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Lorentz-invariant phase-space integrals in the multicluster form are transformed into definite integrals
over a set of “‘symmetric’” Mandelstam variables. The momentum configuration of the particle clusters (in
the center-of-mass system and in the lab system) as well as of the individual particles (in the cm. system,
in the lab system, and in the rest frame of the decaying cluster) is explicitly given in terms of a complete
set of kinematical variables, i.e., 3N —10 independent Mandelstam variables and signs of N—4 quadrilinear
.invariants. This enables one to express all possible scalar products formed from the 4-momenta of particles in
terms of the independent variables. Expressions for the angular correlation between two of the final-state
particles or clusters and the simultaneous distribution in energies of two of the final-state particles are given
explicitly, and distributions in invariant momentum transfers are discussed.

I. INTRODUCTION

HE kinematics of N-particle systems has been
studied by several authors’™ in different ways.

In a previous paper,® we described some simple trans-
formations of Lorentz-invariant phase-space integrals
for #n-body decay and production processes, into definite
integrals over the independent Mandelstam-like vari-
ables. In the present paper we study some aspects of
the problem not dealt with in I. One of these is as-
sociated with the fact that the total number of scalar
products (p;-p;, %) in a reaction involving N par-
ticles is ¥C,, which increases quadratically with in-
creasing NV, whereas the number of independent vari-
ables (3V—10) increases only linearly. On using the
4-momentum conservation equation and contracting
with each of the V 4-momenta, one gets V linear rela-
tions among the scalar products, thus reducing the
number of linearly independent scalar products to
NC;—N. For N=4 or 5, this number equals the number
of independent variables and, therefore, there is ap-
parently no problem. However, for N> 5, the number of
linearly independent scalar products exceeds 3NV —10:

NCy—N=3N—10+4"—C,.

Evidently, the additional ¥“C, number of linearly
independent scalar products depend on the 3N —10
Mandelstam variables in a complicated manner; once
these are determined, all other scalar products (p;-p;)
can be expressed as linear superpositions of these and
the 3V —10 independent Mandelstam variables. A
closely related problem is that of determining the
4-momenta of NV particles in a certain fixed frame of
reference—which, in practical cases, is either the center-
of-mass (c.m.) system or the laboratory system—given
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the 3V —10 independent Mandelstam variables. How-
ever, the fact is that the 3V —10 independent scalar
products do not suffice to completely define the mo-
mentum configuration of an N-particle system. This
is because the dependence on the azimuthal angle
(¢i—;) of the scalar product p;- p; comes only through
cos(¢;—a;), so that the scalar product has the same
value for two different values of ¢;—¢; in the range
(0,27). Thus, a description in terms of 3N —10 in-
dependent Mandelstam variables gives a 2¥—*fold
degeneracy. This degeneracy is lifted if the signs of
N —4 pseudoscalars—each formed from four linearly
independent 4-momenta—are specified.’®

Given a complete set of kinematical variables,
namely, a set of 3V—10 independent Mandelstam
variables and N —4 independent ‘“kinematical signa-
tures,” the simplest way to obtain the above-mentioned
N=1C, number of scalar products is to get expressions
for the 4-momenta of all particles in a certain fixed
frame of reference in terms of the independent variables,
provided that the independent Mandelstam variables
are such that the construction of momentum vectors
does not require a knowledge of these scalar preducts.
The sets of variables given by Eqs. (3) and (29) of I
have precisely this property and are therefore best
suited for this purpose, whereas the invariant variables
of the multi-Regge model* involving #»—1 subenergies,
n—1 invariant momentum transfers, and #—2 in-
variant masses (which may be chosen in various dif-
ferent ways) are not convenient for this purpose. In
general, however, the set of independent kinematical
variables should be such as to correspond to the picture
where the final-state particles are grouped together
into various clusters,® with each cluster containing an
arbitrary number of particles. In Sec. IT, we discuss a
set of “symmetric” variables of this type and write
down the phase-space integral in terms of these variables
with a view to making the subsequent discussions of a
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N. F. Bali, G. F. Chew, and A. Pignotti, sbid. 163, 1572 (1967);
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2 COVARIANT PHASE-SPACE CALCULATIONS: ..

more general nature. In Sec. III, the momentum con-
figuration of a system of V particles is discussed; this
enables us to obtain all scalar products. The momentum
configuration of an V-particle system may also be useful
in the Monte Carlo? generation of events. Section IV
deals with the angular correlation between two of the
final-state particles or clusters, simultaneous distribu-
tion in the energies of two of the final-state particles,
and some distributions in the invariant momentum
transfers. A compact notation for the limits of integra-
tions and some other kinematical quantities used in
this paper is explained in the Appendix.

II. MULTICLUSTER FORM OF
PHASE-SPACE INTEGRAL

Let the final-state particles in the production process

Patpo— i Pr, n=2 (2.1)
B=1

be grouped into m clusters (1< m<#) with momenta
P; (1<4< m) and let the 7th cluster contain #; number
of particles with momenta %p; (1< 7< #,). Kinematically,
the collision process (2.1) may then be viewed as a
two-step process: the scattering of initial-state particles
resulting in = clusters (po+ps— > iz1™ P;) followed
by the decay of these clusters into individual particles
(P;— X" jm1™ ;). Thus, the phase-space integral gets
“factorized”:

@u(pasts; 1) =Cn(pesty P)
XI:nIl (T)M(Pl’Qi—hQi; '.Pj) , (22)

where

Qi':Pa"'lélPl- (23)

The production of m clusters is described by 4(m—1)
Mandelstam variables (and, of course, 72— 2 kinematical
signatures), the m extra variables appearing here being

E_.___?' —-—i——— S3 ——-)l

i ui m{ m

P

F1c. 1. The “symmetric’” Mandelstam variables in a multi-
particle production process. Each outgoing line represents a group
of particles, in general. The diagram also depicts the Mandelstam
variables for decay of particle ¢ into w1 clusters if we make the
replacement pp — —Ppy1.

7 Program FOwL, CERN Library W-505 (unpublished) ; E. Byck-
ling and K. Ka]a.ntle Nucl. Phys. B9, 568 (1969); E. Byckling
et al., University of Helsinki Report No. '3-69 (unpubhshed)
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the squared invariant masses of the clusters. The c.m.
energy (s) and the m—1 invariant momentum transfers
are a natural choice for other m variables. The re-
maining 2m—4 variables can be chosen in various ways.
Itis unlikely that a certain set of variables is a priviliged
one, though, depending on the nature of problem, a
particular set of variables may have some advantages
over others. Here, we wish to draw attention to a set of
symmetric variables s; and §; depicted in Fig. 1. Ex-
plicitly, the independent variables are defined as follows:

ti=—Q?, 1<i<m—1;

-1 i
S.'=_(Pa+Pb_lz Pl)27 §l=—( Z Pl)zy
=1 =1
2< i< m—1;
m (24)
SEsl=§m:—(i’a+P5)2='—( Z Pi)zs
i=1

M;2=—P;2, 1$¢$m,

i—1

ei=e papu( 2 PO)P;], 2<i<m—1.
=1

The Mandelstam variables in Eq. (2.4) are linearly
related to the independent variables defined in I and
are identical with the invariant variables of the multi-
Regge model for m=2 and 3.

The decay of cluster P; may be visualized as the

production process
Qi1+ (—0Q0) — X ;. (2.5)

=1
However, note that because of the existence of vectors
Pae; P, and P; (1<I<m), the azimuthal symmetry
about the collision axis (along Q;_; or Q; in the rest
system of the cluster P;) need not exist any more.
Consequently, apart from the mass M; of the cluster
[already defined in Eq. (2.4)], the number of indepen-
dent Mandelstam variables is 37;—4 and the number of

kinematical signatures is #;—1. These variables may be
defined as follows:

i1
"Sj'—‘—(Pi—JZ )2, 2<j<ni—1;
k=1
j
Yi=—[po—(Pi— 2 p) ?,
k=1 (2.6)
j
= —‘[Pa'l'ﬁb—(Pf—El )12,
-1
lej= EEPan(Pi"EI pr) i, 1< j<ni—1.

The total number of Mandelstam variables in (2.4)
and (2.6) sums up to 3n—4 and the total number of
kinematical signatures is #—2, as it should be.
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The phase-space integrals @, and ®,, are of the form

RAJENDRA KUMAR

@n=TI1 [ / e / aP; 6(Pi2+M.-2)0(Ei):|64(1>a+Pb—Zml PYF(purts; P,
=1 =1

2.7)

®n=I1 [ f a* *p; 5(%2+imj2)0(iEj)]54(Qi—1—Qi—{2 $3)Gi(P1,Qi-1,055 °pJ) -

ng
1

j=

=1

The transformation of @, into definite integrals over the Mandelstam variables defined in Eq. (2.4) is done in a

straightforward way?; we have

m

121 [ / P 5(P;2—|—M,-2)0(E,'):|64(pa+pb—— %P

=2

= H l://‘/ds"dtidgi:l/dh/dlipl 5(P12+M12)5((ﬁa+pb—P1)2+Sz)5((ﬁa—P1)2+l1)0(E1)0(Ea+Eb-—'El)

XE [/d‘*P; 5(P;2+M,-2)5((pa-{—pb_lz:Pl)z_l_si_,_l)s(( :éPl)2+§f)

XS(pa= T POHIENEAE-Y B) |, (29

so that, suppressing the step function 8(v/s—2_ 1" #;), which implies a condition that is always satisfied in all

physical processes, we finally get

m m—2
(P,,.=27‘4m1r[:}\(s,ma2,mb2):|“1/2[ H /dM52]/d82/dl1 H
=1 =2

where the summation over the s implies the sum of
272 yalues of F (cf. Sec. III) corresponding to two
values of each of the (m—2) ¢s, and

] = |e(si; M 251415 Sim,; Limayma®; ma2155) | . (2.10)
The limits of integrations are
ni i—1 m
Mi—=zimi) Mz‘+=\/~?—2 Miy— Z Mk—)
= k=1 b=it1
sic=(2 Mw)?,  sa=(sia—Mi9)?, (2.11)
k=i

tig=Ly(ss; M*sip; tiiyma?),
Fix=Ly[s5; M 3,5i41,(8) ; Sin,8,(ma?) 5 Limayma® ]

The result is conveniently obtained by carrying out the
d*P; integration in (2.8) in the frame of reference char-
acterized by patps—>21=1 ' Pi=0, with p,—2_ 11" P;
along the z axis and 3_;1*! P; lying in the zx plane and
having a positive « component. The condition |P;|>0
together with

G(E,-)H(Ea—l—Eb——:i Ey)

I:/.dsﬂl/dt;/d&le,-l“l:l

X/dtm_I/dgm_dSm—ll”IZ F(si; 1556, €),  (2.9)

is expressed by the inequality v/s;2>+/ss1+M;, which
gives the upper bound on s;;1. These inequalities lead
to the essential requirement

which, in turn, places upper bounds on the A/’s. The
limits on #; and 3; integrations arise from bounds on the
angular integrations (cf. Appendix). The d*P; integra-
tion in (2.8) gives (16]e;])™Y, (2<7<m—1), when the
integration over the azimuthal angle ¢; is done in the
range (0,m). The same value is obtained when ¢; varies
in the range (,27) but €; changes sign. If F is indepen-
dent of some of the variables, ®, may be written as a
lower-rank integral; integration over 3; (2<i<m—1)
changes the integrand to (m/4)[A(sstim1,m2) ]2 in
place of (16|e;|)™, and further integration over i;
changes it to (mw/4s;)[A(ss,$i41,M %) Y2 Similarly, if F
does not depend on some of the ¢;’s, the summation
over each of these ;s may bereplaced by a factor of 2.

The phase-space integrals ®,; are similarly trans-
formed into definite integrals over the set of variables
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defined in Eq. (2.6). We have

ni—2
Bpe=2"10 T [/d ist/d iti/digi‘isil—l]
=1
X/d itni—lfd ign;—l‘ign-;—ll_l

XZ Gi(Sl,l'z,El,éz; lsjyitiylgf’tef) )

iej

(2.12)

where
|ie;] = |e(ss; "my?, sjp; Bim,s; Hi1,me?;
ma?;,%5)|  (2.13)

and the limits of integrations are as follows:
n‘ . . .

iie=( X tme)?,  spe=(Visia—'mi)?,
k=i

tje=Ly(iss; ', 'siv1; %ia, mo?)
Bj= Lol 553 'ms 5,40, (%)

1,8, (ma®); ja,ma®]. (2.14)
Successive integrations over 5; and %; change the
integrand to (w/4)[A(%s;,%—1,ms®) Y2 and (/4 s;)
X[\(sjim2 is;1) T2, respectively, inplace of (16]g;] )7,
if G; has no dependence on these variables.

The “factorization” of the phase-space integral en-
ables one to define the independent variables in various
ways corresponding to the different ways in which m
and #;’s can be chosen for a given #. It should be em-
phasized that it isnot necessary that each cluster con-
sist of at least two particles; in general, some or all of
the “clusters” could be just single particles. If P; is
a single-particle cluster, then ®@,,; is simply unity and
the mass (M) of the cluster is now a constant (de-
noted by m;) so that there is no integration over M
Needless to say, the number of independent variables
remains the same.? Similarly, for the special case of
m=1, we have M *=s, ®n=1, and 51=1m,? so that
there is no integration over 13y,

[16]%1] I — [ A(s1ma?ma?) T2,

and there is no summation over le;.

The same set of independent variables can also be
used to describe a decay process with m--1 particle
clusters in the final state, if we make the replacement
ps—> —Pmy1 and integrate over the momenta of all
particles which constitute the (m+1)th cluster. Ex-
plicitly, we have in this case

m+1
iDn(Pa; Plc) =§Dm+l(Pa; Pt) I;Il (—?”i(Pa)Pl; L.PJ') ] (2'15)

k 8 The decrease in the number of independent variables in the
cluster production process due to constancy of mass M; is com-
pensated by the increase in the number of independent variables
in the cluster decay process: For #;=1 the number of independent
variables is zero, which is one more than that given by 3n;—4.
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where

T

i)m-{»l =

/de+12/d51E)\(maz,Mm+12,.8‘1)]1/2

K@ m(ms?— M mir?),

242
(2.16)

with the upper limit on M; in Eq. (2.11) modified as
follows®:

-1 m+1
Mi=mi—Y, Mi— S My, 1<i<m+1. (2.17)
k=1 k=i+1

The lower bound on s; is given by Eq. (2.11) and
the upper limit is given by

S1+=(m,,——Mm+1)2. (218)

III. MOMENTUM CONFIGURATION AND
SCALAR PRODUCTS

Given the values of independent kinematical variables
in the physical region, the momentum configuration of
the V-particle system is obtained as follows.

A. Momentum Configuration in Cluster Production
Process and Scalar Products P;- P;

In the c.m. system, we have

Ps= —P. along the z axis,
[Pa| = po| =[A(s,ma%,me?) ]M2/24/s,
Ei=(5i+§i—3¢+1"§i_1)/2\/3, (31)
,P1l = [A(S;Miz)sil):lllz/z\/sy
cos;=(po- Po)=1n;= —C(s; m2mp2; M 2,5/ ; 1),
1<i<m—1
where
5= —(Pa+Pb“‘Pi)z-_—S+M¢2+Si+1+§i_1—si—§i, (3 2)

ti=—(pa—P)*=m+M 45 1—Fitt;—t; 1.

In order to determine the azimuthal angles'® of the mo-
mentum vectors, we now completely specify the orienta-
tion of the coordinate reference system by choosing the
« axis in such a direction that P lies in the zx plane with
a positive ¥ component, i.e., ¢;=0. The expression for
the azimuthal angle (¢;) of the vector P; 3<:i<m—1)
is a bit complicated because (P14 P;)? cannot be ex-
pressed as a linear superposition of the independent
Mandelstam variables. The angle ¢; is obtained as a
sum of 4—1 azimuthal angles:

-1

¢i=2, Pito/,

k=2

(3.3)

9 It is implied that the M,,,1% and s, integrations are placed to
the left of the s, integration in (2.9) and 6(v/s— Yz mz) in
(2.9) is replaced by 0(me—3 k1™ ms).

0 In high-energy hadron collision processes, where one is in-
terested in generating only those Monte Carlo events which cor-
respond to small transverse momenta of particles, one may not
proceed any further (to determine the azimuthal angles of mo-
mentum vectors) if the transverse momenta of particles exceed
the desired limit. This results in better efficiency.



1906

where ®;, is the azimuthal angle of the vector > ;* P;
in a coordinate reference system whose «x axis is oriented
such that 3 ;_,#7 P; lies in the zx plane and has a posi-
tive component along the x axis, and ¢,’ is the azimuthal
angle of the vector P; in a coordinate reference system
whose x axis is oriented such that the azimuthal angle of
> 1=1*! P;in this reference system is zero. The cosines
of angles ¢,” and ®; are given by
i1
cospi’ =((PsX 2 P1)- (PsXPy)) =w;,
=1 (3.4)

- k
cost=((piX T, P)- (X T P) =0,
where
wr=C(Sx; Exyme)
Qu=C(Zx; &x,rt1)
={[N(5,58,5%-1) (L= &) T 2 +-wonl A (5, M 12, 55")
X (L =) 12 NS, Sh41,5%) (1 — Epa) T2,

k—1 3.5)
f=(ps- 2 P1)=—C(s; ma®ms?; Sk_1,5k; lr—1)
=1

k—1
=P 2 P)y=—C(s; Mr2,st"; Sk—1,5%; 5%)
=1

.2 =
=—C(s; Mi?5t"; Se1,5%; SkySk1)
k—1 k

Zr=(( X P1)-( IZIPz))
1=1 =
=C(S; Ek_1,5k; :S"k,Sk_;.l; Mkz) .

Itis clear that the above equations do not determine the
azimuthal angles uniquely, since, for a given value of
cosg, there are two possible values of the angle ¢ in the
range (0,2r). However, as mentioned earlier, the
degeneracy is lifted if the signs of quadrilinear invariants
defined by Eq. (2.4) are known. It is easy to see that
not only the sign of sing,’ is given by ¢;, but the sign of
sin®d;, is also given by ez, so that finally we get the follow-
ing unambigous expression for the azimuthal angles:
i1
b= Z € c0571Q+€; cos™lw;,
k=2
where the inverse of a cosine implies its principal value,
i.e., the angle lying in the range (0,r). In this way, all
4-momenta, except P,, are determined in the c.m.
system; the latter is, of course, obtained from the
energy-momentum conservation:

m—1
Em=\/s— Z Ei,
=1

m—1
c080m={(Po-Pm)=1m=—|Pul|™t X |Pi|ns,

=1

Pm=¢em cosY{ "[‘Pml (1 —nm2)2} 1
sz_ |P:| (1—2:2)Y2 cos,} ,

=1

m—1
en=sgn[ — X |Pi(1—n:?)"2sing,].
=1

2<i<m—1 (3.6)

(3.7)

RAJENDRA KUMAR 2

The momentum configuration in the frames char-
acterized by p.=0 or p»=0 can also be determined in a
straightforward manner, using the same set of variables.
In the lab system (p,=0), using a coordinate system of
reference which is oriented such that p; is along the
polar axis and ¢;=0, the momentum configuration in
the cluster production process is given by the following
equations:

| sl =[A(s,m0%ma?) JV2(2ma),
Ei=(3:—Simitim1—1:)(2ma) 1,

|Ps| =[A(ma®, M 2,t/) 142 (2ma)

cost;=(ps-Pi)=7;, 1<i<m—1

i—1

¢i=2 e cos ' Qyte; cosla;, 2<i<m—1

k=2
et (3.8)
Em= (s-f—maz—sz) (zma)—l_ Z E‘i;
=1
m—1
COSOm=Tm=[| Po| — ;1 [P:| %1/ | P,
m—1
dn=emcosT{ —[ > |P;|(1—7:2)V2 cosp:]
i=1
X[lpml (1 —ﬁm2)1123—1} H
m—1
en=sgn[ — > |Ps| (1—7)"2sing,],
=1
where
Qu=C(Zs; &, Eryr)
k-1
Er=(Do+ X P1)=C(ma2; 5,ms?; Se_y,tu_1; St) )
=1
e = <pbPk> =C(ma2; 5’mb2; Mkzytkl; Sk,) ) (39)

k—1

$o=Pi+ 2 Py=—C(ma® Mt ; Seosyti1; 5)
l=1

= —C(maz; Mk2)tk,; S’k—lyf‘k—ls gkalk) )

k—1 k
Zy=(Y Py > Py =C(mg? Sk—1ytk—1; Skylic; mi?) .
=1 =1

# If, instead of the invariants 3; [cf. Eq. (2.4)], we
define invariant subenergies —(P;_;+P;)? as the in-
dependent variables, we have the variables of the multi-
Regge model. The m—2 kinematical signatures in this
case are

EEPbQi~1Pi—1P£] y ZS ’Lg m—1. (310)

Using this set of variables, the magnitudes of all mo-
menta (|P;|) and (P;_;-P;) can be simply obtained in
the reference frame p,= 0. However, the polar angles of
all momentum vectors with respect to a fixed axis
cannot be easily calculated for m>3, because that
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would require the knowledge of those scalar products
which are not linear superpositions of the independent
Mandelstam variables.

With the choice of variables defined by Eq. (2.4), the
m=2C, linearly independent scalar products which cannot
be expressed as linear superpositions of the 4m—4 in-
dependent Mandelstam variables are P;-P; (1<7;
2<4, j<m—1). Since the 4-momenta P; are known
(in the c.m. system, for example) in terms of the in-
variants, these scalar products are given by

Py Pj=—E;E;i+|Pi| | Pj|
XA{n;+L(1 =92 (1 —n,2)]"2 cos(p;—¢i)} ,
with

(3.11)

j—1
bi—pi=_ e cos~ 1+ €; cos™lw;j—e; cos™lw;.  (3.12)

k=i
Since cos(3_;a;), when expressed in terms of the
products of sines and cosines of a,’s, contains an even
number of sina; factors, it follows from (3.11) and (3.12)
that the above-mentioned ™?C, number of scalar
products depend on products of even number of e’s.
Thus, even if the squared 7-matrix element does not
depend linearly on the &/s (which are noninvariant
under space inversion and time reversal), it may, in

ok =C(%x; &, "me)

—1
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general, depend on all scalar products and hence on
products of an even number of ¢;’s.

B. Momentum Configuration in Cluster Decay Process

The kinematical variables defined in Eq. (2.6) for the
decay of a cluster P; are such that the momentum
configuration of the decay products can be easily com-
puted in any of the inertial frames p,=0, p;=0, or
Pa+Ps=0, in exactly the same way as in the case of a
cluster production process. For example, in the c.m.
system (pa+Pp»=0), with the axes of the reference co-
ordinate system oriented in a manner described in
Sec. IIT A, the momenta of the particles are given by
the following equations:

Ej= (54— S —Ys41)/ 24/,
Lps| =[NGs,'ms?, s )]/ 2+/s,
cos;=(ps-*p;) ="n;,

-1
‘bi=¢hi—2 ‘e cos™! iQ+7€; cos! i,

k=1
(A<ism, 1<j<n—1),

where ¢; is given by Eq. (3.6) [or Eq. (37)] and

(3.13)

Q=C(Zr; *tr,"6r41)

k
i =(ps Pi— 2 P1)) =C(s; ms®,ma®; sk, 31; i) ,
1

ine={(Ps Pr) =C(s; mo2,ma%; 'miisi’; '),

k—1

$Sr=pr- Pi— 2 P1)) =C(s; *sk,B1; M2, isi’; Ps141)
=1

k—1 k

(3.14)

"Zk=((Pr‘lZ pr)- (Pi—lzl 1)) =C(s; 'sr, 813 “Sky1, s mi?)
=1 =

isp=—(patpo—"pr) 2 =5+ "M+ st p1+ Fpg — I — 5,

' = —(po—"pr) 2 =ma >+ M+ sk 1 1 — S5 — 1.

The 4-momentum °%p,; is obtained from the energy-
momentum conservation as before. Having determined
the momentum configuration of the N-particle system
in this way, any scalar product of the type ?p;-#p; can
be computed. However, the variables defined by Eq.
(2.6) are not suitable for a determination of particle
momenta in the rest frame of the decaying cluster. For
this purpose, a set of appropriate variables is

-1
isi=—(Pi— 22 *pp)?,
k=1
i
Si=—( X P’ A
k=1
J
= —(Qica— 2 *pr)?, 1<j<n—1

k=1

-1

‘e =e[ PiQia( :?';1 ‘pr)'pil, 2<j<ni—1
S1=—[patpo—(Pi—p1) 1%,
‘e =e PiQi1(patpv)ip]. (3.15)

The momentum configuration of the decay products in
the rest frame of the decaying cluster (P;=0), with
coordinate axes of the reference system oriented such
that the polar axis is along Q;_; and “p; lies in the zx
plane with a positive # component, is given by equa-
tions analogous to Egs. (3.1)~(3.7). All that remains
to be done is to find the orientation of Q;_; with respect
to the vectors p, and p; and the azimuthal angle of ip;
with Q;_; as the polar axis, in the rest frame of the de-
caying cluster. The orientations of Q,_; and ?p; are given
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by the following equations:

(Pa'Qinr)=C(M 2 ma l' 5 iyl Sicy)
Ps- Q)= —C(M 2; my*1i; tisyli; 3)

(PaPoy=—C(M 2 m2t!; mi s 5) (3.16)
e paprQi1Pi]= —ei,
L= —(ps— P =mp+ M +si11
—sitlia—t;,
and
Qi1 'p1) =C(M &5 tis,ls; ma?is2; it),
((Patpo) - Py = —C(M 2; 5,57 ; 's2,'ma%; 551)
{(Patp5)-Qiy) (3.17)

=C(Ml'2; S;Sf'l; ti1yts; Z(Mb2+§i_1) “'“t-i—l) ,
L PiQi1(patps) ip1]="e,

ti=—(po— 22 Pi)*=sip1tSitma’+my?—s—t;.
k=1

IV. DISTRIBUTIONS IN ANGLES, ENERGIES,
AND INVARIANT MOMENTUM TRANSFERS

The sequence of integrations over the various
variables in the phase-space integral ®,, [cf. Eq. (2.9)]
is such that the limits of integrations are simple. The
following changes in the order of integrations can be
easily made.

(a) Integrations over the various M,;¥s may be done
in any order. The changes in the limits of integrations
are obvious [cf. Eq. (11) of I]. Similarly, the order of
integrations over the s;’s can be permuted in all possible
ways. Moreover, the integration over any s; may be
brought to the front, i.e.,

m m—1 m -1
H dMi2 H dSi'—)H dMizdeIH ds,,
i=1 i=2 i=1 a2
m—1 m -1
X II /'dsﬁ“*/dSzH dM 21T | dsa
B=Il+1 =1 a=2
m—1
X H ng . (4.1)
B=1+1
The limits of integrations are modified thus:
m -1
Sl.=(ZM;_)2, SH-:(\/S—ZlM‘—-)?:
7=l i=
i1 -1
My =(/s—2 My— 2 Mi—+/s1),
k=1 k=it+1
1<4iK701—-1 (4.2)
i—1 m
=(Vs—X Mi— X M), I<is<m
k=1 k=it+1

-1
Sa—=( Z Mk+\/81)2-

k=a

M, Sy, and sgg remain unchanged.
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(b) The order of integrations over any pair of
variables 3; and #; may be interchanged. The limits of
integrations over 3; and # are modified as follows
(cf. Appendix):

Sox=Ly(se; M 50015 5i1,8)

4.3
lig=Ly[s; M 2,5011,(55) 5 tima,me?, (0 5 Sim,s ] *3)

(c) The order of integrations over s;;; and 5; (2<%
<m—2) may be interchanged. The range of s;.; and ¢
in the physical region is obtained from 3;. and #; in
Eq. (2.11) by making the interchanges ;¢ siy1,
Si149 55, ma? <> my?, and the range of integration over
§iis given by

S= (Vb M), Su=(vs— X M (44)

k=1i+1

(d) The order of integrations in Eq. (2.9) may be
completely reversed, with the modification of the limits
of integrations which is obvious. This is possible be-
cause we have used a set of symmetric variables (cf.
Fig. 1).

Change of variables or change in the order of integra-
tions is often required in order to obtain the various
distributions®!! of interest which can be compared with
the experimental measurements. Here, we discuss a few
such distributions.

A. Angular Correlation between Two
Final-State Clusters

In order to derive an expression for the angular cor-
relation between two of the final-state clusters (or
particles) Py and Py(m > 3) in the c.m. system we delete
identity integral

/ d3s 8(52+(P1+P2)?)

in Eq. (2.8) and integrate over d*P, in the c.m. system
with P; along the z axis. Integrations over |P;| and
¢2 may be done with the help of §(Py2+M,2) and
8((pa—P1—P,)*+15), respectively; the relevant integral
for our purpose here is of the form

+1 oo
/ e, / AE; 6(s3—s3—Mo*+2(\/s—Ey) Es
- - +2|P1| (E2—M2)V%), (4.5)

where (3= (P;-Ps) in the c.m. system [cf. Eq. (3.5)].
Integration over E, is done using the § function. The
condition that the argument of the & function vanishes
for some real value (or values) of E, is

$222 1= (s1/M A [NM 22,52,55) /NM 12,51,52) ] (4.6)

Evidently, the right-hand side of this inequality is <1
in the physical region where both the \’s are positive.

1 K. Kajantie and P. Lindblom, Phys. Rev. 175, 2203 (1968);
R. A. Morrow, sbid. 176, 2147 (1968); P. Nyborg et al., Ref. 1.
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Hence {»==1 satisfy the inequality for all values of
si’s and M s lying in the physical region [cf. Eq. (2.11)].

Note that by setting the argument of the § function
equal to zero, one gets a unique solution of E,. An easy
way to choose between the two real roots of the quad-
ratic equation in E, obtained by setting the argument
of the § function equal to zero is to use the fact that
for fa=-+1 we must have (P;-P;)=-1 in the frame
of reference characterized by

> P;=0.

=2

Using this value of E, (in the c.m. system), the in-
variant $; in terms of the independent variables (in-
cluding {3) is given by the following expression:
Sa=M12—sotsstH3{(s1ts2— M1 (se+ M 2> —s3)

— S N (51,52, 1) T2\ (52, M 2%,55) — (M 2*/51) (1 —§2%)

XN(s1,82,M1%) ]2} [sat-M(s1,M 12,52)

X (1 "“5‘22)/481]—1. (47)

The condition implied by the inequality (4.6), when

written in a form so as to restrict the range of variation
of s» rather than that of {,, reads

Csa—so—(¢2,53) ILs2— 524 (§2,2) 120, (4.8)

where
s24($2,88) = {ak[a®—B(1— (M 2*/51) (1 —=522) ]2}
X[A=2/s1) (1597,
a=[ss+Ms*—(Ms*/s1)(1 =) (s1+M1Y) ],
B= (53—M22)2_ (M22/Sl)(1 —{2?) (81—M12)2 .

Hence, the phase-space integral takes the form!?

+1 n
d§'2<n /dM,:2>/d83/d52
—1 i=1

XO[(s2—52-(¢2,55)) (52524 (C2,55)) 1,

where the integrand is the same as in Eq. (2.9) except
that

(16 &2 )~ — &s[A(s1,M 22,52") V2 LN(s,m02,ma ) ]2/
X (1 —E2— o2 — a2 2Eamal ) "2 [N (51, 22,55") JH/2
X (81+52 “M12)+§2[)‘(31’M12a32)]1I2

(4.9)

P~

(4.10)

X(s1+M2—sy)} 1. (4.11)
The range of varation of s3 and sz is given by
ss-=( 2 M2, su=(Vs1i—M1—M2)*,
=3 (4.12)

so-=(Vs3+M3)?, s2p=(Vs1—M1)*.

The next thing to be done is to express the implica-
tions of the step function explicitly so as to get the

12 All other integrations except those which are relevant for our
purpose are dropped. Similarly, the integrand is also suppressed.
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actual range of the variables s, for a given value of ¢,
and s3. To do this, we observe that since the inequalities
(4.6) and (4.8) are two different ways of expressing the
same condition, substituting s;=(\/s3+M,)? and
$3=(v/s1—M1)* successively in (4.6) and (4.8) yields

[(Vss4-M )2 —s5(£2,55)]
XL(V/s3+M2)2—524($2,85) 1< 0 i 221,

and

L(Vs1—M1)?—s55($2,55)]

XL(Vs1—=M1) =551 (2,512 0 if {222 — 0. (4.14)
Since 0<$2<1 and (Vsi—M1)2> (Vss+M»)?, the
following inequality holds:
$3($2,85) S (V/ss+M)?

S oo (62,88 <(Vs1—M1)2.  (4.15)
Hence, for a given s; and ¢, the lower bound on s. is
given by s34 ($2,85) and the step function in (4.10) can
now be dropped. For the special case of m =23, we have

ss=M3* so that the integration over s; should be
dropped.

The angular correlation in the lab system (p,=0)
is obtained by integrating over E, using

8(teF-(po—P1—P3)?).

The counterparts of Eqs. (4.6), (4.7), and (4.11) are
obtained by the replacements

(4.13)

Vs me, sa—l, s3>,

(2m2,82) = (E2,70,52) -

However, it is not easy to give the upper and lower
limits of variables # and #; explicitly for given values
of s, so that the counterpart of the condition (4.6)
has to be expressed by a step function in the i,
integration.

B. Distributions in Invariant Momentum Transfers

Let us first obtain the differential cross section
(90/0f) in a multiple-particle production process,
where ¢ denotes the invariant momentum transfer from
an initial-state particle to a particle in the final state.
Without any loss of generality one may choose
t=—(pa—P1)?=1t1, where P; is the 4-momentum of a
single particle (i.e., #1=1, M1=m,). The phase-space
integral can be written in the form!? [cf. Eq. (4.1)]

82+ t1+(s2)
@,,,=/ dszf dn--,
83— t1—(s2)

with the following limits of integrations:

(4.16)

m
se-=( 2 M), sap=(Vs—m)?,
=2 (4.17)
ba(se) =LA=(s; midse; madme?).
In order to reverse the order of integrations over s, and
11, the condition which restricts the range of variation
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7T
S24(t)~ S2-(t) —
o L o

Sarlt) — — — —

() (b) ©)

¥16. 2. The inequalities among sy, (#1) and s24. (@) h-<t1<t1y;
(b) t1. <6< (Mma— ml)z and »1>0; (c) £ <t1— or {1 >41y but »1<0.
The physical region is indicated by the shaded area.

of #; should be expressed in the form of a restriction on
the range of variation of s, so that #; is free to have all
values. This constraint is given by

(4.18)

(cf. Appendix). To find the overlap of the conditions
52K 52K 524 and 5o (1) < 52 < 524 (f1), note that the latter
inequality is alternatively expressed by the inequality
ti(s2) $h< t1+(S2), so that if one of them is satisfied,
the other too is satisfied and vice-versa. It follows that
s24. lies outside the range (so—(t1),524(f1)), for all values
of t1, and so— (1) < so— 8oy (t), if t<H<ty, where
fip=t11(s2-). Also taking into account the fact that
52— < (V/s—m1)?, we have the inequality [cf. Fig. 2(a)]

Sa—(t1) < s2= < 524 (81) < 5241 (4.19)

If, however, f; does not lie in this range, the two possible
inequalities among s»y(f;) and s, are expressed by
Figs. 2(b) and 2(c). Only the former corresponds to
the physical region, the condition for which is s, (#1)
> 5o_. Since so_(t1= (ma—m1)2) =59, ({1 = (ms—m1)?), We
have, for any #1< %1 max, Sa—(f1) < S2—(f1 max)- Hence the
inequalities implied by Fig. 2(b) are satisfied if 5o (f1max)
> s and {;> f1y, so that we finally have

82+(tx)
/ dtl/

(ma—m1)? s2+(t1)
+0(V1)/ / ds2 )
sg=(t1)

where v1= s+ mi2— (m1/mq) (s+m2—mp?) —so_.

We can now relax the restriction #:=1 and get the
distribution do/9% in the invariant momentum transfer
from an initial-state particle p, to a group of #; particles
in the final state. ®,, may be written in the form

@mN/dM12/d82/dtl"',

with the limits of the M2 integration given by Eq. (2.11)

sox(t) = Li(ma?; s,mp?; ma2ty)

(4.20)

(4.21)

to+(t1) 82+ (t1) (ma—m1)? to+(t1)
3’\'/ dll/ f ds2+6(vy) dh/
12— (t1) s2_(t1,12) t14. t2—(21)

+0(T2+)/ dll/ 1200 — (524 (bayt2) —5a—(02))(S24-(t1,12) — 24 (1)) ]
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and

seo=( 2 Mi)?, su=(/s—M1)?,
= (4.22)
tia (M 1,59) = Lo (55 M1%,50; ma?me?) .

Changing the order of integrations we have

M1+2(t1)
l: j dty /
M2
(mp—+'s9-)2 M1+2(t1) so+(My,t1)
+0(a)/ dh/ dM12:|/ dss
1} M1-%(t1) 82—

M1+2 (ma— M1)? sa+(M1,t1)
AM 2 / dh / dss, (4.23)
Mi- t14(M1) s

2—(M1,11)

+6(8)

where
he=ty(M1,s:),
ha(M)=t(M1,s5-),
M 12 (t) = Li(ma®; t,50; ma?,s)
Sox(M1,t1) = Ly (mo?; M2t s,mp?) ,
a=(Vs—V/s3- )2 =M1 2—(/s5_)
XL(V's—mp)2—ma*Imy !
B=(s—M1)2—s, — (M)
XL(Vs—ma)2—mp2m 1.

The order of the #; and M2 integrations in the last term
of (4.23) cannot be easily interchanged so that it has
to be done graphically.

Next, we consider the simultaneous distribution in
two invariant momentum transfers. Of particular
interest is the case with three particles in the final state
(n=m=3). Writing the #, integration in (4.20) explicitly,
we have

t1+ s2+(t1) t2+(t1,52)
(Ps’\’/ dtl/ ng/ dtz
t1— sg— ta—(t1,s2)

(4.24)

(ma—m1)? s2+(t1) to+(f1,82)
+0(V1)f dtl-/ (lSz/ dta, (4.25)
t14 s2 (1) ta_(t1,82)
where
Ifzi(tl,Sz) = Li<32; M22,M32; tl,mbz) . (426)

In order to reverse the order of the s» and f, integra-
tions, we express this condition in the form

(4.27)
The inequalities, similar to those expressed by Fig. 2,
among Say.(f1,f2), sa+(f1), and ss— [or so—(41), depending

on the range of ¢, ], for negative and for positive values
of ¢, lead to the following form of ®@;:

s2+(t1)
4[5'2-(!1.t2)

oz (t,fe) = Ly (ta; ma®tr; ma®ms?) .

so+(t1,t2)
dss, (4.28)

S2-(11,t2)
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where
toy () =tos[t1,524(t) ],
Sa(trte) =max[ s (t1) 52-(t1,2) 1,

and Ty =0(—vy)tr+001)(ma—m1)? gives the maxi-
mum value of #; in the physical region. Similarly, Ty
and #,_ are the maximum and the minimum values of
in the physical region and are obtained from 7' and
t1_, respectively, by the interchange m, <> ms, and
my <> m3. The limits o4 (1) are real numbers since
N(say(t1),ma2,m32) >0 [since sop(f1) 2> (mat-ms)?, if ti-
$h< T ], and

N2 (1) t1,mp2) = (4ma2) " (s—ma2 —ma?)
X [)‘(mu2;t1)m12>:|1/2:‘!: (m.ﬂ—{— tl-—mlz)
X[ (s,ma2ms?) ]H2)2>0.  (4.29)

The physical region in the plane of the two invariant
momentum transfers is a curve enclosed in a rectangle
formed by the straight lines hi=t1, le="ty, h1=T1y,
and #;=Ts,. Apart from a possible contribution from
the last term in (4.28), the physical region in the t;—7;
plane is given by

STy, b-()SHShi@). (430

Since
A(s24 (1) ;a2 mis?) = N((matms) 2, ma2.ms?) =0,

we have, in the & —{; plot, fo,(f1) =1 (f1-), i.e., the
boundary curve in the {;—{, plane is tangent to the line
ty=1t—. Similarly, the boundary curve is tangent to
the line #,=1{,_. Now, depending on whether »;<0 or
»1>0, we have sop (f1y) = (me+m3)?, so that if », <0, the
curve is also tangent to the line #1=1f1,. On the other
hand, if »;>0, the line ;= (m,—m,)? is itself a part of
the boundary curve. Similarly, if Toy=1/sy, the curve is
tangent to the line fp=1fs,, and if To= (mp—ms)?, the
line f= (my—ms3)? is a part of the boundary curve. The
last term in (4.28) can possibly contribute for positive

t1+! to+ (t1’) s2+ (1)
(P:{"’/ dtl,/ dtzI/ d52+0(l)1)/
-’ t2-’ (1) s2.(t1,82") ¢

14/

(mg—m1)2
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values of f; but it does not appear advantageous to
write it more explicitly?® by writing the restriction im-
plied by the step function on the masses of the particles,
the c.m. energy, and the momentum transfers.

In the particular case of =3, it may be of some
interest to get the distribution in a different pair of
invariant momentum transfers, viz., #’ and &’ [ci.
Eq. (3.2)]. In terms of the new variables, we have

®s= %W2E>\(Samazjmb2)]_”2
(s—m1)? t1+/ (s2) to+’ (s2,t1")
Xj dSz[ dlf1’/ dts
(ma+m3)* 1. (s2) t2_’ (s2,81%)
X[)\(sz’ma2,il)]—1/2’ (431)

where &/ and t14/(s2) are the same as f; and f14(s2),
respectively, and

(4.32)

The order of the s; and #/ integrations is reversed as
before, and in order to interchange the sequence of s»
and 2, integrations, the constraint on #;’ is now shifted
to se, giving

tor! (sa,t1") = L (525 ma2 815 ma?,ms?) .

sor(t 1) = Li(ma?; madty'; ma®bas+), (4.33)
where
to= —(po—P1—P2)*=2ma>+mo*+ma>+ma>+ms’
'—S—lll—tzl. (4.34)

From s..(t,ta’), it is evident that t',(ss)1') has a
maximum at ss= sap(t1,(ma—m2)%) and t2_'(ss,ty") has
a minimum at ss=ss.(f1,72), Where 72 is the value of |
1y’ corresponding to &= (ma—ms)?, viz.,

(4.35)

The overlap of region (matms)?<sa<sa(t’) [or
so-(t1) <2< 8o ()] with so(0,82) S s2 <o (B8 18
obtained as before from the inequalities among the
four limits. Thus,

o= Mo+ mp>+miP+mo*+ 2mams—s—11'.

ta+! (t17) so+(t1’)
dtl'[ diz'/ ds2
127 (t1”) Sa..(t1’,t2")

T1+/ T+ (1) sa+(t1,t2’) T4/ ta—' (t17) so+ (117 ,t9")
[ a oGty a [ et [ ant 05,0 a | dss, (4.36)
-’ 24 (11') S2-(21',t2") 1’ T2-'(t1%) S2_(417,t2")
where
Ty/=T1 4, selt)=su(),
Ly () =tay (52 (1), 1),

ag(tr) = so(ta) — o4 (ts',(ma—m2)*) ,
Bo(t)=s21(tr) =524 (t1,72) (4.37)

Toy' (1) = 0L —a_(t') [(ma—ms) >+ 0la(tr') Jia i (s2- (")) ,
Ty ' (') = 00 —B-(t/) Jra+6[B-(ta") Jto-' (52— (1)) ,
Sz_(h,,tg,) = I’Ila.XI:Sz_.(tl',tzl) ,52_.(1/’1,)] .

1 According to last term of (4.28), the curves fo= (ma-++/#1)? or f2= (m2—+/t1)* could also be parts of the boundary curves for
8:>0 if ma<tm1, mp> (ma—4-ms) or me>m, respectively. These conditions are necessary but not §uﬁic1ent. In any case, the region
defined by (4.30) as well as that obtained from it by the interchanges #ma <> 3, m1 <> M3 18 physical. The entire physical region is
obtained by joining the intersection of these two curves (if at all they intersect) by one of the curves = (ma—m1)?, ta= (1nb—m3)2, or
ly= (ma==4/1)?, as the case may be. A detailed discussion of the physical region in a somewhat different way has been given by

Kajantie and Lindblom, Ref. 11.
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The constraints implied by the step functions in the ¢’ integration in (4.36) on the masses of particles and the
Mandelstam variables can be written explicitly so that the last two terms in (4.36) may be rewritten as

t1+' (2) (mg—m2)? so+(t1/,t2’) t1+ (3) t2-' (t1’) so+(t1/,t2")
0(112) dt]_,/ diz’/ d-52+0(1/3) dh’f dtz’/ dS2
¢ S

1.7 (2) 247 (117) S2-(t17,t2") 117 (3) T 2. (117 ,t2")
(ma—m1)? t2+/ (t1) so+(t1/,t2") (ma—m1)? to'—(t1") so+ (81 ,t2")
+0(V2'—M2) di]’/ dlz’/ d82+0(V3'—M2) dlll/ digI/ dSz, (438)
t147(2) tey’ (217) s2—(t1") t14.7(3) t2-." (11) s2—(t17)

where »; and v; are obtained from »; by interchaning m; <> m, and m, <> m;, respectively, and

l~122= vat+ (m1+m3)2 )

ust=vat (mit-ms)?,

M2= (my/mga)[ s+mo2—mp2—2m.(mi+ma+ms) ],
ty! ()=tax(s2-(0) 1),
tx! (2) = maP+mi® — (st+ma? —mp? —2mams) (e +m12 —ms?) [ 2us®= [ N(s,m0% mp?) N a2, ma%,ms?) JH2/ 20,2, (4.39)
and #14'(3) is obtained from #1.(2) by the interchange ms <> m3, e <> us. In the range t1-'(2) <4’ <41,/(2), we have
so—(t) < sax(ty,(ma—m2)?) < s24.(11), and for t'>1'(2), we have sop(ty,(ma—m2)2) < s2— (1), Similarly, s (41)
§ Sgi(lll,Tz) < S2+(l1/), lf tl-’(S) S t1’ S 11+I (3), and 52i(t1',1'2) < Szﬁ(lfll), lf t1’> 11_*_,(3). Hence the limits of tll and So in-
tegrations as given in (4.38) follow from (4.36) and (4.37).

Finally, the simultaneous distribution in the invariant momentum transfers ¢ and ¢, for a production process with
7 particles in the final state is only a slight modification of (4.28). We have

to+(t1) s2+(f1) (ma—m1)?2 to+ (1) s2+ (1) s3+(t1,2,82)
l:f dtl/ / d52+0(1/1)/ dtl / —J/ (iSs
t2_(t1) sa_(t1,¢2) i1y t2_(t1) 82 (11,t2) §3—

T1+ Tot+ so+(t1,t2) s3+(t1,22,52)
+0(T1+)/ dtl/ zl120(—[s2+(t1,t2) —82_,(!1):”:82.*.01,1&) —52+(11)_—_|) (ZSz/ dss
i1 0 s

Sa_(1,12) 3—

T2+ (t1) s24(41) s3+(41,82,82)
+0(T1+)9(T2+)/ / / dss O s3_(t1,02,52) —S3— ] dss, (4.40)
T1- S

T2_(t1) 2 (11) s3—(t1,t2,82)
“where

Ti1-=max(0,t1-), Se-(ty)=max[ss—,s2—(l1)],
Ss(b1,09,59) = Ly (I1; So,m3%; moPte)
to(tr) = L5204 (1) ; ma®,53-; tr,m?) (441)
Sox(t1,te) = Li(t2; madity; S3—,ms?) ,

Tz__(h) =0, T2+(i1) = (11’L2—‘\/If1)2 it me>ma;
TZ—(tl) = (m2+'\/t1)2 3 T2+(t1) =min{max[(ma_m1—m2) 2)(mu_ ('\/S— i mi))zj )

=3

maX[(m—Zim£)2,(mb—(\/s—ml—mz))2]} i ma<my.

C. Simultaneous Distribution in Energies of Two Particles

In order to get 9%0/9 E1dE; in the c.m. system for >3, the phase-space integral must be written in the form

Our / ds: / dsi-+-
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Starting from the phase-space integral written in the form?

(v s—-m1)? ( ys2—m2)? s2+/ (s2,53)
@~ / dss / dss / dso’ (4.42)
S9_ sz 89" (82,83)

and interchanging the order of s; and s’ integrations, we have

( v s—m1)2 82+’ (s2) s3+(s2,82") ( v s—m1)? ( s2—m2)2 83+(82,82")
@~ / dss / dss / dss+ dss / dse' / dss, (4.43)
sg_ s2.7 (s2) s3— s2_(s1) sa4.’ (s9) s3_(s2,82")

= (X m)?, So-(52) = L(so-—ma?)/s-Fma(s —me2) (/s —ma) 1,

where

Sa4 (52,58) = Ly (525 ma%s3; s,m1%), (4.40)
534.(52,52") =Ly (55 S2,m1?%; ma?y52') , Sax(52)=159"1(52,55-) .

925/ dE10E- is then simply related to 925/ ds20ss’.
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APPENDIX: NOTATION

(A-B)=(A-B)/|A[|B], (A1)
[ABCD]=imned uB.CrDs, (A2)
e[ABCD]=sgn[ABCD], (A3)

C(s; a,b; ¢,d; )=[(s+a—0b)(s+c—d) —2s(a+c—1) J[A(s,a,b)\(s,¢,d) ]2, (A4)
C(s; a,b; ¢,d; £,5) =3[\ (s,a,0)+\(s,c,d) —\(s5,8,E) ]TA(s,a,0)\(s,¢,d) ]~2/2, (AS)
C@s Em=(E—a[A=)A—9) ]2, (A6)

Ly(s; a,b; c,d)=a+c—(s+a—0b)(s+c—d)/2s=[N\(s,a,0)\(s,¢,d) "%/ 25, (A7)
Li(s; a,b; ¢,d; +)=a+c+ (s+a—b)(s+c—d)/2s[N(s,a,b)\(s,c,d) ]2/ 25, (A8)

L:i:ES; dl,b1,(C2) 3 02)b2y(cl) 3 d3,ba:’
=a1tas— (st a1—01) (s a2—b2) (25) 7+ [N(5,81,01)N(5,02,02) ]'/2(25) M= [(1 = £ (1 =) ]2},  (A9)

IS(S; al;bl; dz,bz; 0’37b3; 61;52763) l = (SS)—II:)\(S,(h,bO)\(S,a2,b2)>\(s,as,b3)(1 '—‘22_7]2'_'{2";"2577.()]1/2; (AIO)
where £, 5, and { in (A9) and (A10) denote the following:
£=C(s; as,bs; an,be; 61), 1=C(s; as,bs; a1,b15¢2), §=C(s; arbs; anbs; c3). (A11)

Note that (A9) does not depend on ¢, and is symmetric  Evidently, C(s; a,b; ¢,d; t) is invariant under the inter-
in £ and 5, and (A10) is symmetric in &, », and ¢. change (a,b) <> (c,d) or @ <> b and ¢ <> d simultaneously.
If s>0, C(s; a,b; c,d; ) gives (pa-P.) in the frame of With the invariant £ such that pi===(p.%=p.), C(s; a,b;

reference characterized by p,=0, where the 4-momenta  ¢,d; t,{) also gives (p,-D.) in the form

are such that
cosf= %()\1’!‘)\2")\3) ()\1)\2)_1/2 .
~Pa2 =a,

ps=E(patpr)==x(peEpa),
= — (PG—PC)2 . sinf= %[—)\()\1,)\2,)\3)]1/2()\1)\2)_1/2 .

(A12) When written in this form, we have
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C(¢; &m) obviously gives the cosine of the azimuthal
angle between two vectors which are such that their
polar angles are cos™¢ and cos™'n and the cosine of the
angle between the two vectors is ¢.

Integration over the solid angle using two Dirac §
functions which define suitable Mandelstam variables
gives constraints of the type —1<9<+1 and —1
<C(¢; &) < +1. The former constraint restricts the
range of the invariant ¢, in the physical region, viz.,

Cz__§62<62+ if S>O,

(c2—c2)(ca—c2) 20 if 5<0,
where

CZﬂ::Li(s; as,b3; al,bl) . (A13)
Note that ¢z_>cay if $<0. The condition 72<1 may
alternatively be expressed so as to restrict the range of
any one of the invariants ay, b1, as, b3 or s. We have

s1.= L (c2; a1,as; b1,bs) (A14)
a1 = Ly (bs; 5,a3; b1,c2) ,

and the restrictions on any of the remaining three in-
variants follow from (A14) by use of the symmetry prop-
erties of (A4) or (A7). The condition —1<C(S; £,9)
<41 similarly restricts the range of variation of the
invariant cs:

csy=Ly[s; a1,b1,(c2) ; @s,b2,(c1) 5 as,bs],
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ie.,
ca-SesSest if s>0,

(cs—cs)(cs—c3p) 20 if s<0. (A15)

(A9) is clearly invariant under the following inter-
changes:

(l) ((ll,az,(ls) s (b15b2;b3)
and (A16)
(ii) (a1,b1,65) <> (@2,bs,01) .
Other forms of the constraint [C(¢; £,9) ]?< 1 are
a14= L[ ba; ¢3,b1,(c2) ; az,5,(as); c1,b5]
= L[ b3; ¢3,b1,(c3); as,s,(az); c,b2 1,
sp= L[ ¢35 a1,a4,(bs) ; b1,b2,(as); c1,62]
= L[ c1; a5,a3,(b1) ; bs,bs,(a1) 5 c2,65]
= Ly[¢2; a5,01,(b2) ; b3,b1,(a2); c5,61].  (A17)

Constraints on the range of variation of any of the re-
maining seven invariants may be similarly written
using the fact that the condition [C(f; £,9)]2<1 is
symmetric in £ 5, and { and by employing the sym-
metries of the latter quantities under the interchange of
the various indices. Also, note that the simultaneous
conditions —1<y<+1land —1<C(E; &)< +1 are
equivalent to the conditions —1<¢<+1 and —1
SCO; £ S +1.

Finally, (A10) gives the magnitude of the pseudo-
scalar [pspa,paspas -



