2 BOUND ON VIRTUAL COMPTON SCATTERING AT 185:-:

TasLE IV. Comparison between the results of this experiment
at the (5.8°, 2.25 GeV/c) point, the results of the experiment of
Cohen et al., and the various theoretical predictions for the Comp-
ton contribution due to the p meson.

I
n6
Source Description (MeV) (sr?)
Experiment Cohen ¢t al. —18.0 +8.0
This result + 1.76+4.7
Theory Jackson width, ¢ =0° —0.18
Jackson width, ¢ =15° —0.98
Jackson width, ¢ =—37° +1.76
120-MeV constant width, —0.80
¥,=0°
Jackson width, Ross-Stodolsky 16.49

factor,18 y,=—51

nism gives at 460 MeV/c? an imaginary amplitude even
with proposed corrections.?

The Compton amplitude used here conserves i-
channel helicity® in contrast with the results for p
photoproduction.?:* The 25° difference between the
t-channel and s-channel axes at the extremes of our
acceptance is not sufficient to disturb the helicity
overlap function of Eq. (17).

2 J. Pumplin, this issue, Phys. Rev. D 2, 1859 (1970).
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These results for the interference cross section
indicate a negligible Compton contribution to the
electron pair yields of Ref. 6. At (5.8°, 2.25 GeV/¢) the
689, confidence level limit on a dispersive Compton
cross section for electron pair production is 0.019,
of the Bethe-Heitler cross section.
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The diffraction dissociation process for the reaction v — 7*r~p is analyzed in detail. Much of the analysis
is relevant to reactions initiated by hadrons. A procedure is suggested for adding nonresonant background
(the “Soding term”) to p° production without double counting, and numerical calculations are presented.

I. INTRODUCTION

N this paper I wish to consider difiractive processes
in which a high-energy photon dissociates into
hadrons, as a consequence of its coupling to them, and
the resulting virtual hadronic system is brought onto
the mass shell by elastic scattering on a target particle,
which provides the necessary slight change in longi-
tudinal momentum. In particular, I will discuss the
“Drell-S6ding mechanism” * for yp — wtrp, illustrated
in Fig. 1, and some corrections to it. Similar consider-
ations apply to yp — K+*K~p, vp — Dpp, etc., and also
to reactions like yp — Astr—p which involve strongly
unstable particles in the final state. Diffractive processes
* Work supported by the U. S. Atomic Energy Commission.

1S. Drell, Rev. Mod. Phys. 33, 458 (1961); P. Soding, Phys.
Letters 19, 702 (1966).

in which the photon dissociates into more than two
particles, or in which the target particle also dissociates,
will not be discussed here.

The work is motivated by the experimental ac-
cessability of reactions like yp — w7, together with
the belief that diffractive processes will dominate them
at high energy. In addition, I hope to clarify some
general aspects of diffractive two-particle — three-
particle processes, which are applicable as well to hadron-
induced reactions like #+p — 7£p% or pp — wtnp. The
reaction vp — wtr~p is particularly suited for testing
the basic idea of diffraction dissociation, because of the
simplicity which results from the pion having spin zero,
because of the smallness of the pion mass, which allows
the propagator pole to approach very close to the
physical region, and because good data can be obtained
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F16. 1. Feynman diagrams for the diffraction dissociation
vp = wtr~p (“Drell-Séding mechanism”). A third diagram,
which contains no pion pole, is required by gauge invariance, as
discussed in the text.

for this reaction—including data with polarized
photons.?

Much of the current interest in vp — 7t —p centers
on the copiously produced p° resonance, and on the so-
far fruitless search for new resonances in the atnr—
system: in particular, the JF=3" recurrence of p°
predicted by Regge-pole theory? and the JP=1-
daughter of f° predicted by simple forms of the
Veneziano model.* The model diagrammed in Fig. 1 can
be applied directly only to mass regions, or partial
waves, of the diffractively produced system in which
resonances are unimportant. Where resonances are im-
portant, the model can be looked upon as generating a
“background” term, which is to be added to the reso-
nance production amplitude, along with an appropriate
correction for “‘double counting,” as discussed in Sec. V.
Alternatively, it may be possible to incorporate reso-
nance production into the model, using the theory of
final-state interactions.5

The possibility of diffractive production of hadrons
was first set forth by Feinberg and Pomeranchuk,® by
analogy with coherent bremsstrahlung. The idea was
further developed by Good and Walker.” Diagrams like
Fig. 1 were proposed by Drell as promising contributors
to secondary beams at SLAC, and were later calculated
by Séding! for yp — #tn~p as a background to dif-
fractive p® production, in an attempt to understand the
observed asymmetry of the p mass spectrum. Séding’s
calculation, and a refined version of it by Krass?

2 H. Bingham, W. Fretter, K. Moffeit, W. Podolsky, M. Rabin,
A. Rosenfeld, R. Windmolders, J. Ballam, G. Chadwick, R.
Gearhart, Z. Guiragossidn, M. Menke, J. Murray, P. Seyboth, A.
Shapira, C. Sinclair, I. Skillicorn, G. Wolf, and R. Milburn,
Phys. Rev. Letters 24, 955 (1970). I wish to thank I. Skillicorn
and J. Ballam for discussions about these data prior to publication.

3D. Crennell, P. Hough, G. Kalbfleisch, Kwan Wu Lai, J.
Scarr, T. Schumann, I. Skillicorn, R. Strand, M. Webster, P.
Baur%el, A. Bachman, and R. Lea, Phys. Rev. Letters 18, 323
(1967).

4 J. Shapiro, Phys. Rev. 179, 1345 (1969).

5 G. Kramer and J. Uretsky, Phys. Rev. 181, 1918 (1969),
treat the p° production as entirely due to a final-state enhance-
ment. Their model would be more in keeping with final-state
interaction theory if the normalization of the resonance term were
considered arbitrary (in a naive model it depends on the behavior
of the =r phase shift at infinite energy); their procedure for
normalizing it is unconvincing, and in poor agreement with
experiment. For a final-state interaction treatment of N* produc-
tion, see J. Rushbrooke, 7bid. 177, 2357 (1969).

6 E. Feinberg and I. Pomeranchuk, Nuovo Cimento Suppl. 3,
652 (1956).

" M. Good and W. Walker, Phys. Rev. 120, 1857 (1960).

8 A. Krass, Phys. Rev. 159, 1496 (1967).
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ignores the question of double counting, which is dis-
cussed in Sec. V.

The Drell-S6ding mechanism can be looked upon as a
diffraction dissociation process, similar to those possible
in mp —wpp,? Kp — wK*p0 and pp— pnrt It can
also be considered as a special case of the multi-Regge
model,”® which has come to be interpreted as applying
even when not all of the final subenergies are large. For
vp— wtrp, the effect of multi-Reggeism would be to
introduce a factor s’«*) and a signature factor into the
amplitude, where s'=m.,* and ¢ is the squared four-
momentum of the virtual pion. Because the pion has
spin zero and very small mass, this has little conse-
quence at small #. Another effect of the multi-Regge
model is to introduce form factors (residue functions)
which depend on ¢, but that is not unique to the Regge
model: Bare Feynman propagators in general must be
reduced, when the propagating particle is far off the
mass shell, and only low-order diagrams are being kept
on the basis of “nearby singularities” arguments rather
than on the basis of perturbation theory (see Sec. V).

II. KINEMATICS IN JACKSON FRAME

For the reaction yp — w*r~p, denote the four-mo-
mentum of the photon by %; of the initial and final
protons by p, ’; and of the pions by ¢4, ¢_. The Jackson
frame is defined as the rest frame of the pion pair, with
the z axis in the direction of the photon:

k=(0,0,k; %),
P: (Pz;O;Pzi E) )
¢+= (g sinf cosg, ¢ sinf sing, g cosf; w) , (1

¢—=(—q sinf cosp, — ¢ sinf sing, —q cosf; w) ,
p,_: (P-T)inz,; E,) )

where w=(g+m)'?, E=(pl+pl+m)?, p/=k
+p., and energy conservation implies p,=FE—2w
+2w(w—E)/k, E'=k+E—2w.

A convenient choice for the five Lorentz-invariant
kinematic variables are s= (k-+p)?, the total c.m. energy
squared; t=(p—p’)? the four-momentum transfer to
the proton squared; m?=(¢;+¢_)?, the invariant mass
of the = system squared; and 6 and ¢ are the decay
angles of the two-pion system in the Jackson frame. The
Jackson-frame variables are related to the invariants by

w=3m,
k=w—t/4w,
E=(s—my+1)/40, )

pe=E+(m,*—s)2/k,
po=(B2—p2—m?)"".

9S. Drell and K. Hiida, Phys. Rev. Letters 7, 199 (1961);
R. Deck, ibid. 13, 169 (1964); M. Ross and Y. Yam, ¢bid. 19,
546 (1967); 19, 940(E) (1967).

10 M. S. Farber et al., Phys. Rev. Letters 22, 1394 (1969).

11T, Resnick, Phys. Rev. 175, 2185 (1968).

2 E. Berger, Phys. Rev. 166, 1525 (1968); S. Chung ef al., ibid.
182, 1443 (1969).
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In order to obtain qualitative understanding, it will
be useful to consider the limit of high energy: s=m,?
+2m,E, 1% — o, In that limit, to leading order in s,

ExFE~s/4w,

p==2p'=2(s/4w) (14-40?)/ (1—4?) ©)
pazs(—1)12/ (de?—1) .

The momenta of the initial and final target protons
become infinite and equal, while the momentum of the
photon and its angle with respect to the proton direction
remain finite.

III. DRELL-SODING AMPLITUDE

The diagrams of Fig. 1 correspond to a matrix ele-
ment for yp — atr—p of

NM=e[ (e qs/k ¢ )T_(k—qs, p— g, P')
“(G‘Q~/k“1—)T(k—9—,P“"9+, ?’)'{_G'V:I) (4)

where ¢ is the photon polarization vector, and T, T_
are pion-nucleon elastic scattering amplitudes for initial-
state pions which are slightly off the mass shell. Through-
out this paper, the target proton will be treated as
spinless; this approximation is not necessary, but should
be acceptable, since we are only interested in small
momentum transfer elastic scattering from it. Correc-
tions to Eq. (4) due to off-mass-shell effects, and other
effects, are discussed in Sec. V.

A term of the form eV, where V is some four-vector
satisfying T_—T+k- V=0 is required in Eq. (4), in
order to make the expression invariant under gauge
transformations, e — e+Mk. At first look, V could con-
tain terms proportional to each of the available four-
vectors k, p, q1, ¢2, and p’. However, we have already let
the photon couple to the pion charge in the way we
want it to physically, and e-£=0, so ¥V must be some
combination of p and p’. The combination p—p’ is also
unacceptable since p—p’=q;+¢_—*k. In this paper, I
use V«p+p', ie, I let the additional photon coupling
be to the current of the scalar “nucleon.” Adjusting the
magnitude of ¥ to provide gauge invariance,

[E'Q+ e (p+p")
N=¢ T_
k-qs k- (p+1")

Krass® chooses the transverse gauge for the photon in
the center-of-momentum frame, which is equivalent to
V « p. I know of no strong argument to choose between
this and p+p’, but the difference is not very important,
since the Drell-S6ding process is confined to the
diffractive region, where (p—p’)? is small; and the two
prescriptions are equal in the high-energy limit.

The pion-nucleon elastic amplitudes can be obtained
from measured differential cross sections, by ignoring
spin and making assumptions about the phase and off-
mass-shell dependence. The effective energy and mo-

€ g
— T,
kg

-1 ] ©)
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mentum transfer values can be taken from the final
particles, which are on the mass shell.
For simplicity of calculation, I use the forms

Ti(k—q:r'i P — Qs+, P')
2ios (g pP—mim R, (6)

which are pure imaginary in phase, and correspond on
the mass shell to constant diffraction peaks, do/dt < B¢,
and constant total w¥p cross sections, o.. When the
invariant mass of one of the wp systems is low, as
happens when the angle 6 is near 0 or = even at fairly
high photon laboratory energies, resonances can be
important, and Eq. (6) is not such a good approxima-
tion. In comparing with experiment, it would probably
be best to make a cut on the data to require that both
«N invariant masses be reasonably large—at least to
eliminate the region of A(1236). One could separately
ask whether diagrams like Fig. 1, calculated with de-
tailed -V amplitudes obtained from phase-shift analy-
sis, would be capable of explaining nondiffractive
processes such as yp — w~A*t, but the theoretical basis
would then be somewhat different.

Since gauge invariance has been enforced, the polar-
ization vectors can be chosen in any convenient manner.
Using e,= (1,0,0; 0), which corresponds to photons with
electric vector lying in the scattering plane of the
Jackson frame, and e,=(0,1,0; 0), with electric vector
perpendicular to it, the spin-averaged cross section is

do q
ddmdQ 256m4(s —m,?)?

|91 2, ™)

where
| 91| 2 =5 (|onz >+ |91ty %) 5 (®)
and in terms of the Jackson-frame variables,
eq I" sinf cos¢ sinf cos¢

E)’n,; = T+ T_
(1 —t/40?) 14 (g/w) cosb  1—(g/w) cosd

eq [ sinf sing
Ny = T,
(1 —1/4?)L1+(g/w) cost

©)

sinf sing
__,__T_]
1—(g/w) cosf
Ty=2iceB+ [ (E'wF p,/q cosd
F p,q sind cose)?—ma2mp* ]2,

Since the pion-nucleon invariant masses are assumed
to be reasonably large, it is a good approximation to
drop the mass terms which appear in the square roots in

T.: This corresponds to assuming the pions are ex-
tremely relativistic in the lab frame. Making this
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approximation, and noticing that ¢, w, &, E/, p., and p,
are related to s, ¢, and 7 but not to 6 or ¢, the only ¢
dependence of the matrix element is sing and sing cos¢
in 91Ty, and 1, cosp, and cos’¢ in 9M,. This implies that
the z component of angular momentum in the Jackson
frame for the final =7 system can be only 0, 1, or 2 for
unpolarized photons, and only 1 or 2 for photons with
electric vector perpendicular to the production plane.
This simple result would not be affected by including
form factors, since they would be functions of (£—g)?
—m.2=2k(wFq cosh). The origin of the J,=0, 1, 2 rule
is as follows: At a fixed value of momentum transfer, the
diffraction scattering amplitude depends linearly on ¢,
just as if it resulted from exchange of an elementary
spin-1 particle—since that would also correspond to a
constant cross section. The effective spin-1 particle can
carry only J,=0, &1, since it meets the photon ‘“head
on,” and therefore carries no orbital contribution to J..

Now consider the limit of infinite energy, in order to
obtain qualitative understanding of the cross section at
finite energy. When s —eo,

. q
T1=%ig seB+t 2[1:!: -

49v/(—1)
:{: —_—
42—t

( 2. )N V(=)
E_*_E,_Pz'—Pz, B ’

20
and the cross section do/df dm d approaches a finite
limit, as expected for a diffractive process.

At {=0, for s—o, the angular dependence of the
propagators is canceled by that of Ty, so the amplitudes
I, and 9T, are proportional to sind cosp and sing sing.
The 7= state therefore has the same spin and helicity as
the incident photon: J=1, J,==41. Its having the
same helicity is required by angular momentum conser-
vation. Its having the same spin comes about because
the scattering amplitude is independent of the angular
orientation of the wr system in this limit. (If the pions
are replaced by particles with spin, this is no longer
true—e.g., in wp — wpp, mp systems with both /=0 and
J=1are obtained in the s —, 7 — 0 limit.) When form
factors are included to reduce the amplitude when the
virtual pion is far off the mass shell, additional angular
dependence is introduced at high =r masses, since
forward-backward configurations of the 7w system are
favored, with the backward = doing the scattering; and
higher angular momentum states come in. At finite
momentum transfer, states with J#1 can be produced
even when form factors are unimportant, but only to the
extent that 4/ (—1) is sizeable compared to w=2%m. The
magnitude of —¢ is effectively limited by the width of
the diffraction peak, so systems of moderately high
mass should be produced mainly with J=1. When

sinf cosd{] , (10)
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systems of very high mass are produced, form-factor
effects are certain to be strong, and high angular mo-
menta will be produced. In a numerical calculation
containing a “reasonable” form factor (see Secs. V and
VI), the production of J=3 and J=1 were found to be
of comparable magnitude by m=1640 MeV, so the
suppression of angular momentum change cannot ac-
count for the failure to observe g-meson photoproduc-
tion, if one assumes that the same suppression would
occur in resonance production as occurs in the Drell-
Séding process. [ In accord with this, the N *(1688) with
JP =45+ does seem to be produced in pp— pN*13] States
with /=35 and higher are significantly suppressed at this
mass. States with even values of J are not produced at
all by the Drell-S6ding mechanism, if one makes the
approximation that #tp and #—p scattering are equal,
since in that case the 77 system must have odd charge
conjugation.

Now consider the dependence on momentum transfer
n the s —oo limit, making the rather good approxima-
tion By~B_=B. If m is large, so that —<w, the cross
section has the same ¢ dependence as mp elastic scat-
tering, except for effects due to form factors, which
make the ¢ dependence flatter. At low =-r masses,
do/dt dm dQ falls faster than B¢, This steepening of the
diffraction peak at low masses results from the pion
propagator. It can be understood using the uncertainty
principle by thinking in terms of “old-fashioned pertur-
bation theory”: When the photon dissociates into a
state of low invariant mass, the violation of energy
conservation involved is small, so the time allowed for
the dissociation is long, and the virtual state is spread
out over a relatively wide range of impact parameters
(in this case, spread out by =7%/m.c); the effective size
of the interaction region is therefore larger than that
corresponding to the mwp elastic scattering alone, so the
diffraction peak is steeper. This steepening effect has
been seen in yp — 7w ~p at masses below the p°? and in
pp— pN* for low-mass N*’s.13

Now consider the dependence of the cross sec-
tion on the wm invariant mass for s—w. At {=0,
Ti3io, 5B+ 14 (g/w) cosf ], so the matrix element
contains a factor 1/m2. (It also contains a factor of g,
but this is the usual threshold factor for scattering a p-
wave system, and should not be thought of as tending to
cancel the 1/m?2.) This 1/m? factor can be understood in
old-fashioned perturbation theory to result from an
energy denominator: the violation of energy conserva-
tion at the dissociation vertex being m?/2E1,p, as shown
in Sec. IV. A factor of 1/m? was assumed also to be
present in the amplitude for yp—p% by Ross and
Stodolsky,* and has since been controversial. It arises

3 J. Rhode, R. Leacock, W. Kernan, R. Jespersen, and T.
Schalk, Phys. Rev. 187, 1844 (1969); W. Anderson, G. Collins,
E. Bleser, T. Fujii, J. Menes, F. Turkot, R. Carrigan, Jr., R.
Edelstein, N. Hien, T. McMahon, and I. Nadelhaft, Phys. Rev.
Letters 19, 198 (1967).

14 M. Ross and L. Stodolsky, Phys. Rev. 149, 1172 (1966).
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naturally at {=0 in the old-fashioned perturbation
theory picture, independently of the two-pion model,
although one could imagine that other dynamical effects
might cancel it in the production of a wide resonance.
Furthermore, the form suggested by the old-fashioned
perturbation theory argument away from the forward
direction is not nearly so simple as 1/m2: Because of the
steepening of the ¢ dependence at low masses mentioned
above, it is more like 1/(m?—¢). This will be discussed
further in Sec. IV.

If no form factors are included, /"dt dQ2(do/dt dm dS2)
rises from threshold like ¢®= (3m?—m,2)3?, reaches a
maximum at =600 MeV, and falls off for high masses
like = when s—co. The m™! falloff is unreasonably
slow, and results from kinematic regions where the
virtual pion is far off the mass shell. It would imply that
the cross section integrated over m rises like Ins. In-
cluding form factors changes the cross section only
slightly at low wm masses, but causes it to fall like 75 at
high mass, by limiting the transverse momenta of the
outgoing pions. The existence of form factors also
implies that the Drell-S6ding mechanism is less effective
in producing pairs of high-mass particles, such as K+K—,
PP, AT TA~—, etc., than it is for producing =+r—.

IV. IN THE LAB FRAME

The angular momentum properties of the diffractively
produced system are most easily analyzed in its rest
frame, which I have employed up to now. More insight
into the diffraction dissociation process can be obtained,
however, in a frame in which the dissociating particle
has an “infinite’” momentum, such as the laboratory
frame. In the high-energy limit, the four-momenta in
the lab can be chosen as

k=(0,Ey; E,),
p=1(0,0; my),

q+=(r—%s, n(Ey—A); n(Ey—A)
(r"‘%ﬁ)2+m1r2
P )
2Eyn

(11)

q_=<_r__%g,, (1=n)(Ey—A); (L—n)(Ey—A)
2E,(1—n) /’
P =G, A, (mp*+82+AH12),

where r and § are two-dimensional vectors of transverse
momentum, and the energies are given only to order
1/E,. The pions have finite fractions of the infinite
longitudinal momentum E,, given by 5 and 1—n, where
0<5<1, since A is of order 1/E,. Neglecting the recoil
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energy, i.e., assuming —i<<m,?2,
m?=[(r—38)*+ms]/n+[ (t+38)*+m.*]/ (1—n) -8,
A= (m*+)/2E,, (12)
=92

Writing the polarization vector as e=(e,0;0) by
making use of the freedom to choose a gauge, and as-
suming oy=0_, By=B_ for simplicity, the scattering
amplitude given by Eq. (5) becomes

M =4igem,E Bt 2n(1—1n)

e (r—13)
X +
(r—35)%+ms>
=4icem,E, €52
[ e (r—39)
m2+82—2r-5/(1—1n)

e (r+39) ]
(30

o (r+38) ] 5
m2452+2r-5/91

where the first term inside the brackets corresponds to
the 7 scattering, the second to the =*.

From the viewpoint of old-fashioned perturbation
theory, the virtual pion is considered to be on the mass
shell, with energy not being conserved at the dissocia-
tion vertex. For the diagram in which the = scatters,
the 7w system in the intermediate state has an invariant
mass squared

Mins?=[ (r —58)*+m.*]/n(1—n)
B —2r-5/(1—n)  (14)

in this view. The violation of energy conservation in
dissociation is AE=min?/2E,, and the energy denomi-
nator 1/AE is clearly visible in Eq. (13). [If the photon
were a particle with mass, the corresponding expression
would be AE= (min2—m,2)/2E,.]

At zero momentum transfer, $=0 and min=m, i.e.,
the photon dissociates into a wx system of the same
mass as the final one. (In coordinate space, the dis-
sociation takes place a long distance, = E.,/m? away
from the target particle, but the transverse separation of
the pions remains <1/m.,.) The energy denominator
then gives 9 a factor m~% analogous to the Ross-
Stodolsky factor.* Away from the forward direction,
Mmins can be either smaller or larger than . If r is small,
ming is larger than m, and this results in the diffraction
peak being steeper for diffractive production of low-
mass systems. Equation (13) does not contain the pion
mass explicitly, so effects such as the Ross-Stodolsky
factor and the steepening of the diffraction peak at low
mass can probably be believed to be very general effects,
not depending on the specific model involving dis-
sociation into two pions. In determining the steepen-
ing of the diffraction peak, the termsé= —¢,2r-8/(1—9),
and 2r-$/7 are to be compared with m2. As a result, in
vp — K+K~p there should be very little steepening of
the diffraction peak even near the K+*K— threshold. On
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the other hand, in pp — pnat at threshold, the relevant
difference in masses squared is (m,+mr)2—m,2=0.3
BeV?, so a good deal of steepening is possible.

V. CORRECTIONS TO MODEL
A. Form Factors

The theoretical basis for calculating simple diagrams
such as those of Fig. 1 as an approximation to the true
diffraction dissociation amplitude rests in the presumed
domination of that amplitude, in the sense of dispersion
theory, by singularities which lie close to the physical
region. In the case of the Drell-S6ding process, the
nearby singularities are the pion poles, at the zeros
of (b—gy)?—ma?=2w?(1—1/4w*)[ 1= (g/w) cosf]. These
poles are closest for mn systems produced with small
momentum transfer from the target, and with decay
direction in the Jackson frame near to forward or
backward. In the lab frame, this corresponds to both
pions having small transverse momentum, and the one
which interacts with the target having the smaller
fraction of the photon’s longitudinal momentum. At the
edge of the physical region, for s — 0, ¢ — 0, cosf — F1,
the quantity (k—g¢.)?—m.? approaches as close as
—m.? to 0, if w>m,.

When the pion poles are far from the physical point
under consideration, the diagrams of Fig. 1 are no longer
a good approximation to the amplitude. Thinking in
terms of either field theory or dispersion theory, other
diagrams become important. The pion propagators
1/[(k—q4)*—m.*] therefore need to be multiplied by
“form factors” F [ (k—gqy)?—m,*], where F(0)=1. The
function F(x) cannot be specifically associated with the
dissociation vertex, so to call it a form factor is some-
what misleading.!s However, it is expected to fall off as x
becomes negative on a scale of roughly 0.5-1.0 BeV?,
like the proton’s electromagnetic form factor, since it
must correspond to masses of intermediate states like
3 or mp in the dispersion relation; or since in coordinate
space it must preserve the long-range part of the pion
exchange amplitude, while removing the part corre-
sponding to distances 0.8 F, where other processes are
important.

As a qualitative model of the form factor, I have used
F (x) =¢4%, where 4~1.0—2.0 BeV2. The uncertainty
in F(x) produces a fairly large uncertainty in the
predicted cross section at high masses, but has little
effect in the region of the p° as shown in Sec. VI. It
would be interesting to extract F(x) from the data, by

15 In the case of vp — n*n~p, the function F(x) results from
the diffraction scattering vertex alone. Corrections to the wmy
vertex and to the = propagator cancel each other according to a
theorem of Francis Low, Phys. Rev. 110, 974 (1958). The theorem
arises because the dispersion relation for the =7y vertex contains
a subtraction constant, given by the pion charge, plus an integral
over the absorptive part, which vanishes because no real inter-
mediate states can connect a pion (which has spin 0) with a =y
system (which has helicity 1). This theorem does not negate the
qualitative arguments given about the function F(x), however.
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studying the cross section as a function of (k—gq)2—m.*
or (k—q-)2—m.,? in a region of high == masses, where
one of the two diagrams dominates because of the form
factors, and p° production is negligible. An attempt has
been made to calculate effective form factors like F in
terms of angular momentum barrier penetration fac-
tors'®; and data for the reaction pp — prrt have been
fitted in this way.” An alternative approach to calcu-
lating F would be that of the absorption model: to
remove low partial waves, suitably defined, from the
simple pole diagram.

Another way to look at the form factor is as a cutoff
on the transverse momenta of the pions. For example,
F(x)=e4% corresponds to a transverse momentum dis-
tribution falling off like e=21%/22¢% where po=(44)7'?,
exclusive of a small effect due to the elastic scattering.
The value 4 =2.0 BeV~2 corresponds to $o=350 MeV,
which is typical of what one observes in most reactions
at high energy.

B. Final-State Scattering

One could include corrections to the diagrams of
Fig. 1, in which the outgoing pions are elastically
scattered from each other in the final state, as illustrated
in Fig. 2. Other intermediate channels could also be
included; e.g., the photon could dissociate into 7%,
which could scatter to form n*n after elastic scattering
on the target particle. However, such inelastic channels
should be of little importance for yp— mt7—p, the
sometimes large number of them being nullified by the
smallness of inelastic amplitudes, and by the effect of
form factors. Corrections of the final-state rescattering
type may be thought of as unitarity corrections, re-
quiring in some sense that the total probability for the
photon to dissociate into something is no larger than 1.
They are distinct from the form-factor corrections dis-
cussed above, since they can be significant even in the
case of the long-range (very nearby singularity) part of
the pion exchange.

The effect of rescattering at low == masses is tied up
with the question of resonance production, and is dis-
cussed in Sec. V C. At high masses, the 7m scattering
amplitude is presumably mainly imaginary, so Fig. 2
corresponds to final-state absorption, which reduces the
amplitude due to Fig. 1. Calculating Fig. 2 by requiring
both of the pions which scatter in the final state to be on
their mass shells, and assuming a pure imaginary =
elastic amplitude with do/dt « ¢, yields a correction to
Fig. 1 of —0r/8mB~ —209, atlow transverse momenta.
The quantity o./878, which equals 2¢.1/ctota1 for 7m
scattering, corresponds to one-half of the absorption
calculated by Gottfried and Jackson!® for low partial

16 H. Diirr and H. Pilkuhn, Nuovo Cimento 40, 899 (1965);
G. Wolf, Phys. Rev. 182, 1538 (1969).

17 E. Colton, P. E. Schlein, E. Gellert, and G. A. Smith, UCLA
Report No. UCLA-1027, 1968 (unpublished).
( 18 K. Gottfried and J. D. Jackson, Nuovo Cimento 34, 735
1964).
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¥16. 2. Feynman diagram for final-state scattering correction.
There are really two diagrams, since either #* or «— can scatter
on the proton. The lines marked by X are put on the mass shell in
the calculation.

waves in 2— 2 amplitudes, since, in their case, ab-
sorption in the initial state has the same effect as
absorption in the final state. (Initial state absorption
might be important in our case also, e.g., due to absorp-
tion of the incident virtual p° in the vector-dominance
model.) The final-state scattering has only a minor
effect on the angular distribution of the pions, since
elastic scattering is peaked so sharply forward. For
example, at high masses and high transverse momenta,
Fig. 1 gives a transverse momentum distribution
o« exp(—24p2), while Fig. 2 gives exp[—24p.%/
(14-24/B) ], where 24/3=0.4.

C. Resonances

Reactions in which one can attempt to study the
diffraction dissociation process are without exception
complicated by the existence of resonances near thresh-
old in the diffractively produced system:fory p—atr=p,
the p%; for mp — mpp, the A1; for Kp — K*(890)7p, the
Q; for pp — pnrt or pp — ppmrtr, or pp — p (missing
mass), the nucleon resonances at 1.40 BeV (JF=3%) and
1.69 BeV (JP=35+). The presence of these resonances
close to where the simple dissociation models predict
peaks in the mass spectrum may or may not be under-
standable by extending the notion of duality to reac-
tions involving Pomeranchukon exchange.’® The original
hope of explaining peaks such as the 4, as purely due to
“Deck effect,” analogous to Fig. 1, has largely vanished
in the face of better data? and the realization that the
Deck effect cannot give peaks narrower than a few
hundred MeV. A narrow 41, which would contradict the
Deck model, has not been observed in diffractive pro-
duction on nuclei, however.2 The reaction yp — KTK~
is especially simple from the standpoint of resonances,
because the only known diffractively produced reso-
nance is the ¢, which is very narrow, so resonance effects

e
o e

F16. 3. Feynman diagram representing P
photoproduction and decay of p° %""‘*
——

19 G, Chew and A. Pignotti, Phys. Rev. Letters 20, 1078 (1968).
By itself, the duality concept has only qualitative content. An
interesting attempt to implement the concept by means of the
Veneziano formula, treating the Pomeranchukon like a particle,
has been discussed by S. Pokorski and H. Satz, Nucl. Phys. B19,
113 (1970), and H. Satz and K. Schilling, Nuovo Cimento 67A,
511 (1970).

2 T, Ballam et al., Phys. Rev. Letters 21, 934 (1968).

21 T, Allard et al., Nuovo Cimento 46A, 737 (1966); A. Cnops
et al., Phys. Rev. Letters 21, 1609 (1968).
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F16. 4. Final-state-scattering X
correction dominated by a /\/\/\/\/‘C\“ - T ~<

resonance.

I

should be negligible over most of the K*K~ mass
spectrum.

Various attempts have been made to incorporate
resonance production into the Drell-Séding or Deck
type of model, using the theory of final-state inter-
actions.’ I prefer not to take this approach. It is com-
plicated in the case of pp — pnnt by the fact that an
N*(1400) which decays into nw+ could just as well be
formed from one of the other open channels such as
prtr— and ppr°. In the case of yp — nrr—p, channels
like vp — 7% % and vp — ppp should still be able to
contribute to vp — p%, even though they are closed at
the p mass, if one thinks of the p° along the lines of a
bootstrap model.

I prefer, therefore, to consider the amplitude for
resonance production, yp— p%, as a separate dy-
namical object from the Drell-Séding “background”
term. For the purpose of data fitting, one must simply
parametrize its magnitude, phase, helicity dependence,
mass dependence (e.g., with or without 1/m.,%), and ¢
dependence (e.g., with or without the steepening at
small ¢ characteristic of the S6ding mechanism).

In adding a background term, such as the Drell-
Séding process, to a resonance production amplitude,
one stands in danger of “double counting.” In order
to avoid double counting, I recommend the following
prescription: Multiply the background term in a given
partial wave by e® coss, where & is the phase shift in that
partial wave. The resonance term is proportional to
¢® sind, with a magnitude which one can only para-
metrize as discussed above. In terms of a Breit-
Wigner form, e sind =m,I'/(m ,2—m2—im,I") and % cosd
= (m2—m?)/(m2—m?—im,T'), where the width I" is a
function of m?, going to zero at threshold. The factor
e? cosd gives the background amplitude the phase e
suggested by Watson’s theorem,? and forces it to go
through zero at the peak of the resonance, where m=m,,
d=%m. Far from the resonance, ¢® cosd goes to 1, so the
background term is unmodified. Final-state interaction
theory leads naturally to the e cosé prescription—see,
e.g., footnote 18 of Ref. 14. Further arguments in favor
of it follow.

F16. 5. Double-scattering correc-
tion. There are really two dia-
grams, since either z% or =~ can \
scatter first. The lines marked by
X are put on the mass shell in
the calculation.

2 F, Zachariasen, Phys. Rev. Letters 7, 112 (1961).

81, Aitchison and C. Kacser, Phys. Rev. 173, 1700 (1968);
John Gillespie, Final State Interactions (Holden-Day, San Fran-
cisco, 1964).
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F1c. 6. Momentum transfer dependence of the Drell-Séding process for various angular momentum states. The parameters chosen
were Ey=10 BeV, 0. =0_=30 mb, By=B_=9 BeV~2 and 4 =2 BeV~2 Even partial waves are not present because =*p and =7 p scat-
tering were assumed identical. The dashed curve in (a) and (b) shows the function eB¢/(m?—)?, which fits the p-wave cross section
approximately. The wr masses are m=0.4 BeV in (a), 0.760 BeV in (b), 1.64 BeV in (c), and 2.50 BeV in (d). Note that p® production

is neither included here, nor in Figs. 7 and 8.

In an infinite momentum frame for the dissociating
system, such as the lab frame, the lifetime of the p is
E,/m,T, which is long compared to the time associated
with dissociation and scattering, 2E./m,?. It is therefore
natural to treat the p as a stable elementary object, in
considering the dynamics of its production. Following
the ideas of Sec. V B, one should therefore add to the
graphs of Fig. 1 a resonance production term (Fig. 3)
and a rescattering term (Fig. 4). It is easy to show that
adding the absorptive part of this rescattering term (the
part corresponding to the pions which form the p being
on the mass shell) to Fig. 1 is equivalent to multiplying
Fig. 1 by e cosé.

A final argument for e% cosd comes from considering a
model in which a nonrelativistic bound state of two
particles is diffractively excited into a continuum state,
as a result of one of its constituents elastic scattering on

a target particle. (One could think of the coherent
breakup of a deuteron,®?* and then imagine that the np
system possessed an /=0 resonance.) The scattering
amplitude, in single-scattering impulse approximation,
is given by

T=Te1(A)f%final*(r)!ﬁinic(r)eiA"'2d1', (15)

where ¥(r)’s are nonrelativistic wave functions for the
two-body system at relative coordinate r, Te1(A) is the
amplitude for elastic scattering of one of the constitu-
ents on the target, and A is the three-momentum
transfer. In the case of a repulsive é-function shell
potential [A6(r—a)] for the two-body system (the

% R, Glauber, Phys. Rev. 99, 1515 (1955).
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lowest-lying resonance being considered metastable), it
is easy to show that the scattering amplitude for pro-
ducing an s-wave state in the continuum is

T = (e cosd+Ce? sind) Tpiane wave, (16)

where Tpiane wave 18 Obtained from (15) by replacing
Viina1 (1) with the plane wave corresponding to no final-
state scattering. The phase shift § depends on the energy
of the continuum state, which is analogous to the mass
of a diffractively produced system. The coefficient C of
the resonance term depends on that energy and also on
the parameters describing the potential.

D. Double Scattering

In the forward direction, one would expect the
diffractive production amplitude for vp — 7tz~p to be
proportional to the cross section for absorbing the #+n—
system on the target proton. According to the single-
scattering diagrams (Fig. 1), that cross section is given
by o4+o_. This needs to be corrected by a shadow
term, corresponding to the fact that if one of the pions
has been absorbed, absorption of the other one does not
add to the cross section.

One way to estimate the shadow effect is to consider a
sum of absorptive Gaussian potentials for 7p scattering,
which leads to a total cross section ¢, and differential
cross section do/di« Bt in the eikonal approximation.
Doubling the strength of this potential, i.e., reducing the
mean-free path at every point in coordinate space by a
factor of 2, should correspond to scattering of the ==
system. Keeping only linear and quadratic terms in o,
this leads to a total cross section 2¢—o2/87B, and a
differential cross section do/dt o« [ ¢B42— (¢/167B)eBU4 2.
The correction to the total cross section (forward
amplitude) amounts to about 159,. In going away from
t=0, the shadow effect falls more slowly than the single
scattering, since it comes more from small impact
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F16. 7. Dependence of the Drell-Séding process in the forward
direction on the zr system, for values of the form factor param-
eter A. These parameters were E,=20 BeV~2 o, =0¢_=30 mb,
and By=B_=9 BeV™,
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_F1c. 8. Dependence of the Drell-Séding process in the forward
direction on the mass of the zx system, for various values of the
photon energy. (Other parameters as in Fig. 6.)

parameters, and will produce a dip in the differential
cross section around ¢{= —0.8 BeV?, where the two be-
come equal in magnitude. This interference mechanism
is known to produce dips in scattering on nuclei,® and
has been proposed as the source of the dips observed in
reactions like 7=p — m% as well.28 It would be inter-
esting to look for it in yp — w+r~p, where the =r system
may be intérmediate between an elementary particle
and a nucleus in the degree to which it acts as a com-
posite object.

A somewhat more refined approximation to the
shadow effect, which still assumes that the target proton
interacts with the two pions individually, is offered by
the double-scattering diagrams of Fig. 5. Computing
these diagrams in the s — o, {— 0 limit, by requiring
the intermediate particles between the elastic scat-
terings to be on the mass shell, ignoring the recoil energy
of the nucleon via m, —c, and letting m, — 0, yields a
correction of the form o 0_X87B, as given by the
optical model, multiplied by a factor 1—e=27:* which
reduces the shadow effect for pions with low transverse
momenta. This factor results from the possibility, which
was neglected in the optical model, of the two pions
having different impact parameters on the proton.

VI. NUMERICAL RESULTS

The momentum transfer dependence of the Drell-
Séding process is shown in Fig. 6, for various masses and
partial waves of the wm system. (Of the corrections
discussed in Sec. V, only the form-factor effects were
included in calculating this and the succeeding figures;
in particular, p® production was omitted.) At low
masses, the wr system is mainly p wave. The diffraction
peak is significantly steeper than the e®!, with B=9
BeV—2, assumed for wp scattering, and is given ap-

2% H. Hsiung et al., Phys. Rev. Letters 21, 187 (1968); M.
Fellinger et al., ibid. 22, 1265 (1969).
26 F. Henyey et al., Phys. Rev. 182, 1579 (1969).



1868

proximately by eBY/(m*—f)% (See Sec. IV.) At high
masses, higher angular momentum states predominate
because of the form factors, which limit transverse
momenta. Also, the diffraction peak becomes flatter.

The mass dependence of the forward cross section is
shown in Fig. 7, for various strengths of the form factor.
The cross section is concentrated at low masses by the
form factors, which are already significant at the mass of
the p° The true form factors are not known, but must
correspond roughly to 4=~ 1-2 BeV~2 The effect of this
uncertainty on the cross section can be seen.

The energy dependence of the cross section, exclusive
of that due to the energy dependence of 7p scattering, is
shown in Fig. 8. At 4.7 BeV, the high masses are cut off
by the minimum momentum transfer; the cross sections
have a factor B!, where B=9 BeV? and {<iwmin
=~ — (m?/2E.)% The cross section in the limit E, — is
not very different from that at E, =10 BeV, as expected
for a diffractive process, and this justifies the use of that
limit for qualitative discussions.

The mass dependence of the forward cross section for
vp — K+K—p is shown in Fig. 9. This process is inter-
esting because it could be studied at low K*K~ masses
without interference from resonance production—the ¢,
not included in the figure, being very narrow. The form-
factor effects are strong even near threshold because of
the relatively large kaon mass, so the cross section is
rather small.

At the p mass, the amplitude for producing a p-wave
w7~ pair via the Drell-S6ding process is on the order of
209, of the amplitude for producing it through the p in
the vector-dominance model,** and the two amplitudes
are 90° out of phase if mp and pp scattering have the
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F16. 9. Mass dependence of the forward Drell-Séding cross
section for yp — K+K~p, assuming E, =10 BeV, ¢, =0_=20 mb,
and 4 =2 BeV™2,
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Fic. 10. Dash-dot curve: pure Breit-Wigner resonance, with
constant width; solid curve: Breit-Wigner resonance--constant
interfering background amplitude; dashed curve: like the solid
curve, but background term multiplied by €® coss, where the
Breit-Wigner term is e sing.

same phase. The result of adding a constant background
term with this magnitude and phase to a Breit-Wigner
resonance is shown in Fig. 10. A significant asymmetry
is produced, and the maximum is shifted downward by
~15 MeV. The asymmetry produced by the actual
Séding term would be somewhat greater, because of its
(m,/Mr)? behavior at 1=0. The result of correcting the
background term for double counting by means of the
factor e cosd= (m2—m,?)/(m2—m,2>+-im,I') is also
shown. Its effect is rather small: It raises the apparent
cross section for p production by = 5%, but does not
affect the position of the peak.

VII. COMMENTS ON EXPERIMENT

The Drell-Soding process has been included as a
background term in a number of fits to yp — w7~ in
the region of the p.2%" It provides a natural explanation
for the observed skewing of the resonance peak toward
low masses. In a recent experiment,? that skewing was
found to be consistent with the Séding model, and
inconsistent with a simple (m,/#..)* Ross-Stodolsky
factor (though perhaps consistent with a factor like
[m,2/ (mra2—1) J?). The same experiment finds evidence
for the Drell-Séding process occurring outside of the p
wave; the ¥V ¢* moment of the =7 angular distribution
agrees with the S6ding model, in which it results mainly
from interference of the 3~ partial wave of the back-
ground term with the 1~ due to the resonance.

At masses above the p° region, it is somewhat difficult
to test the Drell-Séding model, because both the pre-
dicted and the observed cross sections are rather
small.2® One must also avoid the effects of other pro-
cesses, such as nucleon resonance production, by re-
quiring the 7tp and »—p invariant masses to be rea-
sonably large, and the momentum transfer to be small.

27 H. Alvensleben et al., Phys. Rev. Letters 23, 1058 (1969).
28 G, McClellan et al., Phys. Rev. Letters 23, 718 (1969).



