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Crossing-symmetric solutions to the pion-pion partial-wave dispersion relations are obtained, using the
inverse-amplitude method. The presence of the p meson with its physical mass and width is assumed, the
amplitudes are constrained to contain Adler zeros, and general sum rules and inequalities are satisfied.
Tavored solutions contain a very broad isoscalar S-wave resonance, and have a small decreasing isospin-2
S-wave phase shift. The D waves are very small. The over-all agreement with phenomenology and with

other S-matrix calculations is very good.

I. INTRODUCTION

HIS paper presents predictions of S-; P- and
D-wave w-m scattering up to about 1 GeV c.m.
energy, obtained by solving coupled partial-wave dis-
persion relations using the inverse-amplitude method.!
The mass and width of the p resonance are assumed
given. Crossing-symmetric polynomial expressions de-
duced previously? under simple and general assumptions
are used to provide S- and D-wave subtraction constants
and information about zeros below threshold. Conse-
quently, the solutions automatically satisfy sum rules,?
and obey to a high degree of accuracy rigorous
inequalities.*

The over-all features of our results agree well with
experiment® and with other S-matrix calculations.’™?
We find a large positive isoscalar S-wave phase shift,
and some of the solutions contain a o resonance. The
isospin-2 S-wave phase shift is small and negative,
while both D waves are very small.

The paper is organized as follows. Section II summar-
izes the relevent results of I, Sec. III discusses the
partial-wave dispersion relations and explains the
methods used to solve them, and Secs. IV and V contain
numerical results and discussion.

II. POLYNOMIAL AMPLITUDES

In I the w-m amplitudes within the Mandelstam
triangle (i.e., for 0<s, ¢, #<<4u?)™ are constructed from
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a single invariant function F symmetric in its two
arguments!:

F(s,t) =a+b(s+1)+cst+d(s2+82), )

where @, b, ¢, and d are real constants. One of these is
eliminated if the amplitudes have an Adler zero>—that

is, if1s
F(u?u?) =0, 2

and two other constants may be expressed in terms of
the p-meson mass (m) and width (T') by matching the
P-wave threshold to a resonance-dominated partial
wave! of the form?!s

Ayt =g a (1—¢*/k) —ig*ap ™, 3)
where 4¢*=s—4u?, 4k*=m?—4p? and
p=[(s—4u?)/s]'", (4)
with
a1=mT/8k5. (5)
The fourth and last parameter,
X=%k2(4d—0)/a, (6)

is fixed in sign (X >0) if the 7%-7° S-wave amplitude is
to obey simultaneously all of a set of eight constraints
which follow from crossing together with weak analyti-
city and unitarity assumptions.*

In I the magnitude of X is constrained only by the
relatively weak self-consistency requirements that the
unitarity branch points, neglected in (1), should be
unimportant singularities. This is taken to be equivalent
to asking that the S-wave scattering lengths should be
small, and this condition is weak because terms propor-
tional to X provide only corrections of order u?/k?
(~15%,) to these quantities.

Subsequent work with dispersion relations showed!®
that under certain (fairly strong) assumptions about
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average behavior of the m-= amplitudes above 1 GeV
cm. energy, the neglect of thresholds and the use of
quadratic polynomial approximation are completely
consistent with current phenomenological knowledge
of the physical scattering phase shifts,® provided they
are not too large at low energies (where the experimental
possibilities® are still open). Under these conditions,
the sum rules allow the order-of-magnitude estimate
X~1.
In terms of X we have from I

a=—play[3—3(13+5X)u?/k*], O
b=ai[— 2+X)u?/k*], (8
c=1(X+2ar/R, ©)
d=;(X+3)ai/k. (10)
For 0<s<4u?, the partial-wave amplitudes are

AP =1[5a-+4b (5249 — ko (195—4u?) (s — 4p)
+2d(11s2—16u%s+32u4) ], (11)
AL = (c—4d) (s—4u%)?/120, (12)
Ay =5(s—4pH)[0+cs+d(4u?—s)], (13)
Al=3[a—b(s—4uH)+3(c+2d) (s— )], (14)
A= (2d—c) (s—4u??/60. (15)

The two S waves [(11) and (14)] have Adler zeros
near s=4%u? and s=2y?, respectively, while the P and D
waves have the usual threshold angular momentum
zeros. As we shall describe in Sec. III, the solutions
to the partial-wave dispersion relations are constructed
to have all these zeros, exactly as (11)-(15) prescribe,
and in addition all but the P wave are constrained to
match these polynomial expressions at the symmetry
point through a subtraction. A subtraction above
threshold in the P wave is used to insert the p resonance
at the experimental mass'” (~765 MeV).

III. PARTIAL-WAVE DISPERSION RELATIONS

A pion-pion partial-wave amplitude!® 4 (s) has well-
known analytic properties® in s, which are summarized
in the dispersion relation2

* ImA(s")ds’ ©° ImA(s)ds’
o= [ MO Imd
N ) wr S=s
Elastic unitarity, expressed by
ImA(s)=p|A4]?, (17)

where p is given by (4), is strictly valid only for
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4u*<s<16u? but is known to be a good approximation
for s<50u? (v/s<1 GeV). Here we assume (17) is valid
for all s> 4u2.

For s<0, ImA (s) is related to physical scattering in
all angular momentum states in the crossed channels.
However, because of the presence of the third double
spectral function the # and #-channel partial-wave
series converge only for s> —32u? so that in principle
the power of crossing to relate the different amplitudes
is limited.

Nevertheless, we follow the usual practice of ignoring
the divergence, and we calculate the left-hand cut
discontinuity for s —50u? through crossing as if the
third double spectral function were absent. (The phase-
shift results are insensitive to the precise behavior of
Imd for s —32u2) That is, we use on the left-hand
cut the formulal®:2

2 4u2—s 2s’ 2
Imd4d(s)= / Pz<1+ ) 2B
4ul—s Jaur s—4u?/ r'=0
2
X3 (2U41) IrnApI’(s’)va(“r >ds,’ s
=0 s’ —4u?
where
11 5/3
B = |1 1 _%] , (19)
1 _1 1
3 2 6

and where, as indicated, the crossed-channel partial-
wave series are truncated at D waves.
To solve (16), we introduce!

B=A"1. (20)

With our approximations on the left- and right-hand
cuts, there are two advantages of considering the inverse
amplitude.

The first is the fact that, independent of isospin and
angular momentum, from (17) we have

ImB=—p (21)
for s> 4u? and the second is that
ImB~1/s (22)

as s — — oo [while from (18), Im4~s].

As a result of (21) and (22), a once-subtracted dis-
persion relation for B converges adequately, and the -
right-hand cut integral in each partial wave can be
evaluated once and for all in closed form.

The disadvantage of the inverse-amplitude is that a
solution to the dispersion relation for B may not
satisfy (16)—either because B so constructed has zeros
on the physical sheet, or because 4 should have similar
zeros which are not taken into account, or both.

However, in practice it turns out that the presence
of important physical-sheet zeros of B can be recognized

% Isospin and angular momentum labels are essential here.
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and dealt with, while the fact that our results largely
agree with experiment® and with conventional dis-
persion-relation calculations®—® leads us to believe that
the only important zeros of A are those which are
explicitly inserted.

The dispersion relation for B may be written as!

B=L+H—Ho+Bo+P, (23)

where the terms on the right-hand side have the
following significance.
The left-hand-cut integral is

s—so [°
L(S7SO)= f

T Jeo (5" —5)(s"—s50) ’

ImB(s") ds’

(24)

where so is a subtraction point. The right-hand cut
integral is the universal phase-space function!-19:%

)= 1n(f+~i) ,

™

(25)

and Ho=H (so). Bo=B(s0), a subtraction constant, and
P is a term arising from physical-sheet zeros of 4, i.e.,
poles of B.

For one simple pole at s=s,, we have

P s—So dA
- (s—sz,)(sp—so)(Z ©

and for a double pole at threshold (such as occurs in a
D-wave amplitude) we have

s$—So l‘ ( 1

P= @
(dp2—s) (42 —so)l \du?—s

8=dp

+ 4“21_50)—5], @7

where @ and b are essentially scattering-length and
effective-range parameters:

(s—4u?)? ReB=ad+b(s—4u?) (28)

for s=4u% [5=0 in both 4° and 43* of I; see (12)
and (15).]

For a choice of 7, T', X, and so, the model summarized
in Sec. IT supplies By and P for each partial wave, and
only L is unknown. It is convenient to solve (23)
iteratively,? as follows:

(1) Guess L;
(ii) calculate ReB;

(iii) construct A=B"1;

(iv) use crossing to find Im4 for s<0;
“calculate ImB for s<0;

reestimate L;

go to (ii), and cycle to unchangedness.

22 For s<4u?, H is to be evaluated by circling the branch points
in p in a counterclockwise sense. See. Ref. 1 for the explicit
analytic continuations.

23 B. H, Bransden and J. W. Moffat, Nuovo Cimento 21, 505
(1961); Phys. Rev. Letters 8, 145 (1962).

S-, P-, AND- .. 1947

Step (iii) needs knowledge of ImB for s<0, and step
(v) needs similar knowledge of Re4. Both are supplied
by the results of the previous iteration. The output
amplitude vanishes logarithmically at large s, and
(16) exists.

This procedure is the same as that used in the original
application of the inverse-amplitude method,® and its

convergence has been proved.*

IV. RESULTS

To start with, we set m=765 MeV, I'=120 MeV as
before,2 and choose as subtraction point so=4%u? in
all but the P wave. There, we insert the p resonance by
putting so=m? Bo=0. The polynomial expressions
(11)-(15) provide all the pole terms P, plus Bg in the S
and D waves.

The initial approximation L=0 is a satisfactory
starting point for the iterative solution of (23). Figure 1
shows the corresponding first approximation to the
phase shifts, with X =0.5. Already, these show features
in fair agreement with experiment.®

In following the iterative procedure (i)-(vii) above,
experience shows that sufficiently rapid convergence
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Fic. 1. Input (dashed line) and output (solid line) phase shifts,
as described in the text. Notation is as in Ref. 26. The input D,
and input and output D; phase shifts are indistinguishable from
each other and from zero on the scale of the graph.

24 B, H. Bransden and J. W. Moffat, Nuovo Cimento 32, 159
(1964). The treatment given in this paper is easily extended to the
case considered here.
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and accurate results are obtained by calculating on a
sequence of points in s separated by 3u?, and performing
the integrals by the simple trapezium rule [with
appropriate careful treatment® of the principal-value
singularity in (24) for s<07].

For convenience, the integral for L is cut off at
s=A=—>50u? and for s<A we assume

ImB(s) =ImB(A) X (s/A)=. (29)

The results for the phase shifts for s <50u? (where they
are most likely to be reliable) are completely insensitive
to the precise values of A and «, provided «<0 and |A|
is not small (A< —32u2, say). For all the results quoted
here, a=0.

After three cycles of iteration the phase shifts begin
to settle down, and after five cycles they remain
constant to within a few (<35) percent.

Figure 1 includes the results after five iterations,
showing that, except in the Do channel,®® the presence
of a left-hand-cut contribution makes no major change
in the behavior of the phase shift.

In Sy, it rises quickly from threshold, reaching 40°
at 500 MeV, 75° under the p, and rising to just less than

T T T T T T 1
30F -
201 n
10 -1
Le)
3
(9]
)
o
...[O... -1
..-20 ) —
1 1 1 1 1 1 -1
2 4 6 8 10 12 4
2
q? (1?)

Fi1c. 2. P-wave effective-range plot. Input is the
dashed line, output is the solid line.

2% The principal-value singularity in Eq. (24) involves the
derivative of the tabulated integrand, which is evaluated by
quadratic interpolation.

26 The “spectroscopic” notation, (angular momentum)isespin, is
convenient.
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90° at 1 GeV. In S: it falls smoothly through —8°.
—15°, to —20° at these energies.

To a very good approximation, the P; wave is un-
altered by the iteration. From threshold to 1 GeV it
remains dominated by the pole term and the sub-
traction. As Fig. 2 shows, the effective-range plot is
almost exactly linear, in agreement with (3) and with
Olsson’s results.* We find that this is true in all our
solutions, whatever choices we make for X, I, etc., and
so hereafter we omit explicit references to this partial
wave.

While the D, phase shift is entirely as expected®?
(namely, very small and negative), the D, phase shift,
after starting out small and positive, shows a sudden
rise of nearly 180° corresponding to a very narrow
resonance (I'p,<5 MeV) at about 550 MeV.

It is tempting to identify this object with the narrow
=+t~ enhancement at 530 MeV discussed by Kaloger-
opoulos? (or perhaps with the similar effect discussed
by Dubal and Roos?).

However, its position and width prove to be un-
affected by wide variations of the input quantities T,
X, etc.—that is, its properties appear unconnected to
essential parameters of the dynamics. Thus one is
led to suspect that it is not a real resonance at all
but rather is a CDD-type effect® peculiar to this
calculation.®

In fact, the “resonance’ is so narrow, and the Dy
phase shift a few half-widths away so small (<13°,
modulo m—which is what counts), that relative to
other contributions, its effects (plus those of the D,
wave) in L are entirely negligible for all 7 and 1.

If in (18) the D waves are taken to be identically zero,
the output S- and P-wave phase shifts are altered so
little that the corresponding changes in Fig. 1 are
undetectable on the scale of the graph.

This is true in all our solutions, and so henceforth
the D waves generally will be ignored as being un-
reliable in detail, and we will concentrate on the
S waves.

The parameter X controls satisfaction of rigorous
conditions on the polynomial model,? and because all
the important features of the model are explicitly built
in to our amplitudes, the sign of X continues to deter-
mine to a good approximation their validity as solutions
to (16). [In fact it is found that Egs. (20)-(27) of I
are all satisfied for X>0.1; the two integral constraints
(26) and (27) are the first to be violated because 4’
is slightly larger than the polynomial expression.

27T, E. Kalogeropoulos, Phys. Rev. 185, 2030 (1969).

% L. Dubal and M. Roos, in Ref. 5, p. 285.

2 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

30 Jt is found that the “resonance” can easily be made to dis-
appear in a crossing-symmetric way by including in the D¢-wave
threshold pole term at the start of the iteration a nonzero effective-
range parameter [see (27) and (28)7]. For example, with b=m;3/T,
corresponding to the tail of an (elastic) f° meson at s=m;? with
width I'y [m;=1260 MeV, I';=110 MeV, (Ref. 17)], the Do phase
shift rises smoothly and slowly from threshold about 23°at 1 GeV.
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Figure 3 shows the S waves corresponding to values
of X ranging from —0.5 to 1.5. For X< 0 (when the
polynomial expression of Sec. II violate the rigorous
constraints?) the S; phase shift falls rapidly downward,
passing through —90° within (or very close to) the
energy region of validity of our solutions. For X = —0.5,
it reaches —90° at 4/s=850 MeV .3

This behavior indicates the presence of an important
physical-sheet zero of B, which means there is a pole of
A in violation of analyticity. Thus these solutions are
to be rejected.

It must be stressed that it is when and only when we
try to construct amplitudes that violate rigorous
constraints that such physical-sheet zeros appear in the
solutions of (23). Otherwise the results satisfy the
partial-wave dispersion relation (16).

At this point it is worth emphasizing that whatever
the value of X, the iterative solutions we find to (23)
are crossing symmetric in the low-energy region, and
so automatically obey the sum rules of Ref. 3 as well
as the symmetry-point conditions given by Chew and
Mandelstam.?:32

It is evident from Fig. 3 that although the .S) phase
shift is large and positive for all X>0, the detailed
behavior of the amplitude depends strongly on X.
For X=0.5 the phase shift passes through 90°, and the
solutions contain a ‘“super-broad o’ resonance, as
Morgan and Shaw favor.” For X~0.6 the o is close to
the p in mass. For X2>0.8 the resonance is rather
lighter than phenomenology indicates,® and for X>1
the D, phase shift (whose sign is controlled by the sign
of the scattering length?) is positive, in contradiction to
general arguments.®

As II shows,® a large .Sy phase shift near threshold
can affect the adequacy of the polynomial model, and
lead to significant errors in an extrapolation to the
S-wave thresholds.® This is the reason to choose the
subtraction point well away from threshold, i.e., at
so=4%u> Then this allows consistent solutions containing
a large isoscalar interaction (as well as the possibility
of others).

Figures 4 and 5 illustrate this point. Figure 4 com-
pares the solutions of (23) to expressions (11)-(15)
for 0< s<4p?, with X =0.5. There is evidently a ~259,
mismatch between the two versions of 4’ at threshold.
The dispersion-relation amplitude has the larger scatter-
ing length, as one would expect, of 0.17 compared to
0.14 of I. This is perhaps a slight improvement,’?
however.

31Tt is interesting to note the similarity of our solutions with
X <0 to those obtained by L. S. Brown and R. L. Goble [Phys.
Rev. Letters 20, 346 (1968)] by unitarizing a simpler amplitude
which violates the rigorous constraints of Ref. 4 (see also Ref. 2).
There the presence of an unwanted physical-sheet zero at about
800 MeV is evident.
( 2 G) F. Chew and S. Mandelstam, Nuovo Cimento 19, 752
1961).

33 This is the extrapolation that leads to the sum rule
200—502%1801ﬂ2.
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F1c. 3. S-wave phase shifts for various values of X,
as indicated. (a) isospin-0; (b) isospin-2.

Figure 5 shows the S-wave phase shifts before and
afteriteration, with m =765 MeV,I'=120 MeV, X =0.5,
and so=3u? (instead of %u?). Forcing the solution for
A to agree with (11) closer to threshold permits (for
all X) only rather small Sy phase shifts, which disagree
with phenomenology.?

Our favored solutions of those in Fig. 3 are for X
in the range 0.5-0.7. This choice is based on experi-
mental evidence.’ For X =0.64-0.1, we have scattering
lengths

a0=~0.18+0.01,

o —004,

(30)

1)
or

200——5(12’@0.56:]:0.02. (32)
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F1c. 4. Comparison of computed amplitudes and polynomial
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Equation (32) agrees well with, e.g., Ref. 7. The ratio
a«o/dz’\' '—4—5 (33)

is not in serious disagreement with expectation.®

It is not absolutely certain that these calculations
find the unique class of solutions consistent with cross-
ing, analytically, Adler zeros, etc., although the con-
clusions reached by Dilley® would suggest that given
the presence of the p meson and of Adler zeros in the .S
waves, there can be no radically different types of phase
shift for 4/5:5400 MeV. This view is reinforced by the
results of Arbab and Donohue.?*®* We have been unable
to find a different set of solutions to (23), and would
suspect that no others exist. (See, for discussion of
uniqueness, Ref. 24.)

In this connection it is significant that the general
features of Fig. 1 persist under rather wide variations
of T, which is the parameter controlling the absolute
size of the amplitudes near threshold.

Figure 6 shows the variation of solutions for T'
ranging from 40 to 200 MeV. The rise of the .S phase
shift to about 90° at 1 GeV is always present. In fact
this is true even if the p is not inserted at all, but the

150 -J
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F1c. 6. S-wave phase shifts for three values of T
(in MeV) as indicated, with X=0.5.

L. J. Gutay, F. T. Meiere, and J. H. Scharenguivel, Phys.

Rev. Letters 23, 431 (1969); D. Cline, K. J. Braun, and V. R.

Scherer, Nucl. Phys. B18, 77 (1970).
3 J. P. Dilley, University of Ohio report, 1970 (unpublished).
# F. Arbab and J. T, Donohue, Phys. Rev. D 1, 217 (1970).
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Fic. 7. S-wave phase shifts for three values of X as indicated,
with the ¢ inserted through a subtraction at 4/s=800 MeV. The
variation of the isoscalar phase shift with X is negligible on the
scale of the graph.

P-wave subtraction is made at the symmetry point.?

This is in contrast to the variation of solution with X
(Fig. 3). Thus it seems that the presence of the ¢ is
linked more to the shape of the amplitude and the fulfill-
ment of general requirements rather than to its absolute
magnitude and the presence of the p. We would expect
a p-o bootstrap to be unsuccessful.

It should be noted that the presence of an S-wave
isoscalar resonance near the p is certainly not in-
consistent with a range of values of X. Figure 7 shows

37 In this case the P; phase shift rises smoothly to a moderate
positive value, e.g., to 45° at 1 GeV for X =0.5.
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perfectly acceptable solutions which have a ¢ inserted
through a subtraction at s=so=(800 MeV)2.

The dependence on X is rather small, provided
X>0 [although the best over-all agreement with
expressions (11)-(15) below threshold is for X=~0.5-
0.77]. If one takes the view that the existence of a ¢ is
experimentally established beyond doubt, then Fig. 7
is a prediction of detailed S-wave phase shifts.

V. CONCLUSIONS

In T a model of subthreshold =-r scattering was
presented which was suggested as the simplest possible
consistent with established theoretical principles. The
present calculations find amplitudes valid over a wider
range of energy which contain the essential ingredients
of I. The agreement with phenomenology is very good,®
and provides confirmation of the results of others.59:3.36

There are several points which deserve further
investigation. The first concerns the need for an in-
dependent estimate of the size of the parameter X.
The technique used in II depends very strongly on the
extra ingredient of an assumption of effective average
Regge asymptotic behavior for 4/s21.1 GeV, and is
probably inaccurate in the presence of a large low-energy
isoscalar interaction (which causes an overestimate of
asymptotic contributions). The order-of-magnitude
result X~1 is useful, nevertheless.

A second point concerns the assumption of elastic
unitarity for all s>4u? Preliminary estimates show
that the effects of reasonable inelasticities above
v/s=1 GeV are not very big below /s=800 MeV, but
definite conclusions cannot be quoted.

Interesting dynamical questions concerning boot-
strap solutions are also waiting to be answered, but
on present information a p-¢ analog® of the N-N*
reciprocal bootstrap® seems unlikely.

To conclude, it is rapidly becoming evident that
nearly all reasonable theories of the low-energy dipion
interaction agree with each other and with the quickly
growing mass of experimental information—a rather
remarkable state of affairs in hadron physics.

38 This possibility is raised in Ref. 7 (see also Ref. 6).
3 G, F. Chew, Phys. Rev. Letters 9, 233 (1962).



