation itself.

Throughout this paper inherent restrictions on the
potential representation have been noted. The com-
plexity of the Schrodinger potential required to simu-
late the Bethe-Salpeter equation in some regions may
be summarized, with great simplification, in the im-
possibility of approximating (p>+m?)'/? by m~+p*/2m
near the branch points. This is related to the impossi-
bility of localizing a (relativistic) particle more narrowly
than within its Compton wavelength. In this case of the
nucleon-nucleon system, the effective Compton wave-
length of the nucleons is increased by virtue of the
coupling to the pion field. Thus it is found that the
resulting potentials become extremely nonlocal near
and inside 7=0.5. This fact, together with the impor-
tance of higher-mass exchanges (which fortunately
arise at the same radius), sets a boundary for the
potential representation somewhere near r=0.5. At
shorter distances it seems necessary to resort to a
phenomenological form. The nature of our results
indicates that the form should be very nonlocal,
such as a separable-potential or a boundary-condition
representation.!2

The approximation of expanding the configuration-

8 S, Machida and K. Senba, Progr. Theoret. Phys. (Kyoto)
13, 389 (1955).

51 S, Furuichi and M. Yonezawa, Progr. Theoret. Phys. (Kyoto)
38, 1200 (1967).
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space potential in powers of the momentum operator
is founded on the above considerations. The nonlocali-
ties have a short range of about 0.5 and are quite strong
inside this distance. Although it is possible to retain
second-order terms in this expansion and obtain an
energy-dependent potential (some quadratic spin-orbit
terms were computed and found to be small outside
7=0.5), the merits of such a procedure are doubtful in
view of the asymptotic nature of this expansion. The
expansion has the effect of smearing the nonlocalities
beyond their actual range. This is rather similar to the
effect of L2 (and similar) terms that are used in phenom-
enological potentials (mainly) for the purpose of fitting
D waves.®*41 Tt is found that these terms result in too
large an interaction for higher partial waves.5? We feel
that the inclusion of second-order momentum terms,
although perhaps a useful phenomenological tool, is
not theoretically justified.

IX. CONCLUSIONS

In this paper we have developed the formalism and
presented the calculation of a nucleon-nucleon potential
which accurately represents dominant classes of Feyn-
man amplitudes. We have improved substantially on
the accuracy of previous theoretical potential repre-
sentations. This required that we resolve the ambiguity
arising from the difference between relativistic and non-
relativistic iterations of the irreducible diagrams. This
ambiguity has in the past led to very large errors'® and
to important differences between calculations based on
similar approximation schemes.:®

The method allows us to obtain the momentum-space
potentials [ Appendix A, Egs. (4.16), (4.17), and (4.19),
and the discussion following (4.18)7] approximated only
in that Eq. (3.7) is iterated to a finite order in the
coupling constant, as given by Eq. (3.18). But the uni-
tarity condition on the Bethe-Salpeter amplitude is
carried over to the Schrodinger equation in an exact
manner [ Egs. (3.13) and (3.17)]. The iteration of (3.7)
is carried out to the same order in the coupling as the
covariant perturbation expansion which provides the
Bethe-Salpeter kernel. In addition, all the higher-order
ladder iterations are produced nonrelativistically on
solving the Schrédinger equation.

The calculation of the energy-dependent nonlocal
configuration-space potential V(r,r’|7W) can be done
without further approximation. Although many-
dimensional numerical integration is required, the calcu-
lation is feasible. Supplementing such a potential with
a short-range phenomenological part (or the above
momentum-space version with high-momentum parts),
one may solve the Schrodinger equation and compare
the results to experiment. However, the flexibility of the
phenomenological addition would probably mask the
difference between the exact form and the simpler local

% R, Reid, Ann. Phys. (N. Y.) 50, 411 (1968).
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expansion. It would be more interesting to compare the
Schrodinger amplitude produced by the exact form of
potential with the calculated Bethe-Salpeter amplitude.
The latter calculation is not yet feasible for the nucleon-
nucleon case (even with OPEK alone) but may even-
tually succumb to future generations of computers.

We have shown that the expansion to first order in
momentum (or, equivalently, to an energy-independent
local plus spin-orbit potential in configuration space)
converges well for 7> 0.5. The three-pion continuum and
other corrections are expected to become significant at
rS0.5. The resulting potential was computed and is
exhibited in detail. The result is in good agreement with
phenomenological potentials. One expects discrepancies
both because the phenomenological potentials are con-
strained by their assumed forms (and not completely
determined by data) and because the theoretical cor-
rections discussed in Sec. VII have not yet been added.
The discrepancies are in fact greatest for those potentials
least well determined by the data. This indicates that
the corrections to the present theoretical potential may
be comparatively small.

Comparing the various components of our potential
(Figs. 7-10), it is clear that TPEP is more important
than OBEP, although OBEP contributions are very
significant. The necessity in OBEP models of employing
two hypothetical low-mass scalar mesons and unreason-
ably large coupling constants for the vector mesons is
explained by their neglect of TPEP. In addition, pre-
viously published OBEP models had serious quantita-
tive errors arising from the use of expansions in momen-
tum transfer (Fig. 23).

The probable major remaining corrections to the
potential can be calculated according to the prescrip-
tions of Sec. VII with no special difficulty. We are
proceeding with those calculations. Furthermore, the
method is applicable to the calculation of accurate po-
tentials for many hyperon-hyperon, meson-hyperon,
and meson-meson systems. For the AN system the
simple expanded potential should be nearly as accurate
as for the NN case. However, for the wNV <> pN off-
diagonal potential, for example, there are very unequal
initial- and final-state mass ratios. This circumstance
will bring the relativistic kinematic singularities into
the physical region, and require drastic approximations
to obtain a simple form. We expect the method to be
very useful in treating most hyperon-hyperon inter-
actions, and to be useful, if not accurate, in the descrip-
tion of some meson-hyperon and meson-meson
interactions.

Finally, we summarize our formalism for the deriva-
tion of a Schrodinger-equation potential from a field-
theoretical model. This formalism is based on a careful
reduction of the Bethe-Salpeter equation to a Lippmann-
Schwinger form. The reduction is effected by means of
a nonrelativistic two-body propagator that possesses
the (elastic) unitarity properties of the original rela-
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tivistic one and embodies all the appropriate kinematic
properties. Although based on the technique of Blanken-
becler and Sugar, it was extended to unequal-mass
particles with spin. Furthermore, we clarified the identi-
fication of the nonrelativistic potential and amplitude
by using unitarity conditions. The extension to arbi-
trary masses permits the extension to a variety of
particle interactions.

An important consideration in our work has been the
avoidance of the static approximation. The definition of
the potential in Secs. IV and V, unlike previous deri-
vations, is free of such approximations. As mentioned
before, these approximations are particularly harmful
when applied to integrals involving intermediate par-
ticles. As a result, in our calculation the sensitive cancel-
lation in the iteration on the physical cut is valid to
all orders in momenta and coupling strength. The usual
statement about the inapplicability of u/m expansions
refers to the static approximation where recoil effects
are ignored and all meson energies (including rest mass)
are neglected relative to the nucleon mass. An expansion
of the final result in terms of u/m is of course another
matter and of a mathematical nature. An examination
of the potentials as analytic functions of u/m reveals
a branch point at u/m=0 (this is verified by the dis-
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persion-theoretic amplitudes of Ref. 48), resulting in an
asymptotic part in the expansion. On the whole, the
convergence is moderately rapid, though perhaps not
sufficiently so. At any rate, we have not found these
expansions useful or necessary in our work.

The nature of the momentum dependence obtained
indicates that strong nonlocality sets in at r=~0.5 over
a narrow transition region. This confirms the arguments
of Ref. 12 and suggests that a boundary-condition
model (or some other extremely nonlocal form, such as a
separable potential) is required for < 0.5.

On the whole, the formalism presented in this paper
appears to be a useful one for the construction of a
theoretical nucleon-nucleon potential. It achieves a
consistency largely lacking in previous works, and it
appears to yield meaningful results.
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APPENDIX A

The task of this appendix is to obtain suitable integral representations for the quantities ¢ and § defined by
Egs. (4.15). First we consider g. Combining denominators & la Feynman, and translating the momentum variable,

we get

3l
9= [t a1 —amr ) V480 =)o =p) =NV )T
(- DW= p— B =P = = )NV +)—k] =)

X . (Al
(B2=[B(p' = )+ (W =)~ W) T+B(p = p) o (W =N 4= m?o-N) —w(a-+B) F-ie)

Next, we rotate the contour, carry out the four-dimensional Euclidian integration, and eliminate « using the 6

function. The result is
(

1 1—B 1—fB—» 7(1)M " 2)
——tr [ s a [ T 2 DA B0 P )+ O
0 0 0

where

X

{y-[W—p—B@' —p)—v(W—p)+NW+p)]—m} m}
D? ’

D=[B(p' — p)+r(W —p) =N+ ) =B =)= (W = p)*= NI+ p)*+mi N+ 21—y =) —ie.

Changing variables according to

§=v+A,

and integrating the first term by parts over £, we get

1 1—8 ,Yﬂ(1),y“(2) e W2£2‘Y(1)"Y(2)
3=~ivr// dﬁdf{f———— —2/ A
0 Jo D 0

D2

5:1’_%7

+2/‘ dk{“/"W*Y'[ﬁ(P’—P)-FP(l =) 1=m} O{y" Wy [B@' —p)+p(1—) ]—m} @

} . (A2)
DZ
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where
D'=D|¢.

Note that in (A2) we have explicitly set p°= p'0=0.
Turning to J, we write it as a sum of three terms:

9=91+ 9+ 93,
where

—_ 1
gl— -

/dk YOO (- K—m1) D0 (— - k—m) D
[ —p)*+ I ()~ W2 —ie] (e —p)*+u*]

70(1),),0(2)
gy —1 / dis ,
E(R)[(k—p')*+u][(k—p)>+x?]
/dk (- KAm) D (= Kdm) W2y 0Dy 0@
E(R)[(k—p')*+u B2 (k) — W2 —ic][(k—p)*+u?]’

We shall demonstrate the calculation for g3, and record the result for the other two, since the procedure is the same
in all cases. Toapply the Feynman technique, we must eliminate the square-root dependence in E(k). This is
achieved by means of the integral representation

1 1 /+°° az
EK) ) Z24+Ek)
Using this representation, we combine denominators and translate the variable, whereupon we get

3!
fo=— - / dZdk d(aBrN\)o(1—a—B—v—N\)
™

[y (ktop+6p) +m] OL =y (ap+6p) +m] O+ W0 Oyt ®
[k (ap+6p")-+ap*+8p"-+ (a-HBut+v(m*— W) FNZ2Hm) —ie]!

Carrying out the angular integration, integrating by parts over |k|, and eliminating X leads to

-+o0 0 1 1-8 l—a—8
93=—/ dZ/ d}k!/ dﬁf doz/ dy
—00 0 0 0 0

—® -y Ok [y- (ap+Bp) Fm] Ol — v (ap-HBp) Fm] DT 20Dy
X .
[k (ap-+Bp')*+ap*+8p"*+ (cckBu o (m? = W) (1 —a—B =) (Z*+m?) —ic

The integration over » is elementary and can be performed immediately. The result is

+o0 00 1 1-8
sv==t [ iz [ alil [aa [ dat = g R Ty b I )]+ W)
—00 0 0 0

1 1
iz
W22 | [k — (ap+6p')*+ap*+B80 -+ (a+B)u>+(1—a—B) (m*— W) —ic]?

1
[k — (ap+-B0)*+ap*+Bp -+ (Bt (L —a—p) (Z3+m?) —i€]2} .

The first denominator is now independent of Z, and we perform the Z integration for that part. Next, we change
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variables according to a=1—8—§, |k| =¢W, and obtain
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N

0 1 -8
g3=~%~1r/ ds/ dﬁ/ a
o Joo o {£W2—[B@'—p) —ip*+BE—P)*+ip*+ (1 =D+ (m> —W?) —ie}?

N

+c0 0 1 1-8
+w | iz f dE / a8 / di ,
—o 0 o Jo (Z2 W EW =B —p) —ip P+BE—p")*+p*+ (1 = )u+- (Z24m?) )2

where

A similar procedure for d; and J, leads to the expressions

(A3)
N={r-LA=p+BE —p) J+m} O{—v-[A=p+BE —p) J+m} @ —y Oy G224 20 (o),
0 1 1-8 oW f —w.[(1— -+ /— @) 02) far.[(1— [ 1
g1=%WW/ dg/ dﬁ/ i {—v [A=Op+B@ —p)]+m} @++"®{y-[(1-)p+B(P p)]+m}‘),
o Jo Jo {(EW =B —p) —ip B —p')*+p*+ (1 — )+ (m?—p?) —ie)2
70(1)70(2)
(A4)

+-00 00 1 1-8
gy=—1W dZ/ dg/ dﬂ/ s )
- Joo JooJoo AWPE=[BE —p) —ip B0 —D) P+ (1 —)uH{ (Z24-m2)) 2

The final result of this appendix is obtained by combining d; with the first integral contributing to 43 in Eq. ( A3),

and recording the resulting expression for d;

00 1 1-8
9=~%7r/ dgf dﬂ/ dc
0 0 0

y —y @y OWEH W = [B@'—p)+p(1 =) ]—m} Oy Wy -[B0'—p)+p(1—{)]—m} @

(W22 +RA(1 =) w45 (m*—W?) —ieJ?

,yO(l),YO(?)

+o0 o0 1 1-8 +o0 %0 1 -8
1w dZ/ dgfdﬁ/ ds +1W/ dZ/d/d[
i — 0 0 0 [W2£2+R+(1—f)#2+§'(22+m2)]2 ’ — 0 : 0 g 0 “

X =y @y @WEA{y-[A=0)p+B0' —p) IH+m} V{ —x-[A=)p+B(p'—p) J-+m} O+ W0 Wy0

L+ W)W E+R+- (L= (Z24m?) T ’

where

(AS)

R=B(p—p)*+p*—[80®' —p)—ip]*.

APPENDIX B

In this appendix details of the numerical calculations
will be presented. All numerical integrations were per-
formed on an IBM 360/65 computer using Simpson’s
rule. The integrals treated were those of TPEP and
OBEP, given, respectively, by Egs. (4.31) and (5.4).
During the course of computations, it was recognized
that the form of the integrands given in (4.31) was not
suitable for the integration method used. The difficulty
stemmed from the fact that for moderately large 7, the
exponential factor in the integrand peaked in some
regions of integration and was therefore not adequately
probed by a uniform mesh of reasonable size. This
difficulty was easily overcome by changing the variables
of integration so as to spread the integrand over the

volume of integration. The following changes of vari-
ables were found adequate: for integrals involving X,
{=u?; for integrals involving ¥V, {=us; for integrals
involving W, {=#° and {=w™3; and for integrals in-
volving Z, {=u% and {=w3.

The variable 8 was not changed. The number of
points used was 21 in each dimension. As a check on the
accuracy of the integration procedure, a run was made
with the number of points doubled in each dimension.
The resulting change occurred in the third significant
figure for the worst cases, and the over-all change in
the potential amounted to a few tenths of a percent for
a small number of points, and less than one-tenth of a
percent for the rest.

The functions G defined by (5.4) can all be computed
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using the auxiliary integrals f defined by

foton= [

The relations between these two sets of functions are
easily ascertained by simple manipulation. Defining
the dimensionless quantities g by

p(e—1)

dg—————exp( 2mrg). (B1)

g(rlam) = (2m)="G(r|mg,n), a=mg/2m
we get the following set of expressions:

g(r]a,5)=(1—e?)[Ki(z)+ (1/2)K2(z) ]+a?g(r|0,3),
g(r|a,4) = (1—a?)3[Ko(z)+ Ka(2) J+ag(r]|0,2),
g(r|a,3)=(1—a?)Ki(zs)+a?g(r|a,1),
g(r|a,2)=(1—a?) Ko(2)+a%(r|,0),
g(rlam)=K.(z)—f(r|a,n), n=0,1

grla, =) =g(r|a,)) —(1=a?) f(r|a, —1),

PARTOVI AND E. L.

LOMON 2

where z=2myr. The functions K are the modified Bessel
functions defined by

\/‘ﬂ') 2z)n
Koy = Y G (Vm)(
I'(n+4%)

The integrals fare needed for the values of n=—1, 0, 1.
These were numerically integrated, truncating the
range of integration at £=4. The contribution thus
neglected is easily estimated to be no greater than 10,
the total magnitude of the integral in all cases. As in the
case of the integrals comprising TPEP, the integrand
in (B1) peaked sharply near the lower end of the range
of integration. This difficulty was circumvented by
using 41 points in the interval [1, 1.1] and an equal
number in the interval [1.1, 4]. Doubling the number
of points in each segment resulted in no change to within
one-tenth of a percent. Comparison with asymptotic
expansions for large 7 and the tests mentioned above
indicate that the numerical integrations are accurate
to within a few parts in a thousand.

/ (12—1)12 exp(—2t) dti .



