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Crossing-symmetric solutions to the pion-pion partial-wave dispersion relations are obtained, using the
inverse-amplitude method. The presence of the p meson with its physical mass and width is assumed, the
amplitudes are constrained to contain Adler zeros, and general sum rules and inequalities are satisfied.
Favored solutions contain a very broad isoscalar S-wave resonance, and have a small decreasing isospin-2
S-wave phase shift. The D waves are very small. The over-all agreement with phenomenology and with
other S-matrix calculations is very good.

I. INTRODUCTION

i ~HIS paper presents predictions of 5-, I'- and
D-wave 7r-~ scattering up to about 1 GeV c.m.

energy, obtained by solving coupled partial-wave dis-
persion relations using the inverse-amplitude method.
The mass and width of the p resonance are assumed
given. Crossing-symmetric polynomial expressions de-
duced previously' under simple and general assumptions
are used to provide 5- and D-wave subtraction constants
and information about zeros below threshold. Conse-
quently, the solutions automatically satisfy sum rules, '
and obey to a high degree of accuracy rigorous
inequalities. 4

The over-all features of our results agree well with
experiment' and with other S-matrix calculations. ' '
%e 6nd a large positive isoscalar S-wave phase shift,
and some of the solutions contain a 0- resonance. The
isospin-2 S-wave phase shift is small and negative,
while both D waves are very small.

The paper is organized as follows. Section II summar-
izes the relevent results of I, Sec. III discusses the
partial-wave dispersion relations and explains the
methods used to solve them, and Secs. IV and V contain
numerical results and discussion.

II. POLYNOMIAL AMPLITUDES

In I the 7r-z amplitudes within the Mandelstam
triangle (i.e., for 0(s, t, u(4p')I are constructed from

* S. R. C. Research Student.' J. W. Moffat, Phys. Rev. 121, 926 (1961).' R. H. Graham and R. C. Johnson, Phys. Rev. 188, 2362 (1969),
hereafter referred to as I.' R. Roskies, Nuovo Cirnento 66A, 494 (1970);J.L. Basdevant,
G. Cohen-Tannoudji, and A. Morel, ibid. 64A, 585 (1969).

4 A. Martin, Nuovo Cimento 47, 265 (1967); A. K. Common,
ibid. 53A, 946 (1968); G. Auberson, O. Piguet, and G. Wanders,
Phys. Letters 28B, 41 (1968).' See, for a review, Proceedings of the Conference on ~m and ICm
Interactions, edited by F. LoefRer and E. Malamud, Argonne
National Laboratory Report, 1969 (unpublished).' E. P. Tryon, in Ref. 5, p. 665.' D. Morgan and G. Shaw, Nucl. Phys. B10, 261 (1969) (sum-
marized in Ref. 5, p. 726); Phys. Rev. D 1, 520 (1970).'R. C. Johnson and P. D. B. Collins, Phys. Rev. 185, 2020
(1969).' R. C. Johnson, Phys. Letters 32B, 199 (1970).

'0 The usual s, t, and u variables, connected by s+t+u=4@,'
(where p is the pion mass), are used throughout.

2

X=4k'(4d c)/at, — (6)

is fj.xed in sign (X&0) if the 7re-s' S-wave amplitude is
to obey simultaneously all of a set of eight constraints
which follow from crossing together with weak analyti-
city and unitarity assumptions. 4

In I the magnitude of X is constrained only by the
relatively weak self-consistency requirements that the
unitarity branch points, neglected in (1), should be
unimportant singularities. This is taken to be equivalent
to asking that the S-wave scattering lengths should be
small, and this condition is weak because terms propor-
tional to X provide only corrections of order tr'/ks

( 15%) to these quantities.
Subsequent work with dispersion relations showed"

that under certain (fairly strong) assumptions about

"A. Yahil, Phys. Rev. 185, 1786 (1969)."S.L. Adler, Phys. Rev. 137, B1022 (1965);139, B1638 (1965)."Equation (2) applies strictly off shell where s+t+u =3IJ.'. We
are assuming its validity on shell, where s+t+u=4IJ2.

'4 M. G. Qlsson, Phys. Rev. 162, 1338 (1967).' Notation for partial-wave amplitudes is A~, where I=0, 1, 2
is the isospin and l =0, 1, 2, ... is the angular momentum."R. C. Johnson, Phys. Rev. D (to be published), hereafter
referred to as II.

a single invariant function Ii symmetric in its two
arguments":

F(s,t) =a+b(s+t)+cst+d(s'+t') (1)

where u, 6, c, and d are real constants. One of these is
eliminated if the amplitudes have an Adler zero"—that
is if")

F(a',p') =0,
and two other constants may be expressed in terms of
the p-meson mass (m) and width (I') by matching the
E'-wave threshold to a resonance-dominated partial
wave'4 of the form"

A t' ——q'a&L(1 —q'/te') —iq'a&p) ',
where 4q'=s —4p, ', 4k'=no' —4p, ', and

p =((s—4t ')/s3'",
with

at ——nz'I'/gk'.

The fourth and last parameter,
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a = —cesar[3 —xr (13+5X)ps/Ps]

b =at[-,s —(2+X)p,'/k'j,
c=-', (X+2)at/k',

d =-', (X+-',)at/k'.

For 0(s&4p, ', the partial-wave amplitudes are

(7)

(8)

(9)

(1o)

average behavior of the ~-7r amplitudes above 1 GeV
c.m. energy, the neglect of thresholds and the use of
quadratic polynomial approximation are completely
consistent with current phenomenological knowledge
of the physical scattering phase shifts, ' provided they
are not too large at low energies (where the experimental
possibilities are still open). Under these conditions,
the sum rules allow the order-of-magnitude estimate
X

In terms of X we have from I

4p'(s&16p, ', but is known to be a good approximation
for s& 50'' (Qs& 1 GeV). Here we assume (17) is valid
for all s&4p, '.

For s&0, ImA (s) is related to physical scattering in
all angular momentum states in the crossed channels.
However, because of the presence of the third double
spectral function the t- and I-channel partial-wave
series converge only for s& —32@,', so that in principle
the power of crossing to relate the different amplitudes
is limited.

Nevertheless, we follow the usual practice of ignoring
the divergence, and we calculate the left-hand cut
discontinuity for s& —50'' through crossing as if the
third. double spectral function were absent. (The phase-
shift results are insensitive to the precise behavior of
ImA for s& —32''.) That is, we use on the left-hand
cut the formula""

A as = r~ [5a+4b (s+2p') ——,'c (19s—4p') (s—41r')

+-',d(11s'—16@'s+32p')j, (11)

4,pm —e

E(i 1+ImA, r (s
4p s 4p~

2s

x—4ys) I'=0

A so = (c—4d) (s—4p')'/120,

A '= ', (s 4p)[-b+—cs+d(4 ' s)j, —
(12)

(13)

2 2s
g Q (2l +1) ImA&' (~ )&&'I 1+ Ids', (18)

l'=0 s' —4p'I

Ao'= l [a b(~ 4p')—+l (c—+2d) (r 4p')'3, —
where

A ss = (2d —c) (s—4p')'/60. (15)

QI. PARTIAL-WA7E DISPERSION RELATIONS

The two S waves [(11) and (14)j have Adler zeros
near s=—,'p, ' and s=2p', respectively, while the I' and D
waves have the usual threshold angular momentum
zeros. As we shall describe in Sec. III, the solutions
to the partial-wave dispersion relations are constructed
to have all these zeros, exactly as (11)—(15) prescribe,
and in addition all but the I' wave are constrained to
match these polynomial expressions at the symmetry
point through a subtraction. A subtraction above
threshold in the P wave is used to insert the p resonance
at the experimental mass" ( 765 MeV).

1 5/3
1
2
1
2

5
6

6~

(19)

and where, as indicated, the crossed-channel partial-
wave series are truncated at D waves.

To solve (16), we introduce'

(20)

With our approximations on the left- and right-hand
cuts, there are two advantages of considering the inverse
amplitude.

The first is the fact that, independent of isospin and
a,ngular momentum, from (17) we have

(21)
A pion-pion partial-wave amplitude's A (s) has well-

known analytic properties" in s, which are summarized
in the dispersion relation"

for s&4p, ', and the second is that

Im8 1/s (22)

rrA(s) =
' ImA(s')ds' " ImA(s')ds'

(16)
4@2 s —s/

Elastic unitarity, expressed by

ImA(s) =p~A ~',

where p is given by (4), is strictly valid only for
' Particle Data Group, Rev. Mod. Phys. 41, 1 (1969).
'8Isospin and angular momentum labels are dropped when

inessential.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
OThe possibility of bound-state poles is ignored, the +is

prescription for s approaching the cuts is to be understood, and we
are assuming for the moment that l16) coverges.

as s —+ —oo [while from (18), ImA s$.
As a result of (21) and (22), a once-subtracted dis-

persion relation for 8 converges adequately, and the
right-hand cut integral in each partial wave can be
evaluated once and for all in closed form.

The disadvantage of the inverse-amplitude is that a
solution to the dispersion relation for 8 may not
satisfy (16)—either because 8 so constructed has zeros
on the physical sheet, or because A should have similar
zeros which are not taken into account, or both.

However, in practice it turns out that the presence
of important physical-sheet zeros of 8 can be recognized

"Isospin and angular momentum labels are essential here.
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and accurate results are obtained by calculating on a
sequence of points in s separated by -', p, ', and performing
the integrals by the simple trapezium rule )with
appropriate careful treatment" of the principal-value
singularity in (24) for s(0$.

For convenience, the integral for L is cut off at
s=A. = —50@,', and for s(A. we assume

ImB(s) =1mB(h.) &&(s/A. ) . (29)

The results for the phase shifts for s(50@' (where they
are most likely to be reliable) are completely insensitive
to the precise values of A. and n, provided n & 0 and ~A

~

is not small (h.(—32'', say). For all the results quoted
here, a=0.

After three cycles of iteration the phase shifts begin
to settle down, and after Ave cycles they remain
constant to within a few ((5) percent.

Figure 1 includes the results after five iterations,
showing that, except in the Do channel, " the presence
of a left-hand-cut contribution makes no major change
in the behavior of the phase shift.

In So, it rises quickly from threshold, reaching 40'
at 500 MeV, 75 under the p, and rising to just less than

30

20

-IO

-20

FIG. 2. I-wave effective-range plot. Input is the
dashed line, output is the solid line.

s The principal-value singularity in Eq. (24) involves the
derivative of the tabulated integrand, which is evaluated by
quadratic interpolation.

"The "spectroscopic" notation, (angular momentum);„, ~;, is
convenient.

90' at 1 GeV. In S2 it falls smoothly through —8',
—15', to —20' at these energies.

To a very good approximation, the I'j wave is un-
altered by the iteration. From threshold to 1 GeV it
remains dominated by the pole term and the sub-
traction. As Fig. 2 shows, the effective-range plot is
almost exactly linear, in agreement with (3) and with
Olsson's results. '4 We find that this is true in all our
solutions, whatever choices we make for X, I', etc., and
so hereafter we omit explicit references to this partial
wave.

While the D2 phase shift is entirely as expected' '
(namely, very small and negative), the Ds phase shift,
after starting out small and positive, shows a sudden
rise of nearly 180' corresponding to a very narrow
resonance (I'ii, (5 MeV) at about 550 MeV.

It is tempting to identify this object with the narrow
vr+z enhancement at 530 MeV discussed by Kaloger-
opoulos" (or perhaps with the similar effect discussed
by Dubal and Roosss)

However, its position and width prove to be un-
aGected by wide variations of the input quantities I',
X, etc.—that is, its properties appear unconnected to
essential parameters of the dynamics. Thus one is
led to suspect that it is not a real resonance at all
but rather is a COD-type effect" peculiar to this
calculation. "

In fact, the "resonance" is so narrow, and the Do
phase shift a few half-widths away so small ((1-', ',
modulo s=which is what counts), that rela, tive to
other contributions, its effects (plus those of the Ds
wave) in 1. are entirely negligible for all I and l.

If in (18) the D waves are taken to be identically zero,
the output S- and P-wave phase shifts are altered so
little that the corresponding changes in Fig. 1 are
undetectable on the scale of the graph.

This is true in all our solutions, and so henceforth
the D waves generally will be ignored as being un-
reliable in detail, and we will concentrate on the
S waves.

The parameter X controls satisfaction of rigorous
conditions on the polynomial model, ' and because all
the important features of the model are explicitly built
in to our amplitudes, the sign of X continues to deter-
mine to a good approximation their validity as solutions
to (16). )In fact it is found that Eqs. (20)—(27) of I
are all satis6ed for X&0.1; the two integral constraints
(26) and (27) are the first to be violated because As'
is slightly larger than the polynomial expression. ]

"T.E.Kalogeropoulos, Phys. Rev. 185, 2030 (1969)."L.Dubal and M. Roos, in Ref. 5, p. 285."L.Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (&056}."It is found that the "resonance" can easily be made to dis-
appear in a crossing-symmetric way by including in the D0-wave
threshold pole term at the start of the iteration a nonzero eGective-
rangeparameter Lsee (27) and (28)j.Forexample, withe=mf /I f,
corresponding to the tail of an (elastic} J' meson at s=mj' with
width I'y Lng~ =1260 MeV, Pr = 110 MeV, (Ref. 17)7, the Do phase
shif t rises smoothly and slowly from threshold about 2-,"at 1 GeV.
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)20-

perfectly acceptable solutions which have a 0 inserted
through a subtraction at s=ss ——(800 MeV)'.

The dependence on X is rather small, provided
X)0 /although the best over-all agreement with
expressions (11)—(15) below threshold is for X=0.5—
0.7). If one takes the view that the existence of a o is
experimentally established beyond doubt, then Fig. 7
is a prediction of detailed 5-wave phase shifts.

90-

60-
UJ
C)

f- 30-
cR

-30—

0.9
0.5

0.0

I

300
I

500 700
C.M. ENERGY (MeV}

Pro. 7. S-wave phase shifts for three values of X as indicated,
with the 0 inserted through a subtraction at gs= 800 MeV. The
variation of the isoscalar phase shift with X is negligible on the
scale of the graph.

"In this case the I'j phase shift rises smoothly to a moderate
positive value, e.g., to 45' at j. GeV for X=0.S.

E-wave subtraction is made at the symmetry point. '~

This is in contrast to the variation of solution with X
(Fig. 3). Thus it seems that the presence of the o is
linked more to the shape of the amplitude and the fulfill-
ment of general requirements rather than to its absolute
magnitude and the presence of the p. Ke would expect
a p-r bootstrap to be unsuccessful.

It should be noted that the presence of an 5-wave
isoscalar resonance near the p is certainly not in-
consistent with a range of values of X. Figure 7 shows

V. CONCLUSIONS

In I a model of subthreshold m-x scattering was
presented which was suggested as the simplest possible
consistent with established theoretical principles. The
present calculations find amplitudes valid over a wider
range of energy which contain the essential ingredients
of I. The agreement with phenomenology is very good, '
and provides confirmation of the results of others. ' ' ""

There are several points which deserve further
investigation. The erst concerns the need for an in-
dependent estimate of the size of the parameter X.
The technique used in II depends very strongly on the
extra ingredient of an assumption of effective average
Regge asymptotic behavior for Qs&1.1 GeV, and is
probably inaccurate in the presence of a large low-energy
isoscalar interaction (which causes an overestimate of
asymptotic contributions). The order-of-magnitude
result X 1 is useful, nevertheless.

A second point concerns the assumption of elastic
unitarity for all s&4p'. Preliminary estimates show
that the effects of reasonable inelasticities above
Qs = 1 GeV are not very big below Qs= 800 MeV, but
dednite conclusions cannot be quoted.

Interesting dynamical questions concerning boot-
strap solutions are also waiting to be answered, but
on present information a p-0. analog" of the E-E*
reciprocal bootstrap" seems unlikely.

To conclude, it is rapidly becoming evident that
nearly all reasonable theories of the low-energy dipion
interaction agree with each other and with the quickly
growing mass of experimental information —a rather
remarkable state of aGairs in hadron physics.

+ This possibility is raised in Ref. 7 (see also Ref. 6)."G.P. Chew, Phys. Rev. Letters 9, 233 (1962).


