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Lorentz-invariant phase-space integrals in the multicluster form are transformed into definite integrals
over a set of "symmetric" Mandelstam variables. The momentum configuration of the particle clusters (in
the center-of-mass system and in the lab system) as well as of the individual particles (in the cm. system,
in the lab system, and in the rest frame of the decaying cluster) is explicitly given in terms of a complete
set of kinematical variables, i.e., 3N-10 independent Mandelstam variables and signs of N —4 quadrilinear

. invariants. This enables one to express all possible scalar products formed from the 4-momenta of particles in
terms of the independent variables. Expressions for the angular correlation between two of the 6nal-state
particles or clusters and the simultaneous distribution in energies of two of the final-state particles are given
explicitly, and distributions in invariant momentum transfers are discussed.

I. INTRODUCTION

~ 'HE kinematics of E-particle systems has been
studied by several authors' ' in diferent ways.

In a previous paper, ' we described some simple trans-
formations of Lorentz-invariant phase-space integrals
for rt-body decay and production processes, into definite
integrals over the independent Mandelstam-like vari-
ables. In the present paper we study some aspects of
the problem not dealt with in I. One of these is as-
sociated with the fact that the total number of scalar
products (p;.p;, i') in a reaction involving N par-
ticles is ~C2, which increases quadratically with in-
creasing F, whereas the number of independent vari-
ables (3N —10) increases only linearly. On using the
4-momentum conservation equation and contracting
with each of the Ã 4-momenta, one gets Ã linear rela-
tions among the scalar products, thus reducing the
number of linearly independent scalar products to
~C2 —E.For E=4 or 5, this number equals the number
of independent variables and, therefore, there is ap-
parently no problem. However, for g &5, the number of
linearly independent scalar products exceeds 3Ã —10:

~Cs N=3N 10+—~ 4Cs. —

Evidently, the additional ~ 'C2 number of linearly
independent scalar products depmd on the 3Ã —10
Mandelstam variables in a complicated manner; once
these are determined, all other scalar products (p,"p,)
can be expressed as linear superpositions of these and
the 3E—10 independent Mandelstam variables. A
closely related problem is that of determining the
4-momenta of X particles in a certain Axed frame of
referenc" which, in practical cases, is either the center-
of-mass (c.m.) system or the laboratory system —given

'N. Byers and C. ¹ Yang, Rev. Mod. Phys. 36, 595 (1964);
P. Nyborg, H. S. Song, W. Kernan, and R. H. Good, Jr., Phys.
Rev. 140, 3914 (1965);P. Nyborg, ibid. 140, 8921 (1965).

'R. A. Morrow, J. Math. Phys. 7, 844 (1966); see also R. J.
Eden, P. V. LandshoG, D. I. Oliver, and J. C. Polkinghorne, The
A.ealyhc-S-Matrix (Cambrige U. P., Cambridge, England, 1966),
Chap. 4.

3 R. Kumar, Phys. Rev. 185, 1865 (1969},hereafter referred to
as I.

4K. Byckling and K. Kajantie, Phys. Rev. 187', 2018 (1969).
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the 3E—10 independent Mandelstam variables. How-
ever, the fact is that the 3N —10 independent scalar
products do not suf5ce to completely dehne the mo-
mentum configuration of an E-particle system. This
is because the dependence on the azimuthal angle

Q;—p, ) of the scalar product p; p; comes only through
cosQ; —P;), so that the scalar product has the same
value for two different values of P,—g; in the range
(0,2sr). Thus, a description in terms of 3N —10 in-
dependent Mandelstam variables gives a 2~ 4-fold

degeneracy. This degeneracy is lifted if the signs of
E—4 pseudoscalars —each formed from four linearly
independent 4-momenta —are speci6ed. '

Given a complete set of kinematical variables,
namely, a set of 3X—10 independent Mandelstam
variables and E—4 independent "kinematical signa-
tures, " the simplest way to obtain the above-mentioned

'C2 number of scalar products is to get expressions
for the 4-momenta of all particles in a certain fixed
frame of reference in terms of the independent variables,
provided that the independent Mandelstam variables
are such that the construction of momentum vectors
does not require a knowledge of these scalar products.
The sets of variables given by Eqs. (3) and (29) of I
have precisely this property and are therefore best
suited for this purpose, whereas the invariant variables
of the multi-Regge model' involving n —1 subenergies,
n —1 invariant momentum transfers, and n —2 in-
variant masses (which may be chosen in various dif-
ferent ways) are not convenient for this purpose. In
general, however, the set of independent kinematical
variables should be such as to correspond to the picture
where the Anal-state particles are grouped together
into various clusters, ' with each cluster containing an
arbitrary number of particles. In Sec. II, we discuss a
set of "symmetric" variables of this type and write
down the phase-space integral in terms of these variables
with a view to making the subsequent discussions of a

M. Goldberg, F. Rohrllchy aild J. Leltner, Phys. Rev. 140'
31592 (1965).

e F. Zachariasen and G. Zweig, Phys. Rev. 160, 1322 (1967l;
¹ F. Bali, G. F. Chem, and A. Pignotti, ibid. 163, 1572 (1967);
S.J. Chang and R. Rajaraman, ibid 183, 1517 (1969).; R. Rajara-
man, Phys. Rev. D 1, 118 (19'70).
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more general nature. In Sec. III, the momentum con-
figuration of a system of X particles is discussed; this
enables us to obtain all scalar products. The momentum
con6guration of an N-particle system may also be useful
in the Monte Carlo7 generation of events. Section IV
deals with the angular correlation between two of the
final-state particles or clusters, simultaneous distribu-
tion in the energies of two of the final-state particles,
and some distributions in the invariant momentum
transfers. A compact notation for the limits of integra-
tions and some other kinematical quantities used in
this paper is explained in the Appendix.

the squared invariant masses of the clusters. The c.m.
energy (s) and the m —1 invariant momentum transfers
are a natural choice for other m variables. The re-
maining 2m —4 variables can be chosen in various ways.
It is unlikely that a certain set of variables is a priviliged
one, though, depending on the nature of problem, a
particular set of variables may have some advantages
over others. Here, we wish to draw attention to a set of
symmetric variables si and si depicted in Fig. i. Ex-
phcitly, the independent variables are dered as follows:

f;= —Q, 1&s&m —1;

II. MULTICLUSTER ZOaM OZ
PHASE-SPACE INTEGRAL

I.et the final-state particles in the production process

(P.—+Pe P—P~)', s;= —( P Pr)s

2&i&m —1;
(2.4)

p.ape~ P pe, e&2 (2.1) ~=»=s = (P.+P—e)'= —( Z P')',

~-(p.,p; p.) =6-(p. p P')

where

&&II (p.,(P,Q'-, O'; 'P ), (2 2)
i=1

Q' =p. ZP~. —
l=I

(2.3)

The production of m clusters is described by 4(m —1)
Mandelstarn variables (and, of course, rre —2 kinematical
signatures), the m extra variables appearing here being

be grouped into m clusters (1~&no&~n) with momenta
P; (1~&s~&m) and let the ith cluster contain n; number
of particleswithmomenta'p; (1~& j~&n,).Kinematically,
the collision process (2.1) may then be viewed as a
two-step process: the scattering of initial-state particles
resulting in m clusters (p,+pe~+; r" P;) followed

by the decay of these clusters into individual particles
(P;~p; r"''p;). Thus, the phase-space integral gets
"factorized":

e =sLP Pe( 'Q Pt)P;7, 2& s&m —1.

Q'-r+( —Q~) ~ Z 'P . (2.5)

However, note that because of the existence of vectors
p„pe, and. P& (1~&elm), the azimuthal symmetry
about the collision axis (along Q; r or Q; in the rest
system of the cluster P;) need not exist any more.
Consequently, apart from the mass M; of the cluster
Lalready delned in Eq. (2.4)7, the number of indepen-
dent Mandelstam variables is 3ni —4 and the number of
kinematical signatures is ni —j.These variables may be
de6ned as follows:

The Mandelstam variables in Eq. (2.4) are linearly
related to the independent variables de6ned in I and
are identical with the invariant variables of the multi-
Regge model for m=2 and 3.

The decay of cluster I'; may be visualized as the
production process

ni

m-g

sE IL, AE lL
&F &F

rg .— (P . Q ip„) s

k~1

f = —
LP

—(P' —E 'p )7',
a-a

j
's = —

Lp +pe (P —g ~pe)7—
@=1

2& j(n,.

(2.6)

Igo. 1. The "symmetric" Mandelstam variables in a multi-
particle production process. Each outgoing line represents a group
of particles, in general. The diagram also depicts the Mandelstam
variables for decay of particle e into m+1 clusters if we make the
replacement pq —+ —I' +1.

& progranr go wL, CERN Library W-505 (unpublished); E.Byck-
ling and K. Kajantie, Nucl. Phys. 39, 568 (1969); E. Byckling
e$ of., University of Helsinki Report No. 3-69 (unpublished).

"=
t P.pe(P' —Z 'pe) 'pf7, 1& j&n,—]..

Th«ot» number of Mandelstam variables in (2.4)
and (2.6) sums up to 3n —4 and the total number of
kinematical signatures is n —2, as it should be.
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defined in Eq. (2.6). We have where

ni—2

(p —2
—it~'—&) Q d's. d't; d's, l'e

l

' +m+~ =
2m. 2

dM~t' dstL) (m.',M~t', s,)j"'
4

X6' (mbs~ M '), (2.16)

where

d 'f„; i d '&;—i l
' e;—il

XP G'(si, fi,si, ei', 'sj, 'fj, 'sj, 'ej), (2.12)

with the upper limit on M; in Eq. (2.11) modified as
follows':

M;+=m. —p Mb —p Mb, 1&i&m+1. (2.17)

eg l

—
l e( sy l jnpb Sj+ii sj—1)$j fj 11m—b

m. ', 'tj,'sj)
l

The lower bound on st is given by Eq. (2.11) and
(2.13) the upper limit is given by

and the limits of integrations are as follows: st+. ——(m.—M +i)'. (2.18)

's =( P 'mb)'
I=j

's,~=(g's; i —'m; i)', III. MOMENTUM CONFIGURATION AND
SCALAR PRODUCTS

fj+=L+( Sji mP) Sj+i) fj tq mb —) )

's ~——LqL's 'm' 's i ('f )

'sj t,s, (m, '); 'tj i,mb'j. (2.14)

Successive integrations over 's; and 't, change the
integrand to (s./4)l ) ('sj, 't, t,mb') j '" and (s./4 's;)
XP('sj, 'm, 'sj+t))'j', resPectively, in Place of (M l

' e; l) ',
if G; has no dependence on these variables.

The "factorization" of the phase-space integral en-

ables one to define the independent variables in various

ways corresponding to the different ways in which m

and n s can be chosen for a given n. It should be em-

phasized that it is not necessary that each cluster con-
sist of at least two particles; in general, some or all of
the "clusters" could be just single particles. If P; is
a single-particle cluster, then 6',. is simply unity and
the mass (M;) of the cluster is now a constant (de-
noted by m;) so that there is no integration over MP.
Needless to say, the number of independent variables
remains the same. ' Similarly, for the special case of
m=1, we have 3fj'=s, (P =1, and 's~='m~', so that
there is no integration over 's~,

t 16
l
'e,

l g
—' —b -'gr P.('st m ' m b')j "'

and there is no summation over 'e~.

The same set of independent variables can also be
used to describe a decay process with m+1 particle
clusters in the final state, if we make the replacement
Pbb —P ~t and integrate over the momenta of all

particles which constitute the (m+1)th cluster. Ex-
plicitly, we have in this case

~.(p. ; p.)=~.+.(p.;P;) II 6-.(p.,Pi;'p), (2»)
i=1

p
b The decrease in the number of independent variables in the

cluster production process due to constancy of mass M; is com-
pensated by the increase in the number of independent variables
in the cluster decay process: For e;=1 the number of independent
variables is zero, which is one more than that given by 3N; —4.

Given the values of independent kinematical variables
in the physical region, the momentum configuration of
the S-particle system is obtained as follows.

A. Momentum Configuration in Cluster Production
Process and Scalar Products P;.I';

In the c.m. system, we have

ps=
lp. i

=
E=

costi=

where

—y, along the s axis,

I pbl = Lx(s,m, ' mbs)g'j'/2+s,
(s;+s;—s,i.t —s; i)/2+s)
P.(s,M js s ')j'"/2+s,
(yb Ib;)=rj;= —C(si m 'mb'M', s; f ),

—1

(3.1)

4'=Z C'b+4'', (3.3)

9 It is implied that the M'~+@ and s1 integrations are placed to
the left of the sb integration in (2.9) and S(gs—gb, ~ ~b) in
(2.9) is replaced by 8(m —gp &" mI,).I In high-energy hadron collision processes, where one is in-
terested in generating only those Monte Carlo events which cor-
respond to small transverse momenta of particles, one may not
proceed any further (to determine the azimuthal angles of mo-
rnentum vectors) if the transverse momenta of particles exceed
the desired limit. This results in better efficiency.

si — (pa+ pb Pi) 5+Mi +si+1+si i s& s, , —'' (3.2)
f = (p, P;)s=m, '+—3II;s+—s; i s,+t; t;, . — —
In order to determine the azimuthal angles" of the mo-
mentum vectors, we now completely specify the orienta-
tion of the coordinate reference system by choosing the
x axis in such a direction that P~ lies in the zx plane with
a positive z component, i.e., pi=0. The expression for
the azimuthal angle Q;) of the vector P; (3 ~&i ~& m —1)
is a bit complicated because (Pi+P;)' cannot be ex-
pressed as a linear superposition of the independent
Mandelstam variables. The angle g; is obtained as a
sum of i —1 azimuthal angles:
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(3.4)

cosCk ——((pkXQ pl). (pkXE pi)&=flk,

where

where C k is the azimuthal angle of the vector pl ik Pl
in a coordinate reference system whose x axis is oriented
such that +1=1~' Pl lies in the sx plane and has a posi-
tive component along the x axis, and lt, ' is the azimuthal
angle of the vector I'; in a coordinate reference system
whose x axis is oriented such that the azimuthal angle of
Pl 1' ' Pi in this reference system is zero. The cosines
of angles p,

' and Ck are given by
i—1

cosltl, '=((pkXQ pi) (pkXP')&=
l=l

The momentum con6guration in the frames char-
acterized by p =0 or Ip~=0 can also be determined in a
straightforward manner, using the same set of variables.
In the lab system (p,=0), using a coordinate system of
reference which is oriented such that y~ is along the
polar axis and $1=0, the momentum configuration in
the cluster production process is given by the following
equations:

I pkI =p.( sm ',mk')7"'(2m, )
—',

E;=(s;—s; 1+t; 1—t;)(2m, ) ',
I p'I =P (m.',M'', t'')7'"(2m. ) ',
cose;=(pk P,& =it;, 1(z(m 1—

elk =C({k , ek, ztk'),

Qg ——C(Zk,'$k, )k+1)

={pi(s, sk, sk 1)(1—4')]"'+klkp (s Mk', sl')

X(1—ztk')7"')I ~~($ Sk+1»)(1—4+1')7 "'
(k = (pk Q pl& = —C(s; m~', mk', sk i,sk', 4 1),

lt;=Q ek cos 'f4+e;cos 'ee;, 2&z&m —1
&=2

&„=(s+m. ' m—k)(2m, )-' g—E;,

cose-=e-—=Llpkl —2 Ip'Ie~]/Ip-l,

(3 8)

k—1

i k=(pk' Q P1& = C($ Mk Sk sk—1 sk sk)

= —C(sj Mk, sk; Sk 1&skj Sk&skyi—) &

k

~k=(( Z Pl) ( E Pl)&

=C($; sk—1,sk; sk sk+1' mk ) ~

(3.7)

It is clear that the above equations do not determine the
azimuthal angles uniquely, since, for a given value of

cosset, there are two possible values of the angle le in the
range (0,21r). However, as mentioned ea,rlier, the
degeneracy is lifted if the signs of quadrilinear invariants
defined by Eq. (2.4) are known. It is easy to see that
not only the sign of sin& is given by e;, but the sign of
sinC» is also given by el„so that Anally we get the follow-

ing unambigous expression for the azimuthal angles:

ek cos fIk+ei cos Ml ~
2 &~z~~m —1 (3.6)

where the inverse of a cosine implies its principal value,
i.e. , the angle lying in the range (O,ir). In this way, all
4-momenta, except P, are determined in the c.m.
system; the latter is, of course, obtained from the
energy-momentum conservation:

m—1

L =Qs —gE, ,
~1

«so-=(pk. p-&=a-=——Ip-I ' 2 Ip'In',
i=1

=e cos '{—
I IP~I(1—lt ')"'7 '

IP;I (1—leap)"' cosset, ),
i=1

m—1
e-=—sgnI: —2 IP'I (1—n")"'»n&*7.

@ =e cos '{—
I p IP;I(1—it')'"cosset;]

xL I P„I(1—zt„z) itz]—1),

e„—:sgnL —Q I P;I (1—Ft;z)'t' sinltl;],

~k=C(fk, &k, gk),

~.=C(~', h, h, ),
k—1

h=(pk p pi&=C(m. ';s,mk';sk 1,4 i, sk),
l=l

'vk (pb'Pk) =C(ma j $)mk j Mk )tk j sk ) )

k—1

jk=(pk p Pi)= —C(m. ', M, z, t, ', s, „t, ,;s,)

(3 9)

C(m, '; Mk', tk'—, sk i,tk 1, sk, tk),
k—1

+k = ( Q Pl' Q Pi& =C(mg j sk 11tk 1j sk)tkt mk ) ~

l=l l=l

Is If, instead of the invariants s, I
cf. Eq. (2.4)7, we

define invariant subenergies —(P; 1+8,)z as the in-
dependent variables, we have the variables of the multi-
Regge model. The m —2 kinematical signatures in this
case are

eI pkQ; 1&; 1P;], 2~&z~&m —1. (3.10)

Using this set of variables, the magnitudes of all mo-
menta (I P;I) and (P; 1 P;) can be simply obtained in
the reference frame py= 0. However, the polar angles of
all momentum vectors with respect to a 6xed axis
cannot be easily calculated for m&3, because that
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would require the knowledge of those scalar products
which are not linear superpositions of the independent
Mandelstam variables.

With the choice of variables defined by Eq. (2.4), the
'C~ linearly independent scalar products which cannot

be expressed as linear superpositions of the 4m —4 in-
dependent Mandelstam variables are P; P; (i&j;
2&~i, j~&m —1). Since the 4-momenta P, a,re known
(in the c.m. system, for example) in terms of the in-
variants, these scalar products are given by

P,"P,= P,F.,+—fP,
f
fP, f

X(g,g,+f(1—g,')(1—n,')7"'«s(4;—4')), (3 11)

with

»k cos Qk+E~ cos'(0' —»i cos cubi. (3.12)

general, depend on all scalar products and hence on
products of an even number of e s.

B. Momentum Configuration in Cluster Decay Process

The kinematical variables defined in Eq. (2.6) for the
decay of a cluster I'; are such that the momentum
con6guration of the decay products can be easily com-
puted in any of the inertial frames p, =0, p&=0, or
p,+pk ——0, in exactly the same way as in the case of a
cluster production process. For example, in the c.m.
system (p,+pk ——0), with the axes of the reference co-
ordinate system oriented. in a manner described in
Sec. III A, the momenta of the particles are given by
the following equations:

'E; = ('$,+'s;—'s; i—'s;+i)/2+s,

Since cos(g; n.,), when expressed in terms of the
products of sines and cosines of o. s, contains an even
number of sinn; factors, it follows from (3.11) and (3.12)
that the above-mentioned 'C2 number of scalar
products depend on products of even number of e s.
Thus, even if the squared T-matrix element does not
depend linearly on the e s (which are noninvariant
under space inversion and time reversal), it may, in

f
'p;

f
=P,(s, 'mi', 'ss')g"'/2+s,

cos gi. = (pbk' pi') = gyi

j—I
4j=4i—p '&» cos 'Qk+'»z cos i 'co~.

k=1

(1&i& m, 1& j&ii;—1),
where p; is given by Eq. (3.6) Lor Eq. (37)j and

(3.13)

'krak =C('t k', '$k, 'qk), 'Q» =C(~Z»', '$», '(»+i),
k—1

'4=(pk (P;—Q 'pi)) =C(s; mk', m. '; 'sk, 'sk i, 't» i),
l=l

'gk =(pk. 'pk) =C(s; mk', m '; 'mk', 'sk', 'f»'),
k—1

'f»=('pk (P' —Z *'pi)) =C(s 'sk, 'sk-i, 'iiik', 'sk', 'sk+i),
l=j

k—1 k

'& =((P;—g 'p) (P;—P 'p))=C(;',',;'„,, '-„;' „),

(3.14)

k= (P +Pb Pk) =S+™k+~s»+i+'Sk i 'Sk —'Sk, —
'4'= —(Pk —'Pk)'=mk'+'mk'+'sk+i+'&k i —'sk —'tk.

2& j&e;—1

id= (Qi—1 p pk) 1& j&m;—1

The 4-momentum 'p„,. is obtained from the energy-
momentum conservation as before. Having determined
the momentum con6guration of the X-particle system
in this way, any scalar product of the type 'p; kpi can
be computed. However, the variables de6ned by Eq.
(2.6) are not suitable for a determination of particle
momenta in the rest frame of the decaying cluster. For
this purpose, a set of appropriate variables is

j-1
'si = —(P'—Q 'pk)'

k~1

'~i=~p'iQi i( 2 'pk)'p;), 2&~j~&ii; 1—
'- =-Lp-+p. -(P;—p.)i,
*'i=' LP''Q- (i.p+kp)'pi1 (3.15)

The momentum configuration of the decay products in
the rest frame of the decaying cluster (P;=0), with
coordinate axes of the reference system oriented such
that the polar axis is along Q; i and 'pi lies in the zx
plane with a positive x component, is given by equa-
tions analogous to Eqs. (3.1)-(3.7). All that remains
to be done is to find the orientation of Q; i with respect
to the vectors p and pq and the azimuthal angle of 'pg
with Q; i as the polar axis, in the rest frame of the de-
caying cluster. The orientations of Q; i and 'piare given
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by the following equations:

&p. Q*-)=
&pb Q'-2) =

Lp.p.e; .P 3=

C(M;2; 222 2,1;1; r, 1;;$; y),

and

1i (pb Pi) trbb +Mi + $i+1—$'+ ir-2 —ii,

&Qi—2' pr) C(Mi i ii xiii ~—™r) $2) tr) )

&(p,+pb) 'pr) = —C(M,';$,$; '$2, '2rig; '$2),

«p.+p) Q; )
=C(M; $,$; t; r, t, ; 2(mbs+$; 2) —t; &),

eD e l(p +P—b) Pl[ el

(3 16)

(b) The order of integrations over any pair of
variables si and ti may be interchanged. The limits of
integrations over si and ti are modified as follows
(cf. Appendix):

$i+ Lk($ii Mi pi+&) $i &r$) —&

1;g——IgL$;; Mis, $;„g,($;); 1; 2,222b', (2I.2); $; 2,$j. (4.3)

$; =(Q$; 2+M;)2, $;+=(Q$—p Mb)'. (4.4)
k=i+1

(c) The order of integrations over $,+2 and $; (2~&2
&~ 222 —2) may be interchanged. The range of $;~r and t;
in the physical region is obtained from s;~ and. t;~ in
Eq. (2.11) by making the interchanges $;~ $;~r,
si 1~s;, m, '~ m~', and the range of integration over

(3.17) $; is given by

t„=—(pb —Q Pb)2=$;+2+s;+20 2+mbs $—
k 1

IV. DISTRIBUTIONS IN ANGLES, ENERGIES,
AND INVARIANT MOMENTUM TRANSFERS

The sequence of integrations over the various
variables in the phase-space integral (P Lcf. Eq. (2.9)$
is such that the limits of integrations are simple. The
following changes in the order of integrations can be
easily made.

(a) Integrations over the various M,2's may be done
in any order. The changes in the limits of integrations
are obvious Lcf. Eq. (11) of I].Similarly, the order of
integrations over the s s can be permuted in all possible
ways. Moreover, the integration over any s& may be
brought to the front, i.e.,

d$; g dM d$ Q d$

(d) The order of integrations in Eq. (2.9) may be
completely reversed, with the modification of the limits
of integrations which is obvious. This is possible be-
cause we have used a set of symmetric variables (cf.
Fig. 1).

Change of variables or change in the order of Integra-
tions is often required in order to obtain the various
distributions'" of interest which can be compared with
the experimental measurements. Here, we discuss a few
such distributions.

A. »gular Correlation between Two
Final-State Clusters

In order to derive an expression for the angular cor-
relation between two of the anal-state clusters (or
particles) Pz and Ps(222 ~& 3) in the c.m. system we delete
identity integral

d$2 8($2+ (Pg+Ps)')

&& g d$p-+ d$i g dM;2 g d$

d$$. (4.1)

$i =(gM; )',
l—1

$bi. =(+$—P M; )',

M;„=(+$—g Mb —Q Mb V$i), —

The limits of integrations are modified thus:

in Eq. (2.8) and integrate over d'Ps in the c.m. system
with Pr along the s axis. Integrations over ~P2~ and
$2 may be done with the help of 8(P2'+Ms') and
B((P,—Pr —P2) 2+12), reSpeCtiVely; the releVant integral
for our purpose here is of the form

+1 +oo

dfs dE2 &($2—$2 —M22+2(g$ —Er)E2

+2)p. l(P-" M") & f.-), (4.5)

where t2= &P& P2) in the c.m. system Lcf. Eq. (3.5)j.
Integration over E2 is done using the 8 function. The
condition that the argument of the 8 function vanishes
for some real value (or values) of E2 is

=(Q$—Q Mb /Mb ), —

$. =( g Mb+V'$i)'.

SI;, s +, and sp~ remain unchanged.

l&i&m j 2 ~ 1 ($1/M2 )p(M2 q$2)$2)/X(M1 )$1)$2)g. (4.6)

Evidently, the right-hand side of this inequality is ~& 1
in the physical region where both the P's are positive.

"K.Kajantie and P. Lindblorn, Phys. Rev. 1'N, 2203 (1968);
R. A. Morrow, ibid. 1N, 2147 (1968); P. Nyborg ei ai., Ref. 1.



COVARIANT PHASE —SPACE CALCULATIONS ~ 1909

Hence f,=~1 satisfy the inequality for all values of
$ sand M s lying in thephysical region [cf.Eq. (2.11)j.

Note that by setting the argument of the 8 function
equal to zero, one gets a unique solution of E2. An easy
way to choose between the two real roots of the quad-
ratic equation in E2 obtained by setting the argument
of the 5 function equal to zero is to use the fact that
for f2=+1we must have (P' P2)=+1 in the frame
of reference characterized by

Q P;=0.

Using this value of E2 (in the c.m. system), the in-
variant $2 in terms of the independent variables (in-
cluding f2) is given by the following expression:

$2=My —$2+$3+g{($1+$2—Ml)($2+M2 $3)

-i.[~(",",M")j'I'[~(",M";.)-(M"/")(1-f")
XX($',$2,Mi') j'")[$'+X($',Mp, $&)

X(1-q, )/4. ,j-.
The condition implied by the inequality (4.6), when
written in a form so as to restrict the range of variation
of $» rather than that of g2, reads

actual range of the variables $2 for a given value of f'
and s3. To do this, we observe that since the inequalities
(4.6) and (4.8) are two diferent ways of expressing the
same condition, substituting $2=(+$3+M2) and
$2=(Q$y —Ml) successively in (4.6) and (4.8) yields

[(V'$3+M,)'—$, Q'„$3)$

X[(~$3+M2) $2+O&i$3)j&0 'f f2&&1i (413)
and

[(Q$' M—')' $' —(fbi-$g) j
X[(+$'—M')' —$2+g2i$g)j~&0 " f2'& —"(414)

Since 0&~$22&~1 and (g$' —M')'~&(g$'+M')', the
following inequality holds:

$, (pg, $3) &(+$3+M,)'
~&$2+O2 $g) &(Q$&—M&)'. (4.15)

Hence, for a given $3 and f2, the lower bound on $2 is
given by $2+(f',$3) and the step function in (4.10) can
now be dropped. For the special case of m= 3, we have
s3——353' so that the integration over s3 should be
dropped.

The angular correlation in the lab system (p, =0)
is obtained by integrating over E2 using

[$2—$"O2,$3)X$2 $&+(fm—i$&)j-'Oi b(t2+(p, —P' —p,)').
where

The counterparts of Eqs. (4.6), (4.7), and (4.11) are
obtained by the replacements

V$~ma& $2~'li $3~4i (big2i02)~(bitf2if2) ~

However, it is not easy to give the upper and lower
limits of variables t~ and t2 explicitly for given values
of g', so that the counterpart of the condition (4.6)
has to be expressed by a step function in the t2
integration.

Hence, the phase-space integral takes the form"

+
6 F2 g dM"

(
d$S d$2

$2'(f2, ») = {~~["—P(1—(M2'/»)(1 —"2'))3'")
X[1-(M '/ )(1-S ')3-',', ''

(4 9)
[$3+M2 (M2/$1)(1 $2)($1+Ml')ji

p=($g —Mg')' —(M2'/$g)(1 f22)($g Mp)'. — —

X H"-" 8.,"))("-"+(~.,"))3, (4»)
where the integrand is the same as in Eq. (2.9) except
that

(16(eg() '-+ —,'$P($g M2', $g')7'"P($ m, 'mb') j '"
X(1 b' —n" f2'+2bn't2) "'{I'(»iM2'i$2')3"'
X($1+$2 Ml)+$2p($liMl i$2)~

X($g+M2' —$2')) '. (4.11)

B. Distributions in Invariant Momentuxn Transfers

I et us 6rst obtain the differential cross section
(Bo/Bt) in a, multiple-particle production process,
where f denotes the invariant momentum transfer from
an initial-state particle to a particle in the anal state.
Without any loss of generality one may choose
'= —(p, —P')'=3', where P' is the 4-momentum of a
single particle (i.e., n'= 1, M'=my). The phase-space
integral can be written in the form" [cf. Eq. (4.1)j

$3 =(gM)',
i=3

$3'=(Q$g —Mg —M2)',

$2 (Q$g+M2)', $2+————(Q$g —Mg)'.

The range of varation of s3 and s2 is given by 82+

d$2
82— &1-(82)

&X+('2)

dory 7

$2 =(QM;)', $2+ ——(Q$—m')',

with the following limits of integrations:

(4.16)

The next thing to be done is to express the implica-
tions of the step function explicitly so as to get the

'2 AQ other integrations except those which are relevant for our
purpose are dropped. Sixnilarly, the integrand is also suppressed.

4'($2)=2~($; mP, $2, m, ',mg').
(4.17)

In order to reverse the order of integrations over $2 and
t&, the condition which restricts the range of variation
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sq (&i)-

s,+1~)gggjtsg-(&i)

sgy8~) ——
Sg-(&~)—

(b) (C

mon s2g(tl) an .
„t„1(0

e physica &eg

(4.22)

(mf —&»-)' 1+2 (t1) +(Ml tl)

t1+

Ml+

Ml- ( 1)

(m~—M 1) s2+(M l. , tl)

nd

$2— "~;)', "=«'
'

~=2

pr;.) —*('
~

order of jntegration we haveChanging the o

Ml+2 (tl)

diV '

dMg'
s2- (Ml, tl)

(4.24)

s 2+ (tl)

t1+

the form of a restr

d$2, (4.23)

of ty s ou . ~

of $2 so that t
M be expressed in

free to have all

g8(P) dt's

e of variatio n o $2

tl+ ( M 1)

the range
t given by

Ml-

valuea

2. 2 t ) (4' ) where

This constrain ls

2 ~ s y~g2', ml(t~) =gy(ma ) & '
. .

t =t~~(il'I1—P2—) '
tl e condrjlons +

)

~ ) To hand the o~e l'
h t thelatter t,~(iVi)=—t&+(

( and $2-(ti) ~$' '+
d b the inequality ~ (tj) =Lq(

t y 1',
f th, ; t ~ d

(~, t,)=I,~(m. ' " ',
)

inequ ~ y '
) that if one o
tia6ed»d +'ce "'

ll alues "
L(g —mb)' —m j

, ~, )2—s2 —(M~-)p= (Qs — '- ~' )2 m, 'jm. '

integra tions in th e

((gs—m~) ' we

(4.19) The order of &he tea ' '.

h~~g~d ao &hat i&

( )( ($2'(tj) ~
the two possible

b done graphical y.
us distribution

not lie in this range

sider the simultaneous
' '
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Figs.

—m' we
(s (tg~,„.Htl( tl max' $2— 1 X 2—

t 2+(tl. s 2)

'
sirn

'
i . 2(b) are satss6e i

dt2

equal s p

ds2(P3~(P ~
&s2 andt~& ~+, s h t e

s2

t 2+(t 1,s2)

s 2+(tl)

dt's

(m —ml) '2

t2- (tl, s2)

s2+ (tl)
s2+(tl}(m~—m, l)

(4.20)ds2,

g deaf ' ds2 dtj ~ ~ (4.21)

+8(»)
s2-(tl)tl+

'—mg/m. )(s+m. '—m g' —s2 .
e c the res ric = nd e

s+ 1

We can now relax

, Bt~ in the invarian m
articles

distribution 80 q

'
nan m

from an initial-state part
in the final state. 6' may be wri e

where
s2—(tl)

d$2

(tl, s2)

dt2, (4.25)

m 'ma', tg, mg').$2 y $2)

verse t e orh der of the s2 an 2 inIn order to re

(4.26)

tlons) we expreress this cond

2 tj' m32, myt t)=I.~( „t,m, „X)2 — '
1 p

Fl . 2,

' integration given y q.E . (2.11)with thelimitsof thewy in e

tl+ s2+(tl)

ds2+8(pg)
(mrna

—ml) 2 t 2+(tl)

d$2
t2-(ta) s2 (tl, t2)

+8(T„)

82 (tl, t2)t2 (tl)

s2+(tl, t 2)

t1+

t t )—sn (tx))($2+ &, 2—s tg, t2) —$2+(tg)))dtg8 —$2+
»- (tl, t2)

(4.28)
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Sa+(ti')
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ds2Ch'
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t 2+' (tx')(ma —my) 2t 2+'(ti') ~2+ (t1')
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r advantageous topear a
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dt2
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sp( i
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ss~(fl', fs') = 1.~(m, '; ms, s, s,
P

where

Ti+'

dhl' 8(a+(fI'))

(tl', t2')

Ts+' (tl')

t2+' (ty')

ty+'

82+(tg, t2 )

2-(tl it2 )

S2 (t&', t. ')
t 2-' (ti')

S2 (tl', t2')
ds„-, (4.36)

&I') =—S'+(fl)

r m &, ti y. These conditions are ne&m, respec
ell as that obtaine

ining; the intersection 0 " '"'0'c '"""' a
h ase may be. e

' '
ssio

Lindblom Ref. 11.Kajantie and Lin

(4.37)
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Man ede].stam varia les can e wr

dt2

tl+' (2)
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tl-'(2)
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(ma —ml) 2

dt's'

s2+(tl', t 2')

t 2+'(tl)

dt2'

82 (tl', t2')

tl+' (3)

ds2+8(vb)
tl-' (3)

dsg+0(vb —M')

2 (tl', t2')

t2'-(tl')

dt2

(ma—ml) 2

dti' ds2, (4.38)
t2 ' (tl)t2+' (t1 ') s2-(tl )

mi ~ me, respe ctively, and

t

in mi~m2anv b interchaning miv3 ale 0v3 btained from vi y inwhere v2 and v3

2-(tl')

2
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Starting from the phase-space integral written in the form'

( g 8=m1)2 ~ 2+' (&2, t) 3)

a2 ' (g2, a3)

(4.42)

and interchanging the order of $3 and $2' integrations, we have

where

( g a—m1)2 S2+' (e2)

' (s2)

d$2

tt 3+ (~ 2, tt 2 )

ds3+
( ps—m1)2 ( q e2—m2)2

a2+' (s2)

d$2

~3+(~2 &2 )

(82s~2 )

d$g ) (4.43)

s, =( Q m2)2,
Ic=i

s2 (sl) =$($3 —m2') gs+m2(s —ml') j(gs —m2)

$2+ ($2 $3) L+($2 m2, $3', s,ml )

$3+($2,$2') =I~(s; $2,ml', m2', s2 ) $2y ($2)
—=$2'g($2, $3 ) .

(4 44)

8'o/BE1BE2 is then simply related to 8'o/8$28$2'
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APPENDIX: NOTATION

(A &)—= (A.&)/[A( (~l,
$ABCDj=33„g„A„B„C—lD„

3I ABCDj=sgnLABCDg,

C(s; a,b; c,d; t) —=L(s+a —b)(s+c —d) —2s(a+c —t))P(s,a,b)X(s,c,d)j '",
C(s; a,b; c,d; t, t)—=—2P.( s, a, b)+ X( sc, d)

—X(s,t, t) )[X(s,a,b) X(s,c,d)) 'i2,

CO; k, v) = (t —B)L(1-5')(1-n')?"',
L~(s; a,b; c,d)= a+c (s—+a b—)(s+c —d)/2$&P—, (s,a,b)X(s,c,d)5'~ /22,s

L~($; a,b; c,d; +)=a+c+(s+a —b) (s+c d)/2$—&P.(s,a,b—)) (s,c,d) j1 "/2s,

(A1)

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

Ly($' al, bl (C2)
' a2 b2 (Cl)

' a3,b3$

=al+a2 —(s+al —bl)(s+a2 —b2)(2$) +p(spalpl)X(s, a2, b2)$'"(2$) 'j)g&$(1—$') (1—g') j'~'} ) (A9)

( e(sj al, bl,' a2, b2 p a3,b3 j cl)c2)c3) (
= (8$) 'p (s,al&bl) X(s,a2, b2) X(s,a3)b3) (1—f' —lj' —f'+2)qt') j'I') (A10)

where $, lt, and f in (A9) and (A10) denote the following:

t—=C($ j a3)b3 j a2p2 j cl) ) 'g—=C($ j a3p3j alybl j c2) ) t =C($ j albl j a2)b2 j c3) ~ (A11)

Note that (A9) does not depend on t, and is symmetric
in $ and lt, and (A10) is symmetric in $, g, and f .

If s) 0, C(s; a,b; c,d; t) gives (p, p, ) in the frame of
reference characterized by p, =0, where the 4-momenta
are such that

2—a =A )

p. = ~(p.~p ) = ~(p.~p.),
t= -(p.—p.)'.

Evidently, C(s; a,b; c,d; t) is invariant under the inter-
change (a,b) ~ (c,d) or a~ bande~ d simultaneously.
With the invariant t such that pt= &(p,+p,), C(s; a,b;
c,d; t, t) also gives (p, p,) in the form

cos8= -2'() 1+ll2 —) 3) () 1) 2) '~2.

When written in this form, we have

sin8= 2$ —X() 1,X2,X3)j'~2(jllX2)
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Cg'; $,g) obviously gives the cosine of the azimuthal
angle between two vectors which are such that their
polar angles are cos 't and cos 'q and the cosine of the
angle between the two vectors is l.

Integration over the solid angle using two Dirac 8

functions which de6ne suitable Mandelstam variables
gives constraints of the type —1~& i1&~+1 and —1

~&C(t; p, i1) ~&+1. The former constraint restricts the
range of the invariant c& in the physical region, viz. ,

&2 ~~ C2~~ C2+ lf S)0)
(c2—c2 )(c9 c2+)~&0 if s&0,

and

(ai,bi,c,) +-+ (a2,b, ,c,) .
(A16)

Other forms of the constraint [C(t; P, it)$'~& 1 are

1.e.)

C3 ~~ C3 ~~ C3+. if s&0,
(c3—c3 )(c3—ca+) ~) 0 if s(0. (A15)

(A9) is clearly invariant under the following inter-
changes:

(aiia2ia3) ~ (b&ib&ib&)

where

cg+ L+(sj a0ib3 j aiibi) ~ (A13)

Note that c2 &c2+ if s(0. The condition q'~&1 may
alternatively be expressed so as to restrict the range of
any one of the invariants a&, b&, a3, b3 or s. We have

ai~ ——LgLb2, ce,bi, (c2); a2,s, (as); ci,b3$

=LyLbgi c2ibi, (c3); agis, (a2) j cr,bg j,
sy =LyLca,' ai, ag, (ba); bi, b2, (aa); ci,c27

=LyLc& i a2ias i (b&) i b2i b3) (ai) i c2ic3j
=L+Lc2i a8iaii(b2) i baib»(a2) i cecil (A17)

s+= L+(cmi ai,as,' bi)ba) i

ai+= L+(b8, s,a» biic2),
(A14)

c3+=LyLsi alibli(c2) i a2ib2i(cl) i a3ibgj )

and the restrictions on any of the remaining three in-
variants follow from (A14) by use of the symmetry prop-
erties of (A4) or (A7). The condition —1~&CD'; (,i1)

&~+1 similarly restricts the range of variation of the
invariant c3.

Constraints on the range of variation of any of the re-
maining seven invariants may be similarly written
using the fact that the condition I C(t; p, i1)j'~&1 is
symmetric in $, g, and 1 and hy employing the sym-
metries of the latter quantities under the interchange of
the various indices. Also, note that the simultaneous
conditions —1~& g&~+1and —1~& C(f; g, g) ~&+1 are
equivalent to the conditions —1&~f'&~+1 and —1«(.; ~Z) &+1.

Finally, (A10) gives the magnitude of the pseudo-

scai«LP~P~iP~aP~s)


